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Summary 

Aging is the most important risk factor for neurodegenerative dis-

eases associated with pathological protein aggregation such as Alz-

heimer’s disease. Although aging is an important player, it remains 

unknown which molecular changes are relevant for disease initia-

tion. Recently, we and others demonstrated that several hundred 

proteins become highly insoluble with age, in the absence of disease. 

But how these misfolded proteins aggregating with age affect neu-

rodegenerative diseases is not known until today. Importantly, sev-

eral of these aggregation-prone proteins are found as minor compo-

nents in disease-associated aggregates such as amyloid-β plaques or 

neurofibrillary tangles. In this thesis we demonstrate that insoluble 

protein extracts from aged Caenorhabditis elegans or aged mouse 

brains are able to seed amyloid-β aggregation in vitro, whereas pro-

tein aggregates formed during the early stages of life did not initiate 

amyloid-β aggregation. The injection of insoluble protein extracts 

from aged mouse brains into the hippocampus of APP23 transgenic 

mice lead to a formation of some amyloid-β plaques in three out of 

five mice. By mass spectrometry analysis of insoluble protein ex-

tracts from C. elegans we found late-aggregating proteins that were 

previously identified as minor components of amyloid-β plaques 

and neurofibrillary tangles such as 14-3-3, Ubiquitin-like modifier-

activating enzyme 1 and Lamin A/C, highlighting these as strong 

candidates for cross-seeding. Double-transgenic worms overex-

pressing human amyloid-β in the body-wall muscle together with 

PAR-5 (C. elegans homolog of 14-3-3) showed an increase in paraly-

sis, which demonstrates that PAR-5 (14-3-3) could be a potential 

seed for the aggregation of amyloid-β. 

In conclusion, the results presented here show that physiological 

protein aggregation with age might constitute a heterologous seed 
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for disease-associated protein aggregation. To find out why these 

heterologous seeds form with age would have a major impact in 

advancing our understanding of aging and its influence on patho-

physiology. Targeting the seeds before the onset of the disease 

would be an important prevention strategy. 

Recently, widespread protein aggregation as a common feature of 

aging has become an important topic of research. We already 

demonstrated that cross-seeding between different age-dependent  

aggregating proteins is possible in the absence of disease. The inves-

tigation of endogenous age-dependent protein aggregation could 

give insights into molecular and cellular mechanisms that  

regulate protein aggregation and into the effect of protein insolubili-

ty on organisms health. Therefore, we wanted to analyze whether 

rapidly-aggregating proteins can act as harmful seeds for the  

aggregation of other proteins in C. elegans. The goal was to crosslink 

a rapidly-aggregating protein together with its co-aggregating pro-

teins, to purify them and to identify them by mass spectrometry. 

This thesis presents the establishment of a tandem affinity purifica-

tion under denaturing conditions to be used to purify rapidly-

aggregating proteins tagged with a tandem affinity tag.  
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Zusammenfassung 

Alterung ist der wichtigste Risikofaktor für neurodegenerative Er-

krankungen verbunden mit pathologischer Proteinaggregation wie 

zum Beispiel bei der Alzheimer-Erkrankung. Obwohl Alterung ein 

wichtiger Akteur ist bleibt es unbekannt welche molekularen Ver-

änderungen relevant für den Krankheitsbeginn sind. Kürzlich de-

monstrierten wir und andere, dass einige hundert Proteine im Alter, 

in Abwesenheit einer Krankheit, äußerst unlöslich werden. Aber wie 

diese missgefalteten Proteine, die im Alter aggregieren, neurodege-

nerative Erkrankungen beeinflussen, ist bis heute nicht bekannt. 

Wichtig ist, dass einige von diesen aggregations-anfälligen Protei-

nen als nebensächliche Komponenten in krankheitsassoziierten 

Aggregaten, wie Amyloid-β Plaques oder neurofibrillären Bündeln, 

gefunden wurden. In dieser Arbeit demonstrieren wir, dass unlösli-

che Proteinextrakte von gealterten Caenorhabditis elegans oder 

gealterten Maushirnen fähig sind in vitro Amyloid-β Aggregation zu 

"seeden" (säen), wohingegen Proteinaggregate, die sich während 

früher Lebensstadien gebildet haben, keine Amyloid-β Aggregation 

initiierten. Die Injektion von unlöslichen Proteinextrakten gealterter 

Maushirne in den Hippocampus von APP23 transgenen Mäusen 

führte zur Bildung von einigen Amyloid-β Plaques in drei von fünf 

Mäusen. Mit massenspektrometrischer Analyse von unlöslichen 

Proteinextrakten von C. elegans fanden wir spät-aggregierende Pro-

teine die zuvor als nebensächliche Komponenten von Amyloid-β 

Plaques und neurofibrillären Bündeln identifiziert wurden, wie zum 

Beispiel 14-3-3, Ubiquitin-like modifier-activating enzyme 1 und 

Lamin A/C, was diese als starke Kandidaten für "cross-seeding" 

hervorhebt. Doppelt-transgene Würmer, die humanes Amyloid-β im 

sogenannten "body-wall muscle" zusammen mit PAR-5 (C. elegans 

Homolog von 14-3-3) überexprimieren, zeigten eine Erhöhung der 
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Paralyse, was demonstriert, dass PAR-5 (14-3-3) ein potentieller 

"Seed" (Keim) für die Aggregation von Amyloid-β sein könnte.  

Abschließend lässt sich sagen, dass die Ergebnisse, die hier präsen-

tiert werden, zeigen, dass physiologische Proteinaggregation im 

Alter einen heterologen "Seed" für krankheitsassoziierte Proteinag-

gregation bilden könnte. Herauszufinden warum diese heterologen 

"Seeds" sich im Alter bilden würde eine große Auswirkung auf die 

Verbesserung unseres Verständnisses von Alterung und deren Ein-

fluss auf die Pathophysiologie haben. Das Abzielen auf die "Seeds" 

vor dem Beginn der Krankheit wäre eine wichtige Präventionsstra-

tegie.   

Kürzlich wurde die weitverbreitete Proteinaggregation als ein häu-

figes Merkmal von Alterung ein wichtiges Thema in der Forschung. 

Wir haben bereits demonstriert, dass "cross-seeding" zwischen 

verschiedenen altersabhängig aggregierenden Proteinen in Abwe-

senheit einer Krankheit möglich ist. Die Untersuchung von körper-

eigener, altersabhängiger Proteinaggregation könnte Erkenntnisse 

über molekulare und zelluläre Mechanismen bringen, welche die 

Proteinaggregation regulieren und über den Effekt von Proteinun-

löslichkeit auf die Gesundheit des Organismus. Deshalb wollten wir 

untersuchen, ob schnell-aggregierende Proteine als schädliche 

"Seeds" für die Aggregation von anderen Proteinen in C. elegans 

agieren können. Das Ziel war ein schnell-aggregierendes Protein 

zusammen mit seinen co-aggregierenden Proteinen zu vernetzen, 

diese zu reinigen und mittels Massenspektrometrie zu identifizie-

ren. Diese Arbeit präsentiert die Etablierung einer Tandem-

Affinitäts-Reinigung unter denaturierenden Bedingungen um diese 

für die Reinigung schnell-aggregierender Proteine, markiert mit 

einem Tandem-Affinitäts-Marker, zu nutzen.  
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1 Introduction 

This chapter includes parts of the introduction reproduced from: 

Groh N, Bühler A, Huang C, Li KW, van Nierop P, Smit AB, 

Fändrich M, Baumann F and David DC (2017) Age-Dependent 

Protein Aggregation Initiates Amyloid-β Aggregation. Front. 

Aging Neurosci. 9:138. Doi: 10.3389/fnagi.2017.00138 

1.1 Protein folding and misfolding 

To perform their biological function proteins must fold into their 

three-dimensional structure, which is encoded by the amino acid 

sequence. To understand how a protein converts from its un-

folded structure to its thermodynamically favorable native state 

the energy surface or landscape for protein folding has to be 

considered. In the review of (Dobson 2003) it is shown that "the 

surface ‘funnels’ the multitude of denatured conformations to 

the unique native structure". During the folding process the pro-

tein reaches a transition state, which lies on the saddle point of 

the energy surface. In this state a small number of residues have 

formed their native like contacts. Once this so called folding nu-

cleus is generated the topology of the native fold is established 

and the remainder of the structure rapidly condenses (Fersht 

2000).  

Normally, misfolded proteins are ubiquitinated and degraded in 

the cytoplasm by the ubiquitin-proteasome system. However, 

misfolded proteins could also escape the protective mechanisms 

and form aggregates. (Dobson 1999) explains the formation of a 

misfolded globular protein. Under physiological conditions a 

globular protein is folding properly with the polypeptide chain 

and hydrophobic residues hidden in the interior and is secreted 
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from the cell. Under conditions like low pH, heating and in-

creased protein concentration the protein tends to unfold and 

becomes prone to aggregation. In C. elegans it was shown that 

hypertonic stress causes irreversible aggregation of both, endog-

enous and foreign proteins (Burkewitz, Choe, and Strange 2011). 

1.2 Mechanisms to prevent protein aggregation 

In a cell many of the proteins, which are synthesized on ribo-

somes, are intended for secretion to the extracellular space. After 

synthesis these proteins are translocated to the endoplasmic 

reticulum (ER), where they fold correctly with the help of molec-

ular chaperones and folding catalysts before they are secreted 

through the Golgi apparatus (Figure 1.1). 
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Figure 1.1: Protein folding in the endoplasmic reticulum (ER) (Protein 
folding and misfolding, Christopher M. Dobson, Nature 426, 884-890 (18 
December 2003), doi:10.1038/nature02261). 

During aging the regulation of protein homeostasis (proteosta-

sis) is impaired and contributes to the pathological aggregation 

of proteins in neurodegenerative diseases such as Alzheimer’s 

disease. Moreover, the age-related decline in the proteostasis 

network suggests, that misfolding of proteins and their accumu-

lation to aggregates are general consequences of aging as we 

previously showed in C. elegans (David et al. 2010).  

The proteostasis network, which consists of chaperones and 

protein degradation machineries, is required for the surveillance 
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of the proteome, reviewed by (Balchin, Hayer-Hartl, and Hartl 

2016). This network includes molecular chaperones which facili-

tate proper protein folding and refolding as reviewed by (Hartl, 

Bracher, and Hayer-Hartl 2011). Members of the chaperone fam-

ily are known as heat-shock proteins (HSPs), because under 

stress, such as heat stress, protein misfolding increases and the 

HSPs are upregulated. Moreover, the ubiquitin−proteasome sys-

tem (UPS) and autophagy system are responsible for the removal 

of irreversibly misfolded and aggregated proteins (Figure 1.1 

and Figure 1.2). Ubiquitination is a post-translational protein 

modification that governs the degradation of proteins by the 

proteasome. Furthermore, proteins are degraded in lysosomes 

through autophagy. Signaling pathways including the cytosolic 

stress response, which upregulates HSPs during stress (Anckar 

and Sistonen 2011), and the unfolded protein response (UPR) of 

the ER and mitochondria (Schulz and Haynes 2015; Walter and 

Ron 2011) regulate the proteostasis network.  The UPR of the ER 

upregulates ER chaperones, the UPR of mitochondria leads to an 

increased resistance to oxidative damage.  
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Figure 1.2: The proteostasis network including 180 chaperone compo-
nents, 600 components of the ubiquitin-proteasome system (UPS) and 30 
components of the autophagy system (Molecular chaperones in protein 
folding and proteostasis, F. Ulrich Hartl, Andreas Bracher & Manajit 
Hayer-Hartl, Nature 475, 324–332 (21 July 2011), 
doi:10.1038/nature10317). 

With age the chaperone function and availability is reduced as 

reviewed by (Kaushik and Cuervo 2015). Moreover, age-related 

modifications on proteins interfere with the target-recognition 

ability of chaperones. Additionally, autophagy and proteasome 

activity decrease with age. In C. elegans the ectopic expression of 

RPN-6, a 19S proteasome subunit, leads to proteotoxic stress 

resistance and extends lifespan (Vilchez et al. 2012). It was also 

shown that overexpression of the proteasome subunit 20S in-

creases lifespan and resistance to stress (Chondrogianni et al. 

2015). Furthermore, the overexpression of the autophagy stimu-

lator HLH-30 extends lifespan in C. elegans (Lapierre et al. 2013).  
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1.3 Protein aggregation in neurodegenerative diseases 

A variety of neurodegenerative diseases are associated with the 

misfolding and aggregation of specific proteins. For example, in 

Alzheimer’s disease (AD), amyloid-β (Aβ) peptides and tau pro-

teins aggregate and ultimately form the characteristic pathologi-

cal hallmarks: amyloid plaques and neurofibrillary tangles 

(NTFs) respectively. For Aβ and tau (and also other amyloido-

genic proteins) it has been reported that the more toxic species 

might be small intermediates in the aggregation process, the 

soluble oligomers (Haass and Selkoe 2007; Spires-Jones et al. 

2011). As reviewed by (Haass and Selkoe 2007) some oligomeric 

species of Aβ are small and soluble enough to diffuse through the 

brain parenchyma and affect synaptic structure, function and 

neuronal survival, whereas the insoluble inclusions might func-

tion as reservoir for soluble oligomers. The amyloid cascade 

hypothesis, reviewed by (Haass and Selkoe 2007), explains how 

Aβ accumulation could result to AD. In the first part of the cas-

cade an increase in the Aβ42/Aβ40 ratio enhances oligomeriza-

tion of the highly amyloidogenic Aβ42 isoform. The increase of 

the ratio can be augmented by mutations in β-amyloid precursor 

protein (APP), presenilin-1 (PS-1) and presenilin-2 (PS-2) that 

cause familial forms of AD (Scheuner et al. 1996; Suzuki et al. 

1994). APP is a single-transmembrane, receptor-like protein that 

is processed by β-site APP-cleaving enzyme (BACE) and the γ-

secretase complex (including PS-1 and PS-2). The γ-secretase 

cleavage-sites on APP are variable and can occur after amino 

acids 38, 40 and 42 leading to the liberation of different forms of 

Aβ into the extracellular space.  

In AD and other tauopathies NFTs are formed by intracellular 

accumulations of hyperphosphorylated tau, reviewed by (Kuret 

et al. 2005). An ongoing question is whether the tangles are the 
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toxic species in the brain, but that tau dysfunction can lead to 

neurodegeneration is generally accepted. It has been shown that 

the expression of an aggregation-prone tau construct is associat-

ed with cell death in cultured cells (Khlistunova et al. 2006; 

Wang et al. 2007). 

