
SDN-Assisted Network-Based Mitigation of Slow
HTTP Attacks

Thomas Lukaseder, Lisa Maile, Frank Kargl
Institute of Distributed Systems

Ulm University, Germany
{firstname}.{lastname}@uni-ulm.de

Abstract—Slow HTTP attacks are hard to detect as the
attackers behave according to the specification. The default
configuration of most servers leaves them vulnerable to this
attack. Meanwhile, the pressure to secure the attack targets shifts
more and more to the network operators. Often without direct
access to the target, the operators are asked to secure their clients.
Software-defined networking (SDN) offers the flexibility and
extensibility to analyze and influence network flows without help
of the target operator. In previous work, we designed and built
a framework based on software-defined networking and the Bro
Network Security Monitor that can mitigate attacks within the
network infrastructure without access to the attack target. The
initial framework can reliably mitigate different flooding attacks.
The presented project discusses strategies to add mitigation of
slow HTTP attacks to this framework.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks can cause
large-scale damage to service providers on the internet. Many
smaller server operators do not have the resources or the
knowledge to defend against these attacks and — depending
on the attack — often do not have the overview of the net-
work necessary to mitigate attacks effectively. SDN offers the
unique opportunity to build a system that can observe the
network status while simultaneously being able to actively
intervene in the network structure to mitigate the attacks.
Therefore, we introduced an extensible network-based DDoS
mitigation framework based on SDN to mitigate attacks with-
out support of the server operators [1]1.

The system is capable of mitigating flooding attacks reli-
ably; other attacks are still work in progress. The system ob-
serves servers and recognizes attacks as a first step. In a second
step, if an attack was discovered, the attackers are identified
by observing the incoming traffic of the server. Therefor, the
controller directs the SDN-assisted OpenFlow switch to mirror
all incoming packets of the server to the mitigation system.
Every client is then assigned a score depending on the load it
generates on the server. In a third step, the OpenFlow switch
redirects the clients with the highest scores to a challenge
server to identify bots and limits their data rate or blocks
them from accessing the web server. Thereby, SDN allows the
complete automation of all redirecting, limiting and blocking
tasks of this framework.

1The corresponding paper is already accepted but not yet published. Please
contact the authors to receive a copy.

The first step is attack independent and therefore also
works for slow HTTP attacks. However, in the second step,
the behavior of slow HTTP attackers differs greatly from
other attack types and the scoring system cannot detect these
attacks in the current setup. Some additional changes are also
necessary for the third step, as the connections have to be
closed.

II. SLOW HTTP ATTACKS

In contrast to most DDoS attacks, slow HTTP attacks do not
generate a large amount of packets and use only a marginal
amount of bandwidth. They aim to use resources on the server
by forcing it to remember connections as long as possible with
a minimal amount of work by the client. The slow header
attack or Slowloris is the most well-known slow HTTP attack.
It uses fragmented headers to occupy the targeted servers
resources for as long as possible. An attacker sends the first
header with only one CRLF at the end to indicate that the
header is not finished. Therefore, the server assumes that the
missing header is due to a slow internet connection of the
client and keeps the connection open. The slow body attack —
also called slow POST attack — is similar. However, it uses
complete HTTP POST request headers but sends the body
as slowly as possible. Servers wait for a configured timeout
after the last received packet before they close the connections.
With most default configurations, attackers can wait nearly 5
minutes before sending the next packet to a server.

Slow HTTP attacks can occur in different manifestations.
If the attack is distributed, it is sufficient for each attacking
client to establish a very low amount of connections with only
very few packets. On the other hand, the high efficiency of
the attack also allows non-distributed attacks with only one
attacker which then has to open many connections and has to
send a rather large amount of packets.

III. ATTACKER IDENTIFICATION

Only a small amount of research has been conducted with
regard to network-based slow HTTP attack detection. Intrusion
detection systems are not able to successfully distinguish these
attacks from normal server traffic as the attack does not contain
any malformed requests [2].

Currently, many servers such as Apache can be configured
to mitigate the effect of slow HTTP attacks by limiting
the maximum time a server waits to receive a full request.



However, these changes also block legitimate requests from
clients with slow internet connections and an attack still has
a noticeable impact on the server’s performance [3]. This
mitigation technique requires the administrator to become
active and is therefore not a viable option for our use case.