In general, knowledge of the nature of aggregate pathogenicity 

would be important to identify targets for therapeutic interven-

tions. (Bucciantini et al. 2002) demonstrated that aggregates of 

two different non-disease-related proteins can be inherently 

cytotoxic suggesting toxicity of aggregated species could be a 

general phenomenon. The data support the assumption that non-

fibrillar aggregates, that precede formation of mature amyloid 

fibrils, may be the primary toxic species. (Olzscha et al. 2011) 

generated artificial proteins with β-sheet structures (so called β 

proteins) that lead to the formation of amyloid-like aggregates 

and toxicity in HEK293T cells. They showed that the protein with 

the highest toxicity has the tendency to form prefibrillar aggre-

gates in vitro. Moreover, the β proteins co-aggregate with two 

types of endogenous aggregation-prone proteins with specific 

sequence features. One group includes the pre-existing proteins 

that are enriched in intrinsically unstructured regions and are 

prone to aggregate even in their post-folding state. The other 

group, the newly synthesized proteins, contain large or mul-

tidomain proteins which are prone to aggregate during and 

shortly after synthesis.  

An important and currently understudied question is how aging 

influences protein aggregation in neurodegeneration. Recently, 

physiological protein insolubility in the context of aging has be-

come an important topic of research (David 2012; Partridge 

2011). Indeed, numerous publications demonstrate that protein 

aggregation is not restricted to disease but a normal conse-
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quence and possibly cause of aging (Ayyadevara, Mercanti, et al. 

2016; David et al. 2010; Demontis and Perrimon 2010; Lechler et 

al. 2017; Ottis et al. 2013; Peters et al. 2012; Reis-Rodrigues et al. 

2012; Tanase et al. 2016; Walther et al. 2015). To investigate 

endogenous age-dependent protein aggregation could give in-

sights into molecular and cellular mechanisms that regulate pro-

tein aggregation and into the effect of protein insolubility on 

organisms health, without the need to ectopically express human 

disease-associated proteins in model organisms.  

Until now it remains unclear whether and how age-dependent 

protein aggregation and disease-associated protein aggregation 

influence each other. One possibility is that age-dependent ag-

gregates indirectly accelerate disease-associated protein aggre-

gation by stressing the cell and/or titrating away anti-

aggregation factors. Another possibility is a direct interaction 

whereby disease-associated proteins and age-dependent aggre-

gation-prone proteins co-aggregate. In support of this latter hy-

pothesis, proteins prone to aggregate during normal aging are 

significantly overrepresented as minor protein components in 

amyloid plaques and NFTs (Ayyadevara, Balasubramaniam, 

Parcon, et al. 2016; David et al. 2010). Recent research reveals 

that the sequestration of these age-dependent aggregation-prone 

proteins in the disease aggregates is a source of toxicity 

(Ayyadevara, Balasubramaniam, Parcon, et al. 2016).  

1.4 Amyloids and seeding mechanisms 

In neurodegenerative diseases specific proteins are aggregating 

in an amyloid conformation. One of the most known amyloids is 

amyloid-β (Aβ) peptide which aggregates in Alzheimer’s disease. 

The term amyloid describes multimeric proteinaceous assem-

blies with a cross-β quaternary structure. Proteins in the amy-
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loid state form elongated fibrils which are unbranched and can 

be found in vivo (Eisenberg and Jucker 2012). In all fibrils β-

sheets are arranged in parallel to the fibril axis with the β-

strands perpendicular to the axis. This formation is stabilized by 

hydrogen bonds. To prove whether an aggregated protein is in 

an amyloid state, usually the dye Congo red is used. Congo red 

binding is monitored by a red shift in the light absorption and a 

characteristic green birefringence under crossed polarization. 

Moreover, the cross-β structure is detected in X-ray diffraction 

and the typical morphology is analysed by electron microscopy. 

As reviewed by (Eisenberg and Jucker 2012) amyloid formation 

occurs because the free energy of it is highly favourable. Another 

reason is an abnormally high protein concentration (Balch et al. 

2008). 

In recent years, understanding the initiation and spread of hall-

mark protein aggregates such as Aβ or tau has become a central 

area of investigation (Jucker and Walker 2011). The current 

model stipulates that aggregation in disease is initiated by a 

protein seed that forms a template for further protein aggrega-

tion (Jucker and Walker 2013). In detail, an amyloid seed is 

formed by the aggregation of native proteins through intermedi-

ate states during a slow nucleation phase. Then monomers and 

oligomeric structures are bonded to the end of the initial amy-

loid seed which leads to a growing fibril that can break during 

the rapid growth phase. This results to the generation and 

spreading of new seeds. 

In transgenic models for Aß amyloidosis, intracerebral injections 

of brain extracts containing minute amounts of aggregated Aß 

seeds are sufficient to instigate the formation of Aß plaques 

(Kane et al. 2000; Meyer-Luehmann et al. 2006). This process is 

called homologous seeding (Figure 1.3A). However, whether 



Introduction 
 

10 
 

misfolded proteins aggregating with age can form heterologous 

seeds that initiate Aβ aggregation (Figure 1.3A) has not been 

investigated. Although current research focuses on homologous 

seeding, there are a few examples of cross-seeding (or heterolo-

gous seeding), mostly between different disease-aggregating 

proteins (Morales, Moreno-Gonzalez, and Soto 2013). For in-

stance, Aβ is a potent seed for the aggregation of human islet 

amyloid polypeptide involved in type II diabetes (O'Nuallain et 

al. 2004; Oskarsson et al. 2015); Aβ and prion protein PrPSc 

cross-seed each other and accelerate neuropathology (Morales et 

al. 2010); and both α-synuclein and Aβ co-aggregate with tau and 

enhance tau pathology in vivo (Guo et al. 2013; Vasconcelos et al. 

2016). Finally, we recently showed that cross-seeding between 

different age-dependent aggregating proteins is possible in the 

absence of disease (Lechler et al. 2017). Until today little is 

known about heterologous seeding of disease-aggregating pro-

teins by non-disease aggregating proteins. One example is ace-

tylcholinesterase, which is also found in Aß plaques (Alvarez et 

al. 1998; Jean et al. 2007).  

The in vitro Aβ seeding assay or FRANK assay (Fibrillisation of 

Recombinant Aβ Nucleation Kinetic) (Nagarathinam et al. 2013) 

has been used to analyse if brain-derived Aβ is able to induce the 

aggregation of monomeric recombinant Aβ. In general, over time 

Aβ fibrils are formed, detected by the increase in fluorescence of 

the amyloid dye Thioflavin T (ThT) (Figure 1.3B, red line). The 

time that is needed to form initial fibril seeds is called the lag 

time. If brain-derived Aβ is added, the lag time is reduced by the 

initiation and acceleration of Aβ aggregates (Figure 1.3B, blue 

line). The investigation whether extracts containing non-disease 

aggregating proteins (age-dependent protein aggregates) are 

also able to reduce the lag time has not been done so far.  
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Figure 1.3: Schematic representation of homologous and heterologous Aβ 
seeding and determination of lag times (reproduced from Frontiers arti-
cle).  
A Homologous seeding (upper part): Aβ monomers very slowly accumu-
late to metastable intermediate oligomers which act in a succeeding step 
as a seed for fast Aβ accumulation. Initial seed formation critically de-
pends on exceeding a minimal local concentration of Aβ. This process 
leads to stable Aβ aggregate formation (fibril formation) which can break 
and serve as new seeds for further Aβ aggregation.  
Heterologous seeding (lower part): Hypothetically during aging, Aβ mon-
omers and age-dependent protein aggregates accumulate and build to-
gether an initial seed which leads to a faster accumulation of Aβ aggre-
gates bypassing the slow buildup of homologous seeds from monomeric 
Aβ. This might be even more important when Aβ concentration never 
reaches the minimal local concentration for homologous seed formation. 
B During the FRANK assay (Fibrillisation of Recombinant Aβ Nucleation 
Kinetic) protein extracts are measured in the presence of Thioflavin T 
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(ThT) and recombinant Aβ1-40. Aβ fibrils, which are detected by the in-
corporation of ThT, are formed after initial fibril seeds develop. After this 
the ThT fluorescence increases rapidly until a maximum is reached (red 
line). The time that is needed to form initial seeds is called the lag time. 
Brain derived Aβ (or hypothetically age-dependent protein aggregates) 
reduce the lag time by initiating and accelerating Aβ aggregation (blue 
line). 

1.5 Caenorhabditis elegans as a model system  

The nematode C. elegans was developed as a model system to 

study developmental biology and neurobiology by Sydney Bren-

ner. As described by (Corsi, Wightman, and Chalfie 2015) the 

small size (length of adults amounts to 1 mm), the transparent 

body, the simple body plan including pharynx, intestine, gonads 

and muscles and the well-annotated genome are reasons why it 

is a useful model system. Moreover, C. elegans has a rapid lifecy-

cle: after hatching the worms develop from four larval stages (L1 

to L4) to adults that lay eggs in approximately 55 hours at 20°C. 

They exist primarily as a self-fertilizing hermaphrodite, but also 

males arise at a low frequency (<0.2%) (Corsi, Wightman, and 

Chalfie 2015). The free-living nematode can be found worldwide. 

In the laboratory, they live on agar plates or in liquid culture and 

are fed with bacteria (E. coli). Their nervous system is composed 

of exactly 302 neurons. As a model system to study aging and 

age-related diseases, C. elegans has a lot of advantages: First of 

all, the worms have a short lifespan (about 17 days for wild-type 

worms). Moreover, different longevity pathways are known. 

Additionally, specific genes can be easily knocked down by RNA 

interference (RNAi). It was shown by (Fire et al. 1998) that injec-

tion of double stranded RNA (dsRNA) into worms resulted to 

degradation of the corresponding messenger RNA (mRNA) and 

therefore to potent interference. Moreover, feeding worms with 

bacteria expressing dsRNA of the gene of interest induces RNAi 
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response, demonstrated by (Tabara, Grishok, and Mello 1998; 

Timmons and Fire 1998). Because the complete genomic se-

quence of C. elegans is available, RNAi is a useful technique to 

study gene function. Another advantage of using C. elegans as an 

in vivo system is the possibility to overexpress toxic proteins 

prone to pathological misfolding. (Teschendorf and Link 2009) 

reviewed that the expression of specific human proteins linked 

to neurodegeneration leads to cellular toxicity in worms. One 

example for using C. elegans as transgenic model for neuro-

degenerative diseases is the expression of human Aβ in the 

body-wall muscle under the unc-54 promoter (Link 1995). The 

group of Christopher Link discovered that Aβ accumulates in 

muscle cells forming amyloid deposits. Later (McColl et al. 2012) 

generated a model where Aβ aggregates in muscle cells and re-

sults in temperature induced age-progressive paralysis. 

1.6 Objectives 

1.6.1 Identifying age-dependent heterologous seeds for 

amyloid-β aggregation 

A variety of neurodegenerative diseases are associated with the 

misfolding and aggregation of specific proteins. To understand 

the initiation and spread of hallmark protein aggregates such as 

Aβ or tau has become a central area of investigation. Recently, a 

model was published stipulating that aggregation in disease is 

initiated by a protein seed that forms a template for further pro-

tein aggregation. Targeting the seeds before the onset of the 

disease would be an important therapeutic strategy. The thesis 

presented here describes the investigation whether endogenous 

proteins, that aggregate with age, can seed the aggregation of Aβ. 

To address our hypothesis, we wanted to examine detergent-

insoluble protein extracts from young and aged wild-type 



Introduction 
 

14 
 

C. elegans and young and aged wildtype mouse brains. To ana-

lyse Aβ aggregation in the presence of the insoluble fraction, we 

wanted to use an in vitro seeding assay (FRANK assay, Fibrillisa-

tion of Recombinant Aβ Nucleation Kinetic). Quantitative mass 

spectrometry with the insoluble proteome of C. elegans and 

mouse brains from different ages should be performed to identi-

fy changes in aggregation with age. With the comparison of ear-

ly- and late-aggregating proteins with the highest change in ag-

gregation with age in C. elegans with minor components of Aβ 

plaques and neurofibrillary tangles we wanted to identify poten-

tial candidates for seeding Aβ.  

1.6.2 Investigation whether rapidly-aggregating proteins 

seed the aggregation of other proteins 

To characterize endogenous age-dependent protein aggregation 

could help to understand the molecular and cellular mechanisms 

that regulate protein aggregation. Moreover, the characterization 

could give insights into the effect of protein insolubility on or-

ganisms health. Therefore, the goal was to investigate whether 

rapidly-aggregating proteins can act as harmful seeds for the 

aggregation of other proteins in C. elegans. An early-aggregating 

protein, identified in the first part of the thesis, should be chemi-

cally crosslinked together with its co-aggregating proteins. Next, 

they should be purified and identified by mass spectrometry.  
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2 Material and Methods 

2.1 Identifying age-dependent heterologous seeds for 

amyloid-β aggregation 

This chapter includes parts of the material and methods repro-

duced from: 

Groh N, Bühler A, Huang C, Li KW, van Nierop P, Smit AB, 

Fändrich M, Baumann F and David DC (2017) Age-Dependent 

Protein Aggregation Initiates Amyloid-β Aggregation. Front. 

Aging Neurosci. 9:138. Doi: 10.3389/fnagi.2017.00138 

2.1.1 C. elegans mutant and transgenics  

Table 2.1: C. elegans mutant and transgenic strains used in this study. 

Strain name Genotype 

CF2253 gon-2(q388)I 

GMC101 
dvIs100[unc-54p::A-beta-1-42::unc-54 3'-UTR +  
mtl-2p::GFP] 

UE50 oaSi10[par-5p::GFP::par-5::par-5 3'UTR + unc-119(+)] 

DCD296 
(GMC101;UE50) 

dvIs100[unc-54p::A-beta-1-42::unc-54 3'-UTR + mtl-
2p::GFP]; oaSi10[par-5p::GFP::par-5::par-5 3'UTR + 
unc-119(+)] 
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2.1.2 Bacterial strains 

Table 2.2: Bacterial strains used in this study as food source for C. elegans. 

Strain name Description 

OP50 Escherichia coli (E. coli) strain 

OP50-1 OP50 with streptomycin resistance 

 

2.1.3 Mouse strains 

Wild-type C57BL/6J (WT) and transgenic APP23 mice 

(Sturchler-Pierrat et al. 1997)  were bred and maintained under 

pathogen-free conditions at the Hertie Institute for Clinical Brain 

Research, Tübingen, controlled by Dr. Frank Baumann. All stud-

ies were performed in accordance with German animal welfare 

legislation and with approval from the Ethical Commission for 

animal experimentation of Tübingen, Germany. Age and sex of 

mice used for the FRANK assay (Fibrillization of Recombinant Aβ 

Nucleation Kinetic) and mass spectrometry are listed in Table 

2.3. 
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Table 2.3: Mice used for FRANK assay (Fibrillization of Recombinant Aβ 
Nucleation Kinetic)* and mass spectrometry# (mainly reproduced from 
Frontiers article). 

Number Sex Age (months) 

7519* male 2 

8418* female 2 

8419* female 2 

8628*# male 3 

8629*# male 3 

8916* female 2 

8951# female 2 

8070# female 20 

8036* female 20 

7830*# male 18 

7831*# male 18 

524* female 18 

503* female 19 

1736* female 20 

7755* female 25 

7718* male 27 

7601* female 28 
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11523* (APP23) male 20 

 

2.1.4 Growing and Maintenance of C. elegans  

Hermaphrodites were grown on Nematode Growth (NG) plates 

(preparation of NG plates is described at 

http://www.wormbook.org/chapters/www_strainmaintain/stra

inmaintain.html) containing the bacterial (E. coli) strain OP50 at 

either 15°C, 20°C or 25°C. Stock plates were kept at 15°C. 

Males were grown on empty NG plates with a low amount of 

OP50 at 15°C or 20°C. Once per week (if incubated at 20°C every 

four days) 12 males were mated with three L4s from a stock of 

the respective strain. To generate new males of a transgenic 

strain with a fluorescent marker three L4s of the respective 

strain were first crossed with 12 N2 males. To continue, three 

fluorescent L4s were picked from a stock of the transgenic strain 

and crossed with 12 fluorescent males from the last mating 

plate. The last step was repeated three times before the males 

were used for example for a cross with another strain.   

2.1.5 Strain generation 

To generate the double transgenic strain DCD296 overexpress-

ing Aβ and PAR-5, GMC101 males were generated by crossing N2 

males to GMC101 hermaphrodites as described at 2.1.4 and by 

mating the GMC101 males into UE50 hermaphrodites (as de-

scribed at (Fay 2013), http://www.wormbook.org). 

2.1.6 C. elegans liquid culture 

To obtain large aged-synchronized populations of C. elegans, 

temperature induced sterile gon-2 mutants (CF2253) were used. 

The whole procedure was carried out independently four times 



Material and Methods 

 

19 
 

to collect four biological replicates with four time points, respec-

tively. The worms were collected at day 2 (reproductive ani-

mals), day 6 (at the end of reproduction in wild-type animals), 

day 10 (around 30% of the population has died) and day 14 

(around 50% of the population has died). Age is defined by the 

number of days of adulthood starting from the last larval stage 

L4. 

2.1.6.1 Propagation of gon-2 mutants to collect the parental 

generation for the temperature shift 

As food source the E. coli OP50-1 strain, which has a streptomy-

cin resistance, was streaked out onto a Lysogeny Browth (LB) 

plate with 50 µg/mL streptomycin and incubated over night at 

37°C (as described at http://www.wormbook.org/chapters/ 

www_strainmaintain/ strainmaintain.html). 200 mL LB medium 

with 50 µg/mL streptomycin were inoculated with one clone 

OP50-1 and incubated over night at 37°C. 15 High Growth Medi-

um (HGM) plates (diameter 9 cm) with 50 µg/mL streptomycin 

(later called HGM/streptomycin plates) were inoculated with 

0.5 mL OP50-1 which was distributed with a spatula. Gon-2(-) 

animals (not starved for the last two generations) were chunked 

onto the 15 HGM/streptomycin plates seeded with OP50-1 and 

maintained at 20°C until plates were confluent with adults and 

some OP50-1 was still available. Confluent plates were bleached 

(as described at (Sulston 1988)), eggs were collected in 15 mL-

tubes with M9 solution (85 mM NaCl, 42 mM Na2HPO4 · 7 H2O, 

22 mM KH2PO4) and placed on a nutating mixer overnight at 

20°C. Hatched L1s were washed with M9 as follows: L1s were 

centrifuged at 3000 x g for 30 s, supernatants were discarded 

and the tubes were filled up to 15 mL mark with M9. This step 

was repeated twice. The tubes with the resulting worm pellets 

were filled up to 15 mL mark with M9. The total number of L1s 
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was evaluated under a dissection microscope by counting the 

L1s present in 2 µL drops placed on a non-seeded NG plate. The 

numbers obtained from at least nine drops were averaged and 

6500 L1s were added on one HGM/streptomycin plate, which 

was seeded before with OP50-1 as described above. In total 60 

HGM/streptomycin plates were prepared as described and the 

worms were grown at 20°C until L4 stage. 

2.1.6.2 Temperature shift to obtain gonad-less animals for the 

liquid culture 

At L4 stage, the worms were shifted to 25°C until they started to 

lay eggs and L1s were hatching. To separate the fragile eggs and 

L1s from the adults and to collect them, sedimentation was used. 

The plates were washed with M9 by using 5 mL M9 per five 

plates. Worms were transferred into 50 mL-tubes. Tubes were 

filled up to 45 mL mark with M9, the adults were sedimented for 

10 min, each supernatant was collected in a 50 mL-tube and the 

step was repeated with the pellets. The supernatants, that con-

tained eggs and L1s, were centrifuged at 3000 x g for 1 min, the 

L1s were sedimented for 10 min and the supernatants were 

removed until 15 mL were left. The tubes containing eggs and 

L1s were placed on a nutating mixer over night at 25°C. 

2.1.6.3 Collection of OP50-1 culture as food source 

8 L LB medium with a final concentration of 50 µg/mL strepto-

mycin were inoculated with 24 mL OP50-1 from a 200 mL-

overnight-culture and incubated at 37°C overnight at 180 rpm. 

The OP50-1 culture was harvested by centrifugation at 6700 x g 

for 10 min at 4°C. The supernatant was removed and the pellet 

was resuspended in 120 mL ice-cold S basal (100 mM NaCl, 

50 mM Potassium phosphate pH 6).  
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2.1.6.4 Liquid cultures to collect gon-2(-) mutants at day 2, day 6, 

day 10 and day 14 

Per condition (four in total), 200 mL S basal was added in a 

Fernbach culture flask (capacity 2,800 mL). For a final culture 

volume of 300 mL the following ingredients were added: 10 mM 

Potassium citrate, pH 6, 3 mL Trace metals solution (5 mM Eth-

ylenediaminetetraacetic acid (EDTA), 2.5 mM FeSO4, 1 mM 

MnCl2, 1 mM ZnSO4, 0.1 mM CuSO4), 3 mM MgSO4, 3 mM CaCl2, 

100 ng/mL carbendazim, 5 µg/mL cholesterole and 50 µg/mL 

streptomycin.  

The L1s obtained as described at 2.1.6.2 were transferred to 

15 mL-tubes and centrifuged at 1900 x g for 3 min. The superna-

tant was removed and the L1s per 2 µL were counted. As men-

tioned above, four biological replicates with four time points 

respectively were prepared. The total numbers of worms grown 

in the four liquid cultures for each replicate are shown in Table 

2.4. The following describes the procedure for replicate number 

four as an example for all replicates: In total 695,000 worms 

were needed to divide them to four flasks. OP50-1 was added 

proportionally to the number of worms: Out of 120 mL total 

OP50-1, each time 20 mL were added to the flask for the day 2 

and day 6 worm collections, 30 mL to the flask for the day 10 

worm collection and 35 mL to the flask for the day 14 worm 

collection. The following amount of worms was added to the 

following worm collection: 170,000 worms to day 2, 150,000 

worms to day 6 and day 10 and 225,000 worms to day 14. Each 

worm culture was completed with S basal to bring the total vol-

ume to 300 mL and incubated at 25°C and 150 rpm. An aliquot 

from each liquid culture was periodically collected and placed on 

a glass slide. Using a dissection microscope, the bacterial food 

level in each culture was checked especially during the growth 
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phase. In advance a 4 L OP50-1 culture was prepared and har-

vested as described at 2.1.6.3 and a part of it was added to the 

cultures if necessary. Additionally, the sterility of the animals 

was analyzed. The majority of animals did not have a gonad, no 

animals with eggs were observed.  

Table 2.4: Amount of worms grown in liquid cultures for different days for 
each biological replicate (reproduced from Frontiers article). 

Replicate Day 2 Day 6 Day 10 Day 14 

1  100,000 100,000 150,000 200,000 

2  150,000 150,000 200,000 350,000 

3  250,000 150,000 175,000 300,000 

4  170,000 150,000 150,000 225,000 

 

2.1.6.5 Collection of gon-2(-) mutants by sucrose separation 

At day 2, day 6, day 10 and day 14 worms were collected and 

removed from bacteria and dead worms by sucrose separation. 

The worm culture from one flask was added into a separatory 

funnel and the worms were sedimented for 10 min at room tem-

perature. The worms were collected in one 50 mL-tube. The 

worm pellet was transferred to two 15 mL-tubes and centrifuged 

at 1900 x g for 5 min at room temperature. To wash the worms, 

the supernatants were removed and the tubes were filled up to 

15 mL mark with M9. The centrifugation was repeated. Finally, 

the worms were transferred to two 50 mL-tubes and filled up to 

20 mL total volume with ice-cold M9. To remove bacteria and 

dead worms, the two 20 mL diluted worm pellets were added to 

two 50 mL-tubes filled with 20 mL ice-cold 60% sucrose and 

centrifuged at 2700 x g for 5 min at 4°C (acceleration 9 and de-
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celeration 7). The top worm layers were taken and added direct-

ly into 37 mL of M9 with 0.01% Triton X 100 (AppliChem) 

(called M9+triton) (3 tubes per sucrose tube) prepared on ice. 

After centrifugation at 2700 x g for 3 min at 4°C (acceleration 9 

and deceleration 7), the supernatants were removed and the 

pellets were divided into four 15 mL-tubes. The worms were 

washed as follows: The tubes were filled up to 15 mL mark with 

ice-cold M9+triton and centrifuged at 1900 x g for 1 min at room 

temperature. The supernatants were removed and the pellets 

were again filled up to 15 mL mark with ice-cold M9+triton and 

centrifuged. The last step was repeated with ice-cold M9. The 

four tubes were combined to two tubes, filled up with M9 at 

room temperature to a total volume of 4 mL in the 15 mL-tubes 

and rotated on a nutating mixer at 25 °C for 40 min. This helped 

the worms to digest any residual bacteria in the gut. The worms 

were analyzed with a dissection microscope to control that there 

were no dead ones. The worms were washed twice with ice-cold 

M9+triton and twice with M9 as described before. At the end the 

worms were transferred to one tube and washed once in the 

Reassembly (RAB) high-salt extraction buffer without inhibitors 

(0.1 M 4-Morpholineethanesulfonic acid (MES), 1 mM Eth-

yleneglycoltetraacetic acid (EGTA), 0.1 mM Ethylenediaminetet-

raacetic acid (EDTA), 0.5 mM MgSO4, 0.75 M NaCl, 0.02 M Sodi-

um fluoride (NaF)) before collection. The supernatant was re-

moved until there was no liquid on top of the worm pellet. The 

volume of the worm pellet was estimated and an identical vol-

ume of RAB with inhibitors (2x Complete Protease Inhibitor 

Cocktail, Roche) was added. Using a Pasteur pipette, worms were 

drawn up and slowly dripped into a 50 mL-tube half filled with 

liquid nitrogen placed in dry ice. Frozen worms were stored at  

-80 °C until further processing. 
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2.1.6.6 Disruption of animals collected by sucrose separation 

The frozen worm pellet of one day was transferred to a mortar 

that was pre-cooled with liquid nitrogen on dry ice and the pellet 

was ground for 2.5 min. Liquid nitrogen was added to the pow-

der to cool it down again and the powder was ground for anoth-

er 2.5 min. With the dissection microscope it was analyzed that 

the worm bodies were broken. This procedure was repeated for 

each day and each replicate. The powder was stored at -80 °C. 

2.1.6.7 Liquid culture with C. elegans transgenic strain overex-

pressing Aβ (GMC101) 

To obtain a large population of the C. elegans transgenic strain 

GMC101 which overexpresses Aβ as positive control for the 

FRANK assay, the same protocol as described above was used 

with the following changes: Worms were grown on 15 HGM 

plates seeded with OP50 and bleached when plates were conflu-

ent. After an L1 arrest overnight at 20°C, 150,000 worms were 

grown in liquid culture with OP50 at 20°C until day 1 and shifted 

to 25°C to induce paralysis (McColl et al. 2012). At day 2 worms 

were collected and disrupted as described.  

2.1.7 Insoluble protein extraction for mass spectrometry 

and FRANK assay with C. elegans 

To isolate Sodium dodecyl sulfate (SDS)-insoluble proteins for 

mass spectrometry analysis and the FRANK assay, a sequential 

extraction was performed with each time point and each repli-

cate. All centrifugation steps were performed at 18,400 x g for 

20 min at 4°C. The buffers, that were used for the extraction, are 

shown in Table 2.5. For mass spectrometry analysis, two times 

350 mg ground worms per time point were weighed out on dry 

ice. To remove the high-salt soluble proteins two volumes of RAB 

with inhibitors, 1 mM Phenylmethylsulfonyl fluoride (PMSF), 
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200 U/mL DNaseI (Roche) and 100 µg/mL RNaseA (Promega) 

per weight (700 µL total) were added to each tube and the pow-

der was solubilized on ice. The suspension was drawn up into a 

1 mL syringe (gray needle, 27 G x ½ ", 0.4 mm x 13 mm) 15 times 

and incubated on ice for 10 min. For the FRANK assay, 50 mg 

ground worms (gon-2 mutants or Aβ overexpressing transgen-

ics) per time point were solubilized in 200 µL RAB buffer with 

inhibitors, PMSF, DNaseI and RNaseA. After centrifugation the 

supernatant containing high-salt soluble proteins was collected 

and the fat layer was discarded. After dialysis against PBS, these 

high-salt soluble proteins of gon-2 mutants were used as soluble 

fraction in the FRANK assay. To remove lipids, the pellet was 

resuspended in two volumes of RAB with inhibitors (without 

DNaseI and RNaseA) containing 1 M sucrose (respectively 

200 µL for the FRANK assay extraction). The suspension was 

drawn up into a syringe 10 times and incubated on ice for 5 min. 