In our framework, the attacker identification process begins
after an attack on the server is detected. In this phase, the
communicating clients are scored according to their sent
packets. Packets that result in a high effort for the server are
rated with a higher suspiciousness value than packets which
result only in small memory and CPU usage. Because of the
low traffic rate of slow HTTP attacks, and therefore small
number of packets from each attacker, this way to rate clients
needs to be extended and adapted. Based on our research of
possible ways in which these attacks can occur, we identified
different techniques to extract attackers that are evaluated in
this project:

a) Low and evenly distributed packet rate: An easy
way of identifying and scoring clients is by testing whether
consecutive packets of the same connection have an evenly
distributed time period between them. If this behavior is
identified, the clients are assigned a high suspiciousness score
as this implies, that the packets are not sent slowly because of
a bad connection but deliberately. In a more generic approach,
connections with a significantly low packet rate are rated as
suspicious. For the optimal implementation of this method, the
first messages which belongs to the TCP handshake should
be ignored and the bandwidth metrics are only calculated
with the remaining packets. More precise approaches that
take the changes of the sending rate into account lead to
a high management effort since every characteristic of each
connection needs to be remembered.

b) Long connections: Another simple method measures
the duration of connections and assigns suspiciousness scores
for very long connections. This method, however, needs to
wait for the connection to last longer than a certain threshold
in the area of minutes and, thus, the identification of attackers
can take a long time.

c) The amount of incomplete packets: This method helps
to identify attackers reliably since slow HTTP attacks always
require a significantly high amount of incomplete packets.
The identification of incomplete packets needs to check GET
messages for only one end of line character at the end or
compare the content-length definition with the actual body
length of POST messages. This identification method is quite
resource intensive as deep packet inspection is necessary.
However, it can still be evaluated if this method would increase
the accuracy of the attacker identification.

d) Backup mechanisms: Lastly, slow POST attacks can
be identified if POST messages are assigned a very high
suspiciousness score. To prevent non-distributed DoS attacks,
the number of connections per single clients can be considered.
Thereby, any additional connection will increase the score
which is assigned to a client. If other methods fail to identify
attackers correctly, these two mechanisms can at least provide
the support for a small subgroup of slow HTTP attacks.

All techniques include high management effort to remem-
ber connection information, calculate suspiciousness scores
and connection characteristics. It remains to be seen if the
described techniques are efficient enough to be handled by
the framework or if additional resources such as a bigger
cluster, a pre-filter or mathematical models such as proba-
bilistic counting are necessary. However, even with possibly
open scalability issues, this project can evaluate the different
techniques in terms of practicability and precision.

IV. ATTACK MITIGATION

In the last phase, called mitigation phase, the clients with
the highest suspiciousness score are considered attackers and
redirected to a CAPTCHA server or blocked. Thereby, it
is assumed that most DDoS attacks are done by bots and,
thus, the attacker clients are not able to solve the CAPTCHA
challenge and will remain blocked. If the clients are just
redirected and further messages are blocked via the SDN-
assisted Switch, the server keeps the connections open until
the default timeout is reached. This is acceptable for flooding
attacks, as the amount of open connections is not the resource
under attack. For slow HTTP attacks however, this could
lead to an inefficient mitigation and will further increase the
downtime of the server even after the attackers are identified.
Therefore, it is necessary to send TCP-RST-messages from the
protection system to the server. For these RST-messages, the
sequence- and acknowledgement-number of the connections
need to be extracted which again results in considerable effort.

V. CONCLUSION

Slow HTTP attacks differ quite a bit from flooding attacks
and their identification and mitigation might lead to a high
management effort of the network infrastructure. We devel-
oped several concepts based on flow-based analysis of network
traffic that can help identify attackers and how to exclude
them from the network. Preliminary deliberations suggest that
scalability of the network data analysis could be an issue. With
slow HTTP attacks, we are faced with the necessity to analyse
large amounts of data efficiently. Performance and accuracy of
the mitigation system are in sharp contrast to each other and
the right middle ground needs to be found.

ACKNOWLEDGMENT

This work was supported in the bwNET100G+ project
by the Ministry of Science, Research and the Arts Baden-
Württemberg (MWK). The authors alone are responsible for
the content of this paper.

REFERENCES

[1] T. Lukaseder, A. Hunt, C. Stehle, D. Wagner, R. van der Heijden, and
F. Kargl, “An Extensible Host-Agnostic Framework for SDN-Assisted
DDoS-Mitigation,” in Proceedings of the 42nd Conference on Local
Computer Networks (accepted), 2017.

[2] J.-B. Voron, C. Démoulins, and F. Kordon, “Adaptable Intrusion De-
tection Systems Dedicated to Concurrent Programs: A Petri Net-Based
Approach.” Washington, DC, USA: IEEE Computer Society, 2010, pp.
57–66.

[3] D. Moustis and P. Kotzanikolaou, Eds., Evaluating Security Controls
Against HTTP-based DDoS Attacks. Fourth International Conference
on Information Intelligence Systems and Applications (IISA), 2013.