After centrifugation all supernatant and lipids were removed and 

discarded. To remove SDS-soluble proteins, the pellet was resus-

pended in two volumes of Radioimmunoprecipitation assay (RI-

PA) buffer (respectively 200 µL for the FRANK assay extraction) 

(50 mM Tris(hydroxymethyl)aminomethane (Tris) pH 8, 

150 mM NaCl, 5 mM EDTA, 0.5% SDS, 0.5% Sodium deoxycholate 

(SDO), 1% Nonidet P40 (NP40) (Applichem), 1 mM PMSF, 1x 

Complete Protease Inhibitor Cocktail (Roche)). The suspension 

was drawn up into a syringe 10 times and incubated for 10 min 

on ice. After centrifugation the supernatant containing SDS-

soluble proteins was collected. The two samples of each condi-

tion were pooled together after solubilizing each pellet with 

500 µL RIPA buffer (for the FRANK assay the pellet from one 

condition was solved with 200 µL RIPA buffer). The suspension 

was drawn up into a syringe 10 times and centrifuged. All super-

natant was removed and discarded. The final pellet containing 
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highly insoluble proteins was resuspended in 400 µL 70% formic 

acid for mass spectrometry. The suspension was drawn up into a 

syringe 20 times, incubated for 20 min on ice and centrifuged at 

50,000 x g for 20 min at 4°C, to remove worm cuticle debris. For 

the FRANK assay, the final pellet was resuspended in 100 µL PBS 

and centrifuged at 3,000 x g for 5 min at 4°C to remove the worm 

cuticle. The supernatant, that contains highly insoluble proteins, 

was collected.  

2.1.8 Quick protein extraction for western blot analysis 

To isolate detergent-soluble and -insoluble proteins for western 

blot analysis, a simplified protocol was used where 50 mg of 

ground animals in RAB buffer with inhibitors were directly re-

suspended in 150 µL RIPA buffer and the suspension was drawn 

up into a 1 mL syringe 10 times. SDS-insoluble proteins were 

isolated by resuspension in RIPA buffer and centrifugation at 

18,400 x g for 20 min at 4°C.  The pellet was washed once in 

100 µL RIPA buffer. Final pellets containing insoluble proteins 

were recovered in 75 µL 8 M Urea, 2% SDS, 50 mM Dithiothreitol 

(DTT), 50 mM Tris pH 8 at room temperature. 

2.1.9 Mouse brain preparation and insoluble protein ex-

traction for mass spectrometry and FRANK assay 

Brains from wild-type mice (Table 2.3) were divided into both 

hemispheres after the cerebellum had been removed by Dr. 

Frank Baumann at the Hertie Institute for Clinical Brain Re-

search, Tübingen. The same was done with the mouse brain from 

a transgenic APP23 mouse (20 months) for the FRANK assay. 

Two volumes per weight RAB buffer with inhibitors, PMSF, 

DNaseI and RNaseA (see above and Table 2.5) were added per 

hemisphere. Each hemisphere was homogenized with the Precel-

lys Ceramic Beads Kit (Cayman Chemical) for two times 10 s 
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with 10 s pause in between. The homogenate was transferred 

into a new tube and processed as described for C. elegans. During 

each extraction step, two volumes buffer per weight were used. 

High-salt soluble proteins were removed by centrifugation at 

18,400 x g for 20 min at 4°C. After dialysis against PBS, these 

high-salt soluble proteins were used as soluble fraction in the 

FRANK assay. Insoluble proteins were isolated as was performed 

with C. elegans, the final pellet containing highly insoluble pro-

teins was resuspended in 200 µL 70% formic acid for mass spec-

trometry. For the FRANK assay the resulting pellet was resus-

pended in 200 µL PBS. The sample was centrifuged at 3,000 x g 

for 5 min at 4°C and the supernatant containing the detergent-

insoluble proteins was used for the FRANK assay.    

Table 2.5: Buffers for insoluble protein extraction.   

Buffer Components 

RAB (with 
inhibitors, 
PMSF, DNaseI, 
RNaseA) 

0.1 M MES, 1 mM EGTA, 0.1 mM EDTA, 0.5 mM 
MgSO4, 0.75 M NaCl, 0.02 M NaF,  
2x Complete Protease Inhibitor Cocktail (Roche), 
1 mM PMSF, 200 U/mL DNaseI (Roche), 100 µg/mL 
RNaseA (Promega) 

RIPA 
50 mM Tris pH 8, 150 mM NaCl, 5 mM EDTA, 0.5% 
SDS, 0.5% SDO, 1% NP40 (Applichem), 1 mM PMSF, 
1x Complete Protease Inhibitor Cocktail (Roche) 

Formic acid 70% in ddH2O 

Urea/SDS 8 M Urea, 2% SDS, 50 mM DTT, 50 mM Tris pH 8 

 

2.1.10 Gel electrophoresis and Western blotting  

Proteins were separated on 12% SDS-PAGE gels or 4-12% gradi-

ent gels (NuPAGE 4-12% BisTris protein gels, Thermo Fisher). 

12% SDS-PAGE gels were cast with two layers, the resolving 
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layer (12% acrylamide solution, 0.385 M Tris-Cl pH 8.8, 0.1% 

SDS, 0.1% Ammonium persulfate (APS), 0.04% Tetramethyleth-

ylenediamine (TEMED)) and the stacking layer (5% acrylamide 

solution, 0.05 M Tris-Cl pH 6.8, 0,1% SDS, 0.1% APS, 0.1% 

TEMED). Samples were mixed with 4x NuPAGE LDS sample buff-

er and 10x sample reducing agent (both from Thermo Fisher). 

After heating at 70°C for 10 min samples were centrifuged at 

18,400 x g for 10 min at room temperature. 5 µl Magic Mark XP 

Western Protein Standard (Thermo Fisher) or Novex Sharp Pre-

Stained Protein Standard (Thermo Fisher) were used as marker. 

Electrophoresis was carried out with Tris-glycine buffer (25 mM 

Tris, 250 mM glycine, 0.1% SDS) or, if gradient gels were used, 

with NuPAGE MES or MOPS SDS running buffer (Thermo Fisher) 

with 110 V until the samples were stacked and 130 V until the 

gel running was stopped.  

Proteins were transferred onto Polyvinylidene difluoride (PVDF) 

membrane (PVDF Western Blotting Membranes (Roche) if the 

Stella 3200 imaging system (raytest) was used for detection, 

Immobilon-FL PVDF membrane (Merck Millipore) if Odyssey CLx 

imaging system (LiCor) was used) as follows: The SDS-PAGE gel 

was added onto the membrane activated with methanol and 

incubated in transfer buffer (25 mM Tris, 190 mM glycine, 20% 

methanol) or NuPAGE transfer buffer (Thermo Fisher). Gel and 

membrane were sandwiched between one layer of Whatman 

filter paper and sponge and inserted into a transfer tank for wet 

electroblotting (Bio Rad) filled with transfer buffer. Blotting was 

carried out with 35 mA over night at 4°C. The blot was washed 

two times for 10 min with Tris-buffered saline (TBS) with 0.1% 

Tween 20 (Sigma) (TBST), blocked for 1 h with blocking buffer 

(4% milk or 5% BSA in TBST or LiCor blocking buffer), washed 

once for 5 min with TBST and probed with the primary antibody 
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over night at 4°C. The blot probed with anti-Ubiquitin VU-1 

(LifeSensors) was treated differently according to manufactur-

er’s instructions. Unbound primary antibody was removed by 

washing four times for 5 min with TBST. The blot was re-probed 

with the appropriate secondary antibody conjugated to horse-

radish peroxidase (HRP) (anti-mouse IgG, 1:5000, #7076, Cell 

Signaling Technology) or with IRDye800CW goat anti-mouse 

(1:15000, LiCor) for 1 h at room temperature. After washing four 

times for 5 min with TBST the blot was developed with ECL 

(Amersham ECL Prime Western Blotting Detection Reagent, GE 

Healthcare) following manufacturer’s instructions and detected 

with Stella 3200 imaging system (raytest) or directly detected 

after re-probing with the secondary antibody with Odyssey CLx 

imaging system (LiCor).  

2.1.10.1 Total protein gel staining  

15 µL SDS-insoluble proteins dissolved in formic acid and dia-

lyzed against 50 mM Tris pH 7.5, 1 mM DTT, 0.1 mM PMSF (as 

described at 2.1.12.1) were loaded on a 12% SDS gel. Electro-

phoresis was carried out as described above. The gel was stained 

with Sypro Ruby protein gel stain following the manufacturer’s 

instructions (Thermo Fisher). 

2.1.10.2 Total protein blot staining 

For the analysis of post-translational modifications, 6 µl RIPA 

samples (soluble proteins) and 9 µl Urea/SDS samples (insoluble 

proteins) of C. elegans from 2.1.8 were loaded on a 12% SDS gel.  

For the total protein staining of SDS-insoluble proteins of 

wildtype mouse brains dissolved in formic acid and dialyzed 

against 50 mM Tris pH 7.5, 1 mM DTT, 0.1 mM PMSF (as de-

scribed at 2.1.12.1) one tenth of the original volume after dialysis 

were loaded on a 4-12% gradient gel.  
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Electrophoresis and electroblotting were carried out as de-

scribed above. The blots were stained with Sypro Ruby protein 

blot stain following the manufacturer’s instructions (Thermo 

Fisher). 

2.1.10.3 Western blot analysis of PAR-5 (14-3-3) 

9 µl Urea/SDS samples (insoluble proteins) from 2.1.8 were 

loaded on a 4-12% gradient gel. The membrane was probed with 

anti-14-3-3 (1:5000, SC-1657, Santa Cruz Biotechnology). The 

quantification was done with ImageJ.  

2.1.10.4 Western blot analysis of post-translational modifications  

6 µl RIPA samples (soluble proteins) and 9 µl Urea/SDS samples 

(insoluble proteins) from 2.1.8 were loaded on a 12% SDS gel. 

The membrane was probed with anti-Phosphotyrosine (1:500, 

Merck Millipore) or anti-Ubiquitin VU-1 following the manufac-

turer’s instructions (1:1000, VU101, LifeSensors). 

2.1.11 FRANK assay (Fibrillization of Recombinant Aβ Nucle-

ation Kinetic) 

The FRANK assay was performed by Anika Bühler and super-

vised by Dr. Frank Baumann at the Hertie Institute for Clinical 

Brain Research, Tübingen. The seeding potential of soluble or 

insoluble protein extracts from C. elegans and wild-type mouse 

brains was detected by measuring Thioflavin T (ThT) fibrilliza-

tion kinetics as described by (Nagarathinam et al. 2013) with the 

modifications as described in detail in (Marzesco et al. 2016; 

Nielsen et al. 2001). In brief: All kinetic measurements were 

carried out with 20 µM soluble recombinant Aβ(1-40) in 50 mM 

Phosphate buffer pH 7.4 and 150 mM NaCl with 20 µM ThT sup-

plemented with protease inhibitors (Complete Protease Inhibi-

tor Cocktail, Roche). Each assay was performed with freshly 

monomerized Aβ1-40. Briefly, lyophilized recombinant Aβ1-40 
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peptide was dissolved to a stock-concentration of 5 mM in 100% 

DMSO and frozen at - 80°C. Before use, this stock was then fresh-

ly diluted in DMSO to 400 µM and sonified for 20 min in a water 

bath followed by 30 min centrifugation at 22,000 x g at room 

temperature. The supernatant was then further diluted to reach 

200 µM Aβ1-40 in a 50% DMSO stock. In 96-well plates (µclear 

non-bind plate, Greiner), eight technical replicates were meas-

ured for each sample. The plates sealed with film sheets were 

incubated at 37°C for up to two to three days. The fluorescence 

measurements were performed from the bottom of the plate on 

a Fluostar Omega plate reader (BMG Labtech) (excitation: 

440 nm, emission: 480 nm) at 30 min interval after double or-

bital shaking for 30 s at 500 rpm. Increase of fluorescence over 

time was followed until the maximum was reached. For each 

sample, five to eight replicates were averaged and the lag times 

were determined from fitted curves (Nielsen et al. 2001) with 

GraphPad Prism 5. For this assay, the peptide Aβ(1-40) was ex-

pressed and purified as described earlier (Hortschansky et al. 

2005) by Prof. Marcus Fändrich at the University Ulm. Bicincho-

ninic acid (BCA) protein assay was performed to determine the 

total protein content in the soluble or detergent-insoluble pro-

tein fractions. For all experiments (with C. elegans and mice) 

0.001 µg was used. 

2.1.12 Mass spectrometry analysis 

SDS-insoluble proteins dissolved in formic acid were further 

processed for mass spectrometry analysis. Two biological repli-

cates of C. elegans (Table 2.4 replicate 1 and 2) with four differ-

ent time points each (day 2, day 6, day 10, day 14) were analyzed 

with mass spectrometry. SDS-insoluble protein extracts of three 

hemispheres of three young and three old wild-type mouse 

brains (six hemispheres in total) (Table 2.3) were analyzed.  
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2.1.12.1 Dialysis 

Insoluble proteins dissolved in formic acid were dialyzed against 

50 mM Tris pH 7.5, 1 mM DTT, 0.1 mM PMSF as follows: Three 

times 65 µL insoluble protein of one condition were added onto 

three membranes (Membrane filters 0.025 µM, Millipore) placed 

on the buffer surface in a 1-liter-beaker. For C. elegans, each con-

dition was divided onto six membranes. For mouse brains, each 

condition was divided onto three membranes. The pH of one 

sample was analyzed by removing 5 µL and adding it onto a pH 

strip. The sample was collected at a pH between 7 and 8 (approx-

imately after two hours). Finally, 10 µL dialysis buffer was used 

to wash the precipitate off each membrane.  

2.1.12.2 Preparation for mass spectrometry 

The amount of insoluble proteins in the dialyzed samples was 

evaluated by loading an aliquot onto a 4-12% gradient gel to-

gether with a reference sample of known concentration. A Sypro 

Ruby protein gel staining (Thermo Fisher) was performed ac-

cording to manufacturer’s instructions and the protein amount 

was quantified with ImageJ. This step was necessary to estimate 

the amount of trypsin needed for the digestion (described later). 

The samples were concentrated using a centrifugal evaporator 

(Concentrator plus, Eppendorf). The insoluble proteins were 

solubilized in a final concentration of 8 M urea. Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP, Serva) was added 

to a final concentration of 4 mM and incubated for 1 h at 57°C 

with 300 rpm. Iodoacetamide (Serva) was added to a final con-

centration of 8.4 mM and incubated for 45 min in the dark at 

room temperature. The samples were diluted in 150 mM ammo-

nium bicarbonate (Sigma Aldrich) to obtain a final 2 M urea con-

centration. Proteins were digested with 5% w/w modified tryp-

sin (Promega) overnight at 37°C and 400 rpm. A sample of the 
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digested proteins was loaded on a 12% SDS gel and Sypro Ruby 

protein gel or blot staining (Thermo Fisher) (as described at 

2.1.10.1 and 2.1.10.2) were performed to analyze if the digestion 

worked.  

2.1.12.3 Mass spectrometry and data analysis with C. elegans 

samples 

Peptides from C. elegans at day 2, day 6, day 10 and day 14 from 

two biological replicates were labelled by 8-plex isobaric tags for 

relative and absolute quantitation (iTRAQ) following the manu-

facturer's instructions (Applied Biosystems).  

Mass spectrometry and data analysis were performed by Dr. Ka 

Wan Li, Pim van Nierop and Prof. August B. Smit at the VU Uni-

versity Amsterdam as described (Klemmer et al. 2011). The 

iTRAQ-tagged samples were pooled, dried and peptides partially 

separated in a strong cation exchange column (2.1 x 150-mm 

PolySUFOETHYL A column, PolyLC Inc). Peptides in each collect-

ed fractions were further fractionated by capillary reverse phase 

C18 column (150 mm x 100 µm-inner diameter column packed 

in house with the Alltima C18 3 µm particle using the pressure 

injection cell from Next Advance). The eluents were continuously 

mixed with matrix (α-cyanohydroxycinnamic acid), and deposit-

ed off-line to the metal target every 15 s. The peptides were ana-

lyzed on the 5800-proteomics analyzer (AB-Sciex). Tandem mass 

spectrometry (MS/MS) spectra were each collected from 2500 

laser shots; a maximum of 25 MS/MS was allowed per spot. Mas-

cot was used to annotate spectra that were searched against C. 

elegans UniprotKB database. 

The peak areas of each iTRAQ signature ions were log2-

transformed and normalized to the total peak area of the signa-

ture peaks. The peak areas in each sample were mean-centered, 
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which were used to calculate the protein averages. The permuta-

tion-derived false discovery rate (q-value) was calculated by the 

excel plug-in of the Significant Analysis of Microarrays (SAM) 

program (Van Nierop 2011). 

2.1.12.4 Ingenuity Pathway Analysis 

Human homologs of early-aggregating proteins and late-

aggregating proteins in C. elegans (as described at 3.1.3) were 

identified using cildb 3.0 (http://cildb.cgm.cnrs-gif.fr) and En-

sembl genome browser 87 (http://www.ensembl.org/ 

index.html). 83 human homologs of early-aggregating proteins 

and 116 human homologs of late-aggregating proteins including 

early-aggregating proteins that continued to aggregate strongly 

at day 10 and day 14 were analyzed together with 161 minor 

components of AD pathological aggregates previously published 

(Ayyadevara, Balasubramaniam, Parcon, et al. 2016; Liao et al. 

2004; Wang et al. 2005) using Ingenuity Pathway Analysis (IPA 

Winter Release 2016, www.ingenuity.com). Fisher’s exact test 

was used to calculate a p-value reflecting the probability that the 

association between the set of molecules and a given pathway is 

due to chance alone. The threshold of the p-value for association 

was set to 0.01. This analysis was performed by our colleague Dr. 

Chaolie Huang. 

2.1.12.5 Mass spectrometry and data analysis with mice samples 

Labeling of the samples and nano-liquid chromatography-

MS/MS (nanoLC-MS/MS) analysis were performed by Dr. Ana 

Velic at the Proteome Center Tübingen. Peptides from three 

young and three old wild-type mouse brains were labelled with 

heavy and light dimethyl at lysine residues and N-termini as 

follows (published at (Spat, Macek, and Forchhammer 2015)): 

Samples were on-column (SepPak C18) dimethylation labeled as 

described previously (Boersema et al. 2009). In brief, 5 mL of the 
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respective labeling solutions with CH2O (Sigma-Aldrich) and 

NaBH3CN (Fluka) for light- and 13CD2O (Sigma-Aldrich) and 

NaBD3CN (Sigma-Aldrich) for heavy labeling were flushed with 

15 min contact time through the column. Labeled peptides were 

washed with 5 mL HPLC Solvent A (0.5% acetic acid) on the col-

umn and eluted with HPLC Solvent B (80% acetonitrile in 0.5% 

acetic acid). For validation of labeling efficiency and correct mix-

ing of the labeled peptides, two times 5 μg of each labeled sample 

(based on Bradford measurements) were used for separate 

measurements or mixed 1:1 and subjected after purification by 

C18 stage tips (Ishihama, Rappsilber, and Mann 2006) to pilot 

LC-MS/MS measurements. Based on the obtained label ratios, 

correction factors were applied for correct mixing of samples. 

For nanoLC-MS/MS analyses peptides were loaded onto an in-

house packed 15 cm reverse-phase C18 (3 μm; Dr. Maisch) na-

noHPLC column on an EasyLC nano-HPLC (Proxeon Biosystems). 

Separation was performed by 230 min segmented linear gradi-

ents with 5–90% HPLC solvent B. Eluted peptides were directly 

ionized and measured on a LTQ Orbitrap Elite mass spectrome-

ter. Mass spectrometers were operated in the positive ion mode. 

The LTQ Orbitrap Elite was conducting higher energy collision 

dissociation (HCD) of the 15 most intense multiply charged ions 

at the same scan range at resolution 120,000. Dynamic exclusion 

of sequenced precursor ions for 90 s and the lock mass option 

(Olsen et al. 2005) for real time recalibration were enabled on 

both instruments. 

All raw MS spectra were processed with MaxQuant software 

suite (version 1.5.3.12) (Cox et al. 2009) and default settings. 

Identified peaks were searched against the target-decoy mouse 

databases of Uniprot (http://www.uniprot.org) with the follow-

ing database search criteria: trypsin was defined as cleaving 
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enzyme and up to two missed cleavages were allowed. Carbami-

do-methylation of cysteines was set as a fixed, and methionine 

oxidation and protein N-termini acetylation were set as variable 

modifications. Light- and heavy-dimethylation labeling on pep-

tide N-termini and lysine residues was defined. The initial mass 

tolerance of precursor ions was limited to 6 ppm and 0.5 ppm for 

fragment ions. False discovery rates (FDRs) of peptides and pro-

teins were set to 1%, respectively. Quantification of dimethyla-

tion labeled peptides required at least two ratio counts. Peptides 

were only allowed with a posterior error probability (PEP) <1% 

at the peptide level.  

Perseus 1.5.1.6 was used for the statistical analysis of the 

MaxQuant output. Proteins only identified by site (proteins only 

identified with modified peptides), by reverse peptides and po-

tential contaminants were removed. Peptide ratios were log2-

transformed (as described in 3.1.8). Three replicates were ana-

lyzed together, resulting to 617 proteins that can be found in all 

replicates.  

2.1.12.6 Identification of C. elegans homologs of insoluble mouse 

brain proteins  

C. elegans homologs of proteins that aggregate the most in wild-

type mouse brains (as described at 3.1.8) were identified using 

cildb 3.0 (http://cildb.cgm.cnrs-gif.fr) and Ensembl genome 

browser 87 (http://www.ensembl.org/index.html). 

2.1.13 Motility analysis and paralysis assay with C. elegans 

overexpressing Aβ 

2.1.13.1 Preparation of Aβ overexpressing worms and speed 

measurement 

To measure the motility of Aβ overexpressing worms (GMC101) 

compared to N2 worms or to analyze if the motility is influenced 
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by a knockdown of a specific protein, worms were kept at 20°C 

until Aβ overexpressing worms started to paralyze (usually at 

day 5 or day 6) (worms were defined as paralyzed if they only 

moved their heads when touched with a platinum wire) and 

transferred on NG plates without bacteria. To transfer rapidly a 

large number of worms onto NG plates for motility measure-

ment, a previously described protocol (Ramot et al. 2008) was 

used with slight modifications. 40 worms were picked into M9 

buffer with 0.001% Triton X 100 (AppliChem) and shortly centri-

fuged. 20 µL containing concentrated worms were pipetted onto 

a stack of four Whatman paper disks (1.7 cm x 1.4 cm). The top 

disk was inverted onto a NG mini plate (diameter 3.5 cm) pre-

pared with a Whatman filter paper border with inside dimen-

sions of 2 cm x 1.7 cm, resulting to a transfer of around 30 

worms. Because worms try to avoid cupper, the border was 

soaked with 100 mM CuCl2. Worms were kept for 30 min at room 

temperature. The motility of Aβ overexpressing worms 

(GMC101) compared to N2 was measured by taking videos two 

times for 10 min and two times for 20 min (3 frames/s) with 

StreamPix 6 (Norpix) software and the camera BM 500 (JAI). 

After the first comparison the settings were changed. Videos 

were taken 10 times for 30 s with 30 s pauses in between 

(7.5 frames/s). For the video analysis, the Parallel Worm Tracker 

software was used with MathWorks MATLAB R2015b (as de-

scribed at (Ramot et al. 2008)). To be able to use the software 

published in 2008 some changes were made in the MATLAB code 

by Björn Müller (CIN, Tübingen) and Angelos Skodras (DZNE, 

Tübingen). The settings were obtained from Dr. Jan Kubanek 

(Stanford University, USA) and are shown in 6.2. The first set-

tings were needed to track a video with the new MATLAB ver-

sion. The second settings were necessary to be able to analyze 

videos taken for other time periods than 30 s. Each analysis was 
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controlled manually. If only a few worms were detected and 

measured by the software the respective video was removed. 

Because the motility measurements with the Parallel Worm 

Tracker software were not reproducible, a motility analysis 

plugin (called “wrMTrck”) for ImageJ described by Jesper S. 

Pedersen (http://www.phage.dk/plugins/download/wrMTrck. 

pdf) was used with the following settings: Minimum size 

50 pixels, maximum size 400 pixels, maximum velocity 

50 pixels/frame, maximum area change 100%, minimum track 

length 10 frames, frames per second 7.5 and set scale 

30 pixel/mm.  

2.1.13.2 Knockdown of proteins with RNA interference (RNAi) for 

motility analysis 

One to two days in advance, NG plates with 50 µg/mL Carbenicil-

lin (Carb) and 1 mM IPTG (NG/Carb/IPTG) were prepared with 

control bacteria or RNAi bacteria (Table 2.6) to inhibit the gene 

of interest (detailed protocol about RNAi in C. elegans: JoVE Sci-

ence Education Database. Essentials of Biology 1: 

yeast, Drosophila and C. elegans. RNAi in C. elegans. JoVE, Cam-

bridge, MA, doi: 10.3791/5105 (2017)). Two bacterial libraries 

(established by Julie Ahringer and Marc Vidal) were used with 

bacteria expressing the double stranded RNA needed for the 

RNAi. Once the offspring reached the L4 larval stage, L4s were 

transferred onto NG/Carb/IPTG plates seeded with control RNAi 

or RNAi bacteria for the gene of interest and kept at 20°C. The 

aging worms were transferred away from their progeny to new 

plates every second day until the end of their reproductive peri-

od in order to be able to distinguish them from their offspring. 

After knockdown of early-aggregating proteins that continued to 

aggregate strongly at day 10 and day 14 (NEX-1 and LEC-5, Table 

2.6), the average speed of worms was measured between day 3 
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and day 6 as described above. Most of this part was performed 

by the intern Stavros Vagionitis.  

After transferring Aβ overexpressing worms on different control 

RNAi’s (Table 2.6) for the knockdown of C. elegans homologs of 

insoluble proteins that aggregate the most in wild-type mouse 

brains, the motility was measured at day 6 as described above 

with the following changes: For each condition (three different 

control RNAi’s) three plates with 20 worms were prepared. Vid-

eos were taken five times for 30 s with 30 s pauses, resulting to 

five videos per plate and 15 videos per condition. For compari-

son, videos were analyzed with the Parallel Worm Tracker soft-

ware and ImageJ.  

  Table 2.6: RNAi bacteria used for motility analysis of Aβ overexpressing 
worms (GMC101). 

RNAi bacteria 
(gene name) 

Source (JA: Julie  
Ahringer, MV: Marc 
Vidal RNAi library) 

Description 

L4440 JA 
Control RNAi,  
empty vector 

GFP 
Cynthia Kenyon’s lab 
at UCSF 

Control RNAi 

her-1 JA Control RNAi 

nex-1 (ZC155.1) MV  

lec-5 (ZK1248.16) JA  

 

2.1.13.3 Paralysis Assay  

To compare the paralysis levels of worms overexpressing PAR-5 

(UE50), Aβ (GMC101) or both (double transgenic, DCD296), 105 

L4s of each overexpressing strain were kept at 20°C. At day 1 of 

adulthood, worms were transferred to 25°C to induce paralysis 
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(McColl et al. 2012). The numbers of paralyzed worms were 

counted from day 2 to day 4 (until most of the double-transgenic 

worms were paralyzed). Worms were defined as paralyzed if 

they only moved their heads when touched with a platinum wire. 

2.1.13.4 Staining of Aβ-overexpressing worms with K114 and con-

focal analysis 

For the staining of Aβ amyloids in Aβ-overexpressing GMC101 

worms with the Congo red analogue (trans, trans)-1-bromo-2,5-

bis-(4-hydroxy)styrylbenzene (K114), age-synchronized worms 

were shifted to 25°C at day 1 and collected when they started to 

paralyze (day 2). The fixation protocol for confocal analysis was 

adapted from a fixation protocol previously described (Antibody 

Staining of C. elegans by Michael Koelle, 

https://medicine.yale.edu/lab/koelle/protocols/Antibody%20S

taining_180540_21947.pdf). Worms were picked into 300 µL M9 

buffer, shortly centrifuged and the supernatant was removed. 

Worms were washed once with 500 µL ddH2O (ddH2O was add-

ed, the tube was rotated, worms were shortly centrifuged and 

the supernatant was removed) before being resuspended in 

fixation solution containing 1% PFA (Sigma). After mixing thor-

oughly, worms were immediately immersed into liquid nitrogen 

for freezing. Worms were thawed at 70°C and refrozen in dry ice 

two times and then rotated for 3 h at 4°C. Worms were washed 

three times as described above with 500 µL PBST-B buffer (1x 

Phosphate-buffered saline (PBS) pH 7.4, 0.1% Bovine serum 

albumin (BSA) (Sigma), 0.5% Triton X 100 (AplliChem), 5 mM 

sodium azide, 1 mM EDTA). Worms were stained with 50 µL 

1 mM K114 (VWR) in PBST-A buffer (same as PBST-B buffer 

except 1% BSA) for 90 min in the dark at room temperature, 

washed four times with PBST-B and placed on a slide using Fluo-

rescent Mounting Medium (Dako). Worms were examined under 
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a Leica SP8 confocal microscope with the HC PL APO CS2 

63x1.40 oil objective using the Leica HyD hybrid detector. K114 

was detected using 405 nm as excitation and an emission range 

from 450 to 486 nm. 

2.1.14 Intracerebral injection of insoluble proteins into 

young, pre-depositing APP23 transgenic mice 

The intracerebral injection and analysis were performed by Ul-

rike Obermüller and supervised by Dr. Frank Baumann at the 

Hertie Institute for Clinical Brain Research, Tübingen. 

All APP23 transgenic mice used were bred and maintained under 

pathogen-free conditions at the Hertie Institute for Clinical Brain 

Research, Tübingen. All studies were performed in accordance 

with German animal welfare legislation and with approval from 

the Ethical Commission for animal experimentation of Tübingen, 

Germany (“Tierversuchsantrag N03/11”). 

For the injection of insoluble protein extracts into the hippo-

campi of APP23 transgenic mice a mix of insoluble protein ex-

tracts of aged (total volume of 60 µL) or young (total volume of 

40 µL) wild-type mouse brains, that were obtained as described 

for the FRANK assay at 2.1.9, was prepared (Table 2.7). Per hem-

isphere 2.5 µL of the mix were injected bilaterally stereotacticly 

into the hippocampi of five recipient mice (injection of extract 

mix of aged mice) or four recipient mice (injection of extract mix 

of young mice) (Table 2.8). All recipients were three months of 

age when injected and were killed, perfused and histologically 

analyzed six months after injection. 
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Table 2.7: Mice used as donors for intracerebral injection. Shown are the 
sex of the mice, age and volume for the mix of insoluble protein extracts. 

Mouse Sex Age (months) 
Volume used 
for injection 

524 female 18 3x 10 µl  

503 female 19 1x 10 µl 

7830  male 18 1x 10 µl  

7831 male 18 1x 10 µl 

8418 female 2 1x 10 µl  

8419 female 2 1x 10 µl 

 8628   male 3 1x 10 µl 

8629 male 3 1x 10 µl 
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Table 2.8: Mice used as recipients for intracerebral injections. Shown are 
the sex of the mice, age when histologically analyzed and injected protein 
extract (from aged or young mice).  

Mouse Sex Age (months) Extract 

451 female 10 aged 

512 female 10 aged 

518 female 10 aged 

525 female 10 aged 

526 female 10 aged 

832 male 10 young 

853 male 10 young 

864 female 9 young 

865 female 9 young 

 

2.1.15 Statistics 

For the FRANK Assays significance was tested with unpaired t-

test (p<0.05), One-way ANOVA (p<0.05) or Two-way ANOVA 

(p<0.05) using Graph Pad Prism 7. For Figure 3.1C the relative 

seeding activity was calculated using the normalization function 

of Graph Pad Prism 7. The absolute lag times measured for four 

biological replicates were normalized to those of the standards. 

The lag time of a soluble extract from day 2 worms (negative 

control) was defined as 0% and the lag time of an insoluble ex-

tract from transgenic C. elegans overexpressing Aβ (GMC101, 

positive control) was defined as 100%. 



Material and Methods 
 

44 
 

For the motility analysis of Aβ-overexpressing worms subjected 

to RNAi bacteria an unpaired t-test (p<0.05) or One-way ANOVA 

(p<0.05) was performed using Graph Pad Prism 7.  

For the comparison of the paralysis levels of PAR-5 overexpress-

ing worms, Aβ overexpressing worms and the double-transgenic 

worms overexpressing both proteins, Fisher’s exact test was 

used (http://www.socscistatistics.com/tests/fisher/default2. 

aspx).  

The Spearman r for the correlation between different replicates 

of quantitative mass spectrometry with insoluble proteins from 

young and old wild-type mouse brains was calculated with the 

correlation analysis of Graph Pad Prism 7. 
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2.2 Investigation whether rapidly-aggregating proteins 

seed the aggregation of other proteins 

2.2.1 C. elegans mutant and transgenics 

Table 2.9: C. elegans mutant and transgenic strains used in this study. 

Strain name Genotype 

CF2137 fem-1(hc17ts)IV 

DCD187 
uqIs19[Pmyo-2::rho-1::hisavi + Pmyo-2:: 
birAtagRFP] 

DCD243 
(CF2137;DCD187) 

fem-1(hc17ts)IV; uqIs19[Pmyo-2::rho-1::hisavi + 
Pmyo-2::birAtagRFP] 

 

2.2.2 Bacterial Strains 

See 2.1.2.  

2.2.3 Growing and Maintenance of C. elegans  

As described at 2.1.4.  

2.2.4 Cloning and strain generation 

In order to isolate rapidly-aggregating proteins and their co-

aggregating proteins, a tandem-affinity purification strategy in 

denaturing conditions was used. For this, an aggregation-prone 

candidate was tagged with a tandem-affinity tag combining a 

biotin signal with a hexa-histidine sequence (called histidine-

avidin tag) (Schaffer et al. 2010; Tagwerker et al. 2006). The 

avidin tag is known as AviTag, an artificial target motif for bioti-

nylation by the E. coli biotin holoenzyme synthetase birA 

(Schaffer et al. 2010). 
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For the method development to crosslink, isolate and identify 

rapidly-aggregating proteins together with their co-aggregating 

proteins, a transgenic strain was generated overexpressing RHO-

1 (a Rho GTPase orthologous to transforming protein RhoA in 

mammals) with a histidine-avidin tag at the C-terminus together 

with the biotinylation enzyme birA fused to tagRFP. Cloning was 

carried out using the Gateway system (Invitrogen, Carlsbad, CA, 

USA). The promoter Pmyo2 was obtained from Brian Lee (UCSF, 

USA) and the cDNA of the rho-1 gene was obtained from Open 

Biosystems (Thermo Scientific, Huntsville, AL, USA). The Gate-

way vector with histidine-avidin tag was generated by Dr. Emily 

Crawford. The biotinylation enzyme birA was obtained from Dr. 

Ekkehard Schulze (University Freiburg) with the construct 

Pmyo3::birA::mCherry. The tagRFP gene was obtained from 

Evrogen (AXXORA, San Diego, CA, USA). Constructs were se-

quenced at each step.  

The transgenic C. elegans line expressing RHO-1 tagged with 

histidine-avidin and birA fused to tagRFP under the control of 

the pharyngeal muscle-specific promoter Pmyo-2 was generated 

as follows: The construct containing Pmyo2::rho-1::hisavi was 

injected at 30 ng/µL together with the plasmid containing 

Pmyo2::birAtagRFP at 100 ng/µL into N2 animals by Katja Wid-

maier (as described at (Evans 2006), http://www.wormbook. 

org).  

The extrachromosomal array was integrated by UV irradiation 

with the CL-1000 Ultraviolet Crosslinker (UVP) with 

275,000 µJ/cm2 as follows: 100 young adults of the strain were 

irradiated, separated to 10 worms per plate and incubated at 

20°C. Irradiated adults were transferred to new plates every day 

until day 3. The progeny was also kept at 20°C. After starvation 

100 L1s from each day were picked onto 100 plates and kept at 
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20°C to produce progeny. Worms were checked for 100% inher-

itance (100% fluorescence) with a fluorescence microscope. 

Worms were backcrossed four times with N2 males to remove 

potential mutations caused by UV irradiation during integration 

of a transgene, resulting to the strain DCD187, as follows: 12 N2 

males and three L4 hermaphrodites of the transgenic strain were 

mated. From the mating plate three L4s were picked for the next 

backcross with 12 N2 males. The last step was repeated until the 

transgenic strain was backcrossed four times with N2 males. 

Nine L4s were picked from the mating plate onto separate plates 

to produce progeny. From the progeny 20 L1s were added onto 

separate plates. The progeny was analyzed for 100% transmis-

sion of the transgene. 

The C. elegans transgenic strain overexpressing RHO-1 tagged 

with histidine-avidin and overexpressing the biotinylation en-

zyme birA fused to tagRFP (DCD187) with temperature-induced 

sterility was generated as follows: N2 males were crossed with 

temperature induced sterile fem-1 mutant hermaphrodites 

(CF2137) as described at 2.1.4. CF2137 males were mated into 

DCD187 hermaphrodites as described at (Fay 2013), resulting to 

the strain DCD243. 

2.2.5 C. elegans liquid culture 

The C. elegans transgenic strain overexpressing RHO-1 tagged 

with histidine-avidin, overexpressing the biotinylation enzyme 

birA and bearing the fem-1 mutation (DCD243) to get tempera-

ture induced sterile worms was used to obtain a large aged-

synchronized population. The same protocol was used as de-

scribed at 2.1.6 with the following changes: To collect the paren-

tal generation for the temperature shift, worms were first grown 

on 10 NG plates seeded with OP50 at 20°C until plates were con-
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fluent, washed from the plates with M9 and grown in liquid cul-

ture with OP50-1 at 20°C instead of growing the worms on HGM 

plates.  

When most animals were adults and L1s were hatching, eggs and 

L1s were separated from the adults by sedimentation as de-

scribed at 2.1.6.2. After L1 arrest overnight at 25°C, L1s were 

counted and 300,000 L1s were grown with OP50-1 at 25°C. At 

day 1, worms were collected and removed from bacteria and 

dead worms by sucrose separation as described at 2.1.6.5. The 

resulting worm pellet was frozen in liquid nitrogen with an equal 

volume of RAB high-salt buffer with inhibitors. The frozen worm 

pellet was ground in a mortar as described at 2.1.6.6.   

For the method development of chemical crosslinking and purifi-

cation non-sterile C. elegans transgenic worms overexpressing 

RHO-1 with histidine-avidin tag and the biotinylation enzyme 

birA (DCD187) were collected at day 1 as described above and 

ground in a mortar.  

2.2.6 Insoluble protein extraction with chemical crosslink-

ing 

2.2.6.1 Method development without chemical crosslinking 

To establish the purification protocol protein extractions with-

out crosslinking were performed with non-sterile C. elegans 

transgenic worms overexpressing RHO-1 with histidine-avidin 

tag and the biotinylation enzyme birA (DCD187) collected at day 

1.  

After grinding of the frozen worm pellet as described at 2.1.6.6, 

the protocol for insoluble protein extraction for mass spectrome-

try with C. elegans described at 2.1.7 was followed until resus-

pension and centrifugation with the RIPA buffer. After centrifu-
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gation the supernatants were removed and the two pellets re-

sulting from two times 350 mg powder were resuspended with 

300 µL urea buffer each. For the first extraction urea buffer A 

(8 M urea, 20 mM sodium phosphate pH 7.4, 500 mM NaCl, 

10 mM imidazole) was used. For the second extraction for the 

purification with harsh conditions urea buffer 1 (8 M urea, 

300 mM NaCl, 0.5% NP40, 50 mM sodium phosphate, 50 mM 

Tris pH 8) (Tagwerker et al. 2006) was used. After centrifugation 

at 18,400 x g for 20 min at 4°C the supernatants of one extraction 

containing highly insoluble proteins were combined, resulting to 

600 µL total volume. 

2.2.6.2 Chemical crosslinking with 0.4% Para-Formaldehyde 

(PFA) 

For the first chemical crosslinking with Para-Formaldehyde 

(PFA, Sigma) the protein extraction was performed as described 

above but the resuspension and centrifugation were done with a 

RIPA buffer free of primary amines containing 50 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 8 

instead of Tris. After centrifugation the supernatants were re-

moved and the two samples were pooled together after solubiliz-

ing each pellet with 500 µL RIPA buffer (with HEPES). After the 

suspension was drawn up into a syringe 10 times and centri-

fuged, all supernatant was removed and discarded. The pellet 

was resuspended with 700 µL 0.4% PFA in PBS pH 7.4. The sus-

pension was incubated for 10 min at room temperature on a 

nutating mixer. The reaction was quenched with 700 µL ice-cold 

2.5 M glycine in PBS (for a final concentration of 1.25 M glycine). 

After centrifugation at 18,400 x g for 20 min at 4°C the superna-

tant was removed. The final pellet was resolved with 600 µL 

urea buffer 1 and centrifuged at room temperature. The super-

natant containing crosslinked SDS-insoluble proteins was trans-
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ferred to a new tube. The pellet was resolved with 100 µL 2x SDS 

gel-loading buffer (100 mM Tris pH 6.8, 4% SDS, 0.2% bromo-

phenol blue, 20% glycerol, 200 mM DTT) and heated at 95°C for 

5 min for SDS gel or western blot analysis.   

2.2.6.3 Chemical crosslinking with Disuccinimidyl glutarate (DSG) 

Because the chemical crosslinking with PFA was to strong, a 

crosslinking with Disuccinimidyl glutarate (DSG, Thermo Scien-

tific) was performed as described for PFA with the following 

changes: After resuspension and centrifugation with RIPA buffer 

(with HEPES) for the second time, the pellet was resuspended 

with 700 µL 0.25 mM DSG, 0.025 mM DSG or 0.0025 mM DSG in 

PBS pH 7.4. The crosslinker was incubated for 30 min at room 

temperature on a nutating mixer. The reaction was quenched 

with 700 µL 100 mM Tris pH 7.5 (for a final concentration of 

50 mM Tris) for 15 min and centrifuged as described for PFA. 

The final pellet was resolved with 600 µL urea buffer 1 and cen-

trifuged at room temperature.  

2.2.7 Protein purification with Nickel affinity chromatog-

raphy  

All purifications were performed with the ÄKTA Pure 25 System 

and UNICORN control software (GE Healthcare) with a flow rate 

of 1 mL/min.   

2.2.7.1 Purification with imidazole 

For the first purification, the volume of the sample containing 

highly insoluble proteins of worms overexpressing RHO-1 with 

histidine-avidine tag (DCD187) was increased with urea buffer A 

to 800 µL. Before loading the sample onto a His-TrapTM FF col-

umn (column volume 1 mL, GE Healthcare), the sample was cen-

trifuged at 18,400 g for 20 min at 4°C to remove any particles. 

The column was equilibrated and the sample was loaded onto 
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the column with 20 column volumes (CV) urea buffer A, respec-

tively. The column was washed with 30 CV urea buffer A. The 

elution was performed with a linear gradient from urea buffer A 

to urea buffer B (8 M urea, 20 mM sodium phosphate pH 7.4, 

500 mM NaCl, 500 mM imidazole) over 20 CV. During all steps 

1 mL-fractions ("flow through" and "elution") or 3 mL-fractions 

("wash") were collected.   

2.2.7.2 Purification with harsh conditions 

 The purification under harsh conditions was performed as de-

scribed at 2.2.7.1, with the following changes: The column was 

equilibrated and the sample was loaded onto the column with 

20 column volumes (CV) urea buffer 1, respectively. The column 

was washed with 10 CV urea buffer 1, 10 CV urea buffer 1 pH 6.3 

and 10 CV urea buffer 1 pH 6.3 and 10 mM imidazole. The elution 

was performed with a linear gradient from urea buffer 1 pH 6.3 

and 10 mM imidazole to urea buffer 2 (8 M urea, 200 mM NaCl, 

50 mM sodium phosphate, 2% SDS, 10 mM EDTA, 100 mM Tris 

pH 4.3) over 20 CV. During all steps 1 mL-fractions ("flow 

through" and "elution") or 5 mL-fractions ("wash") were collect-

ed.   

2.2.8 Gel electrophoresis and Western blotting 

Gel electrophoresis and Western blotting were performed as 

described at 2.1.10. Before the samples (load, flow through, wash 

and elution fractions) were loaded onto a 4-12% gradient gel 

they were mixed with NuPage sample buffer as described and 

heated at 65°C for 10 min.  

2.2.8.1 Western blot analysis of histidine-avidin tagged proteins 

10 µL samples collected during purification were loaded on a 4-

12% gradient gel. The membrane was probed with horseradish 
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peroxidase (HRP)-conjugated Streptavidin (1:10,000, OC181939, 

Thermo Scientific).  

2.2.8.2 Silver staining  

The same volumes of samples were loaded as described at 

2.2.8.1. Silver staining was performed with the Pierce™ Silver 

Stain Kit (Thermo Scientific) according to the manufacturer’s 

instructions. 
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3 Results 

3.1 Identifying age-dependent heterologous seeds for 

amyloid-β aggregation 

Results and figures are mainly reproduced from: 

Groh N, Bühler A, Huang C, Li KW, van Nierop P, Smit AB, 

Fändrich M, Baumann F and David DC (2017) Age-Dependent 

Protein Aggregation Initiates Amyloid-β Aggregation. Front. 

Aging Neurosci. 9:138. Doi: 10.3389/fnagi.2017.00138 

3.1.1 Protein aggregates formed during normal C. elegans 

aging seed Aβ aggregation in vitro 

To investigate whether age-dependent protein aggregates 

formed during aging in C. elegans have the potential to seed the 

aggregation of synthetic Aβ in vitro, highly detergent-insoluble 

proteins from young and aged C. elegans were isolated as de-

scribed at 2.1.7. C. elegans has been extensively characterized as 

a model for aging (Antebi 2007) and widespread protein aggre-

gation with age has been repeatedly documented (David et al. 

2010; Reis-Rodrigues et al. 2012; Walther et al. 2015). As exten-

sive protein aggregation occurs in the reproductive tissues 

(David et al. 2010), a gonad-less C. elegans strain was used to 

investigate only somatic age-dependent protein aggregation. To 

identify seeding, changes in the lag time preceding the formation 

of Aβ(1-40) fibrils in vitro were examined using the FRANK assay 

(Fibrillisation of Recombinant Aβ Nucleation Kinetic) (Figure 

1.3B). This assay has been successfully used to quantify the seed-

ing activity of different cellular extracts containing Aβ seeds 

(Fritschi et al. 2014; Marzesco et al. 2016; Nagarathinam et al. 

2013). 
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Insoluble protein extracts from aged C. elegans (day 14, ~50% 

dead) significantly shortened the lag time of Aβ aggregation 

compared to extracts from young animals (day 2, 0% dead) 

(Figure 3.1A, p=0.039). Similar to a classical western blot, it is 

only meaningful to compare absolute lag time values evaluated 

in the same assay plate. However, despite variations between 

experiments, the difference in seeding activity between insoluble 

extracts from young and aged animals was highly reproducible 

(Figure 3.1). Consistent with the nature of a seed, only 0.001 µg 

of insoluble proteins from aged animals were needed to seed Aβ 

aggregation. To distinguish whether seeding is a general charac-

teristic of the aged proteome or specific to aggregated proteins, 

high-salt soluble proteins were evaluated with the in vitro assay. 

The lag time for Aβ aggregation remained similar for soluble 

proteins from aged and young animals and comparable to that 

observed with insoluble extracts from young animals (Figure 

3.1A). Together, these results demonstrate that protein aggre-

gates appearing during normal aging can serve as heterologous 

seeds for Aβ aggregation. 

3.1.2 Seeding activity appears in the later stages of life 

Sporadic AD is a late-onset disease affecting humans over age 65.  

However, it remains unclear when pathogenesis starts in the 

patients’ brains. To determine when the seeds triggering Aβ 

aggregation appear, insoluble extracts from different stages of 

adulthood were analyzed. For this, four time points were chosen: 

young animals (day 2), early middle-aged animals (day 6, at the 

end of reproduction in wild-type animals), late middle-aged an-

imals (day 10, ~30% of the population has died) and old animals 

(day 14, ~50% of the population has died). To collect large num-

bers of individuals for all time points, C. elegans were cultured in 

liquid. The whole procedure was performed four times to obtain 
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four different biological replicates. In order to compare the seed-

ing activities of all insoluble extracts measured in two separate 

assay plates, two standard extracts were included: a soluble 

extract as negative control and an insoluble extract from trans-

genic C. elegans overexpressing Aβ as positive control. The rela-

tive seeding activity was calculated by normalizing the absolute 

lag times measured for each biological replicate to those of the 

standards with 0% being the lag time of the negative control and 

100% being the lag time of the positive control. Sypro Ruby 

staining of insoluble proteins on an SDS gel showed accelerated 

protein aggregation with increasing age, especially between day 

10 and day 14 (Figure 3.1B). Evaluation of the relative seeding 

activity did not reveal a significant increase in seeding between 

day 2 and day 6 (Figure 3.1C, p= 0.57). Instead, a large increase 

in seeding activity at day 10 was found (p= 0.0086 compared to 

day 2). The seeding potential was not further increased in insol-

uble extracts from 14-day-old animals. When extrapolated to 

human aging, the appearance of heterologous protein aggregate 

seeds for Aβ aggregation at the later stages of life rather than 

early middle age would be consistent with the late-onset of AD 

dementia. 
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Figure 3.1: Insoluble protein extracts from aged C. elegans seed Aβ aggre-
gation in vitro (reproduced from Frontiers article).  
A: Lag times measured for Aβ aggregation in the presence of 0.001 μg C. 
elegans soluble and detergent-insoluble protein extracts (day 2 and day 
14). Mean values (blue lines soluble, red lines insoluble) with respective 
SEM of 3 biological replicates are represented (each including a minimum 
of five technical replicates). Two-tailed p-value: day 2 insoluble vs. day 14 
insoluble *p= 0.039. 
B: SDS gel of insoluble protein extracts from different ages stained with 
Sypro Ruby protein gel stain. 
C: Relative seeding activity measured for Aβ aggregation in the presence 
of 0.001 μg insoluble protein extracts from different ages. Mean values of 
four biological replicates (each including five technical replicates) are 
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shown. Data were normalized with 0% being the lag time of the negative 
control (soluble extract, day 2) and 100% being the lag time of the posi-
tive control (insoluble extract from C. elegans transgenics expressing Aβ). 
One-way ANOVA: day 2 vs. day 10 **p= 0.0086 and day 2 vs. day 14 
**p= 0.0051.  

3.1.3 Identification of early- and late-aggregating proteins 

during aging 

The results from the in vitro assay imply that changes in aggrega-

tion between day 6 and day 10 are responsible for seeding. 

Quantitative mass spectrometry was performed using the stable-

isotope iTRAQ reagents to identify these changes with two inde-

pendent biological repeats. 845 quantifiable aggregation-prone 

proteins were found. Of these, 460 were identified in a previous 

study (David et al. 2010). This large overlap attests to the quality 

of the present mass spectrometry analysis. After normalization, 

the proteins were ranked depending on their relative change in 

aggregation levels focusing on proteins with the highest change 

in aggregation with age, i.e. in the top 25th percentile in both 

repeats. Early-aggregating proteins were defined as present in 

the top 25th percentile of day 6 compared to day 2 and late-

aggregating proteins as present in the top 25th percentile of day 

10 or day 14 compared to day 6 (Figure 3.2). 133 proteins were 

detected at day 6 in the top aggregating fractions in both repli-

cates. Significantly among these early-aggregating proteins, the 

rate of aggregation continued to increase strongly for 23 pro-

teins at day 10 (in the top 25th percentile) as well as 30 proteins 

at day 14 (Figure 3.2; as opposed to 3.3 by chance, Table 3.1). 

Consequently, these latter proteins could also be responsible for 

seeding Aβ. At day 10 and day 14, 65 and 107 late-aggregating 

proteins were detected, respectively. Of these, 42 proteins (as 

opposed to 3.3 by chance, Table 3.1) were prone to aggregate 
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strongly at both later ages compared to day 6. As seeding activity 

appears in day 10 animals, these late-aggregating proteins are 

prime candidates.  

To identify functional groups associated with the early- and late-

aggregating proteins, an Ingenuity Pathway Analysis (IPA) was 

performed with the human homologs. Then, pathways that were 

also significantly associated with the minor components in AD 

pathological aggregates were investigated. This analysis high-

lighted eight pathways that tend to harbor both late-aggregating 

proteins and disease-related aggregate components, namely: 

proteins related to 14-3-3 mediated signaling, PI3K/AKT signal-

ing, ERK/MAPK signaling, Calcium Transport I as well as pro-

teins related to the ubiquitination pathway, aryl hydrocarbon 

receptor signaling, NRF2-mediated oxidative stress response and 

xenobiotic metabolism signaling (Table 3.2). The latter four cat-

egories were also significantly associated with early-aggregating 

proteins. These results predict that interactions between Aβ or 

tau with these pathway components could potentially induce or 

accelerate their aggregation. 

In addition to the pathway analysis, late-aggregating proteins 

that were also minor components in AD were identified. At day 

10 and/or day 14 the homologs of the following ten proteins 

were identified in amyloid plaques and/or NFTs: PAR-5, UBA-1, 

SPC-1, LMN-1, NEX-3, HIS-1, NKB-3, FRM-1, MCA-3 and GPD-1 

(Table 3.3). Importantly, seeding activity of the late-aggregating 

protein, 14-3-3 (human homolog of PAR-5), has already been 

demonstrated both in vitro and in cell culture, whereby 14-3-3 

initiates tau fibril formation (Hernandez, Cuadros, and Avila 

2004; Li and Paudel 2016; Qureshi et al. 2013). Western blot 

analysis confirmed that PAR-5 was highly prone to aggregate at 

day 10 compared to day 6 (3.2 fold, Figure 3.3). Conversely, six 
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minor components of amyloid plaques and/or NFTs were among 

the early-aggregating proteins in C. elegans. Of note, only one of 

these early-aggregating minor components, GST-1, continued to 

aggregate strongly at day 10 and day 14 and therefore could also 

play a role in Aβ seeding.  

To summarize, this quantitative proteomic analysis of the 

C. elegans aggregating proteome at different ages brings insight 

into which minor components of pathological protein aggregates 

could directly seed disease-associated aggregation. 

 

Figure 3.2: Schematic summarizing numbers of early- and late-
aggregating C. elegans proteins detected by quantitative mass spectrome-
try (reproduced from Frontiers article). Proteins with the highest aggre-
gation propensity at day 10 or day 14 are defined as proteins quantified in 
the top 25th percentile compared to day 6. Proteins with the highest ag-
gregation propensity at day 6 are defined as proteins quantified in the top 
25th percentile compared to day 2. Quantification was performed with two 
biological replicates and all numbers represent only proteins in the top 
25th percentiles from both replicates. *Proteins also among the 137 pro-
teins with the highest aggregation propensity at day 14 (in top right box). 
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Table 3.1: Comparison of actual and expected numbers of proteins in the 
top 25th percentile of two biological replicates (reproduced from Frontiers 
article). 

Proteins ranked in  
(two replicates) 

actual expected# 
Chi-
Square 
Test* 

Top 25th percentile of day 6 133 52.8 
4.38E-30 

Not in top 25th percentile of day 6 712 792.2 

Top 25th percentile of day 10 88 52.8 
5.71E-07 

Not in top 25th percentile of day 10 757 792.2 

Top 25th percentile of day 14 137 52.8 
5.45E-33 

Not in top 25th percentile of day 14 708 792.2 

Top 25th percentile of day 6 and 
day 10 

23 3.3 
1.71E-27 

Not in top 25th percentile of day 6 
and day 10 

822 841.7 

Top 25th percentile of day 6 and 
day 14 

30 3.3 
4.49E-49 

Not in top 25th percentile of day 6 
and day 14 

815 841.7 

Top 25th percentile of day 10 and 
day 14 

42 3.3 
4.59E-101 

Not in top 25th percentile of day 10 
and day 14 

803 841.7 

 

#Calculation: the expected probability of proteins to be ranked in the top 
25th percentile of two replicates is 1/16. In addition the expected 
probability of these proteins to be ranked in the top 25th percentile of two 
different days is 1/256. 
* Chi-Square Test has been performed with Excel formula CHITEST. 
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Table 3.2: Ingenuity Canonical Pathways identified in the set of late- or 
early-aggregating proteins and their association with minor components 
found in AD pathological aggregates (highlighted in grey)  (–log(p-value) 
> 2) (reproduced from Frontiers article). 

 -log(p-value) 

Ingenuity Canonical  
Pathways 

Late-
aggregating 
proteins 

Minor  
components 

Protein Ubiquitination  
Pathway 

6.82 2.57 

Aryl Hydrocarbon Receptor 
Signaling 

4.93 3.19 

Glutathione-mediated Detoxifi-
cation 

4.75  

EIF2 Signaling 4.54  

tRNA Charging 4.23  

mTOR Signaling 3.96  

LPS/IL-1 Mediated Inhibition of 
RXR Function 

3.67  

Regulation of eIF4 and p70S6K 
Signaling 

3.66  

PI3K/AKT Signaling 3.23 5.37 

ERK/MAPK Signaling 3.11 3.18 

Citrulline Biosynthesis 3.09  

Calcium Transport I 2.89 7.47 

Death Receptor Signaling 2.79  

Superpathway of Citrulline 
Metabolism 

2.59  

NRF2-mediated Oxidative Stress 
Response 

2.38 4.96 

Xenobiotic Metabolism  
Signaling 

2.31 2.92 
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14-3-3-mediated Signaling 2.25 13.4 

Endoplasmic Reticulum Stress 
Pathway 

2.24  

Glutathione Redox Reactions I 2.20  

Lipid Antigen Presentation by 
CD1 

2.06  

Ingenuity Canonical  
Pathways 

Early-
aggregating 
proteins 

Minor  
components 

EIF2 Signaling 5.68  

Protein Ubiquitination 
Pathway 

5.22 2.57 

Cell Cycle Control of Chromoso-
mal Replication 

4.87  

Aryl Hydrocarbon Receptor 
Signaling 

4.78 3.19 

NRF2-mediated Oxidative Stress 
Response 

4.01 4.96 

Creatine-phosphate Biosynthe-
sis 

3.84  

Glutathione-mediated Detoxifi-
cation 

3.73  

Leucine Degradation I 3.29  

Xenobiotic Metabolism  
Signaling 

3.08 2.92 

Unfolded protein response 2.93  

eNOS Signaling 2.52  

Aldosterone Signaling in Epithe-
lial Cells 

2.42 2.05 

Glutamine Biosynthesis I 2.42  

Prostate Cancer Signaling 2.25  

Choline Degradation I 2.12  
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Table 3.3: Minor components of AD pathological aggregates identified as 
late- or early-aggregating proteins in C. elegans (reproduced from Fron-
tiers article). 

C. elegans  
entry name 

C. elegans  
Uniprot 
ID 

C. elegans  
gene 
name 

Homo sapiens  
protein name 

Late-
aggregating 
proteins 

   

14331_CAEELx,† P41932 par-5 14-3-3 proteins ß/α; δ 

C1P636_CAEELx,* C1P636 uba-1 
Ubiquitin-like modifier-
activating enzyme 1  

G4S034_CAEELx,* G4S034 spc-1 
Spectrin α-chain, non-
erythrocytic protein 1 

LMN1_CAEELx,* Q21443 lmn-1 Lamin A/C 

Q27473_CAEEL‡,* Q27473 nex-3 Annexin A5 

H4_CAEEL‡ P62784 his-1 
H4 histone family,  
member C 

AT1B3_CAEEL‡ Q9XUY5 nkb-3 
Sodium/potassium-
transporting ATPase 
beta-1 chain 

G5EEG8_CAEELx G5EEG8 frm-1 Band 4.1-like protein 1 

Q95XP6_CAEELx Q95XP6 mca-3 
Plasma membrane Ca++-
transporter ATPase 1 

G3P1_CAEEL‡ P04970 gpd-1 
Glyceraldehyde-3-
phosphate dehydrogen-
ase 

Early-
aggregating 
proteins 

   

GSTP1_CAEELx,+ P10299 gst-1 
Glutathione S-
transferases Mu 3, Mu 5  

DYHC_CAEELx,† Q19020 dhc-1 
Cytoplasmic dynein 1 
heavy chain 1 

HSP90_CAEELx,† Q18688 daf-21 Protein HSP90-β 



Results 
 

64 
 

G5ECP9_CAEELx G5ECP9 vab-10 Plectin  

HSP7A_CAEEL‡ P09446 hsp-1 
Heat shock cognate 71 
kDa protein 

KARG2_CAEEL‡ Q27535 ZC434.8 Creatine kinase B-type 

x Minor components identified in both amyloid plaques and NFTs in 
(Ayyadevara, Balasubramaniam, Parcon, et al. 2016). 
† Minor components identified in amyloid plaques in (Liao et al. 2004). 
‡ Minor components identified in NFTs in (Wang et al. 2007). 
* Minor components identified as late aggregating proteins in both day 10 
and day 14. 
+ Minor component identified as early-aggregating protein with a high 
increase in aggregation at both day 10 and day 14. 

 

Figure 3.3: PAR-5 (14-3-3) is highly prone to aggregate at day 10 (repro-
duced from Frontiers article). Representative immunoblot detecting PAR-
5 in insoluble protein extracts from different ages of C. elegans. Right: 
Immunoblot quantification of PAR-5. Band intensities were normalized to 
day 14. N= 4 (biological repeats), SEM depicted. 

3.1.4 Motility analysis and paralysis assay with C. elegans 

overexpressing Aβ in the body-wall muscle 

3.1.4.1 Motility measurements of C. elegans overexpressing Aβ  

In C. elegans, Aβ toxicity in the body-wall muscle causes the ani-

mals to paralyze (Link 1995; McColl et al. 2012). To investigate 

whether a knockdown of early-aggregating proteins that contin-

ued to aggregate strongly at day 10 and day 14 would rescue the 

reduced motility of Aβ overexpressing worms, motility meas-
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urements of worms subjected to different RNAi’s were per-

formed. When comparing wild-type (N2) with Aβ overexpressing 

worms by eye at day 5 (when Aβ overexpressing worms started 

to paralyze at 20°C), worms overexpressing Aβ were obviously 

slower. The motility measurement with the Parallel Worm 

Tracker software did not confirm this observation (Figure 3.4A). 

Next, Aβ overexpressing worms were subjected to two different 

control RNAi’s (GFP and L4440) and RNAi against two different 

early-aggregating proteins with a high increase in aggregation at 

both day 10 and day 14, namely LEC-5 and NEX-1. Animals were 

kept at 20°C and the motility measurements were performed at 

different days (between day 3 and day 6, Figure 3.4B) to analyze 

if a knockdown of LEC-5 or NEX-1 proteins lead to a detectable 

improvement of the motility. With age Aβ overexpressing worms 

were getting slower, which can be demonstrated by the compari-

son of day 4 to day 6 old worms after exposure to GFP RNAi. This 

result could not be confirmed with the second control RNAi. The 

worms subjected to L4440 RNAi showed a significant increase in 

their speed between day 4 and day 6. Also the knockdown of 

NEX-1 resulted to a significant increase of the motility between 

day 3 and day 4 and day 3 and day 6, but no increase could be 

observed when day 4 and day 6 were compared. The knockdown 

of LEC-5 did not lead to a significant difference in motility be-

tween day 3 and day 6. Because the exposure of worms to two 

different control RNAi’s led to contrary results they were not 

compared with the other worms. All measurements were per-

formed with Aβ overexpressing worms kept at 20°C to delay the 

onset of paralysis. But the motility defect was not clear enough 

with age to be detectable by the software.  

Changes in aggregation between day 6 and day 10 are responsi-

ble for seeding, as demonstrated in Figure 3.1C. Therefore, the 
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question whether early-aggregating proteins that continued to 

aggregate strongly at day 10 and day 14 would influence the 

motility of Aβ overexpressing worms arose. The knockdown of 

these proteins and the subsequent motility measurements with 

the Parallel Worm Tracker software did not contribute to answer 

this question.  

 

Figure 3.4: Motility measurements of Aβ overexpressing worms (Aβ OE) 
subjected to different RNAi bacteria.  
A: Average speed with respective SEM of N2 worms and Aβ overexpressing 
worms subjected to OP50. With both strains videos were taken two times 
for 10 min and two times for 20 min at day 5 and the average speeds were 
calculated. Two-tailed p-value: N2 vs. Aβ OE not significant.  
B: Average speed with respective SEM of Aβ overexpressing worms sub-
jected to control RNAi (GFP, L4440) or RNAi against two different early-
aggregating proteins with a high increase in aggregation at both day 10 
and day 14 (LEC-5 or NEX-1). Videos were taken 10 times for 30 s with 



Results 

 

67 
 

30 s pauses in between at different days and the average speed was calcu-
lated for each day and each condition. One-way ANOVA: GFP day 4 vs. day 
6 ****p< 0.0001, L4440 day 4 vs. day 6 **p= 0.0032, NEX-1 day 3 vs. day 4 
*p= 0.0427, NEX-1 day 3 vs. day 6 **p= 0.0027.  

3.1.4.2 Paralysis assay of C. elegans overexpressing Aβ and  

PAR-5  

Because the knockdown of aggregating proteins and the subse-

quent motility analysis could not contribute to investigate 

whether aggregating proteins influence Aβ toxicity, an overex-

pression of the late-aggregating protein PAR-5 (C. elegans homo-

log of 14-3-3) was performed. Previously it has been shown that 

a knockdown of PAR-5 rescued paralysis induced by Aβ 

(Ayyadevara, Balasubramaniam, Parcon, et al. 2016). This led to 

the speculation that overexpression of the aggregation-prone 

protein PAR-5 would accelerate the rate of paralysis. Indeed, a 

significant increase in the number of double transgenics para-

lyzed compared to those solely expressing Aβ was observed in 

three biological replicate experiments (Figure 3.5A and data not 

shown). This effect cannot be explained by a general toxicity due 

to PAR-5 overexpression as these animals displayed negligible 

levels of paralysis in the absence of Aβ. Additionally, transgenics 

solely overexpressing Aβ were stained with K114, a Congo red 

analogue that stains amyloid structures (Zhuang et al. 2001), to 

show the formation of Aβ amyloids in the body-wall muscle 

(Figure 3.5B). As already mentioned, seeding activity of 14-3-3 

was demonstrated previously. The data presented here con-

firmed that 14-3-3 accelerated Aβ toxicity. 
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Figure 3.5: Late-aggregation-prone protein PAR-5 (14-3-3) accelerates Aβ 
toxicity in C. elegans. 
A: Paralysis levels of worms that overexpress PAR-5 (PAR-5 OE), Aβ (Aβ 
OE) or both (double transgenic, Aβ OE + PAR-5 OE) (reproduced from 
Frontiers article). Shown are the percentages of worms paralyzed at 
different days. The numbers in the bars represent the total numbers of 
worms analyzed. Fisher’s exact test: Aβ OE vs. Aβ OE + PAR-5 OE, day 3 
*p= 0.032 and day 4 *p= 0.019. 
B: Staining of Aβ aggregates. Paralyzed worms overexpressing Aβ were 
stained at day 2 with K114. Left: Head of a paralyzed worm with Aβ ag-
gregates in the body-wall muscle (box). Right, zoom: Arrows highlight Aβ 
aggregates. Scale bars: Left 10 µm, right: zoom, 3 µm. 
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3.1.5 Insoluble proteins show an increase of specific post-

translational modifications with age in C. elegans 

A number of post-translational modifications (PTMs) have been 

identified in disease-associated aggregates, and a recent study 

detected carbonylation in the mouse age-dependent insoluble 

proteome (Tanase et al. 2016). Therefore, it is possible that 

PTMs occurring with age influence the seeding ability of late-

aggregating proteins as well as early-aggregating proteins that 

continue to become more insoluble with age. Western blot anal-

ysis confirmed that detergent-insoluble proteins show an in-

crease of ubiquitination (Figure 3.6A, right) and phosphorylation 

of tyrosines (Figure 3.6B, right) with age in C. elegans. The in-

crease in PTMs was stronger compared to the increase in insolu-

bility with age for all proteins, shown by the total protein stain-

ing (Figure 3.6A and B, left part). Regarding the soluble proteins 

no obvious differences in PTMs between young (day 2) and old 

(day 14) worms can be detected (Figure 3.6A and B, right part). 

These results were confirmed with a second repeat with protein 

extracts from another timeline. Additionally, dimethylation of 

arginines, citrullination (irreversible conversion of arginine into 

citrullin) and phosphorylation of serines and threonines were 

analysed, but no differences with age could be detected. Howev-

er, only a few faint bands were visible (data not shown).  
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Figure 3.6: Insoluble proteins show an increase of post-translational modi-
fications (PTMs) with age in C. elegans.  
Left: Blot of soluble and insoluble protein extracts from young (day 2) and 
old (day 14) worms stained with Sypro Ruby protein blot stain. Right: 
Immunoblot detecting A: ubiquitinated proteins (mono- and poly-
ubiquitin) or B: proteins with phosphorylated tyrosine in soluble and 
insoluble protein extracts from young (day 2) and old (day 14) worms. 
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3.1.6 Aged mouse brains contain protein aggregates that 

seed Aβ aggregation in vitro 

To confirm that insoluble proteins present in mammals also have 

the potential to seed Aβ aggregation, the same in vitro assay as 

described above was performed with homogenates of wild-type 

mouse brains. Of note, previous studies did not detect seeding 

activity in aged wild-type mouse brains (Fritschi et al. 2014; 

Nagarathinam et al. 2013). However, total brain homogenates 

were tested without any enrichment for insoluble proteins. Here, 

detergent-insoluble protein extracts from young (2-3 months) 

and aged (18-20 months) mouse brains were measured. Com-

pared to young extracts, insoluble protein extracts from aged 

mouse brains led to a significant decrease of the lag time preced-

ing Aβ aggregation (Figure 3.7, p= 0.0073). No further increase 

in seeding potential was detected when examining insoluble 

extracts from 25-28 month old mice (Figure 3.7, p= 0.0067 com-

pared to 2-3 months). This is consistent with the similar seeding 

activity of insoluble protein extracts from late-middle aged and 

old C. elegans. For comparison, the insoluble extract from an 

APP23 transgenic mouse, which contains Aβ seeds, and the solu-

ble extract from an aged wild-type mouse brain were included. 

Collectively, these results demonstrate, that cross-seeding of Aβ 

aggregation by age-dependent protein aggregation is conserved 

from C. elegans to mammals. 
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Figure 3.7: Insoluble protein extracts from aged wild-type mouse brains 
seed Aβ aggregation in vitro (reproduced from Frontiers article). Lag 
times measured for Aβ aggregation in the presence of 0.001 μg detergent-
insoluble protein extracts from wild-type mouse brains at different ages. 
Mean values (red lines) with respective SEM of three biological replicates 
(each including five technical replicates) from on average 2.7 month-, 18.7 
month- and 26.7 month-old mouse brain insoluble extracts. Lag time of an 
18 month-old mouse brain soluble extract (sol, negative control) and a 20 
month-old mouse brain insoluble extract from an APP23 transgenic 
mouse (APP23, positive control). One-way ANOVA: 2.7 months vs.  18.7 
months **p= 0.0073, 2.7 months vs.  26.7 months **p= 0.0067. 
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3.1.7 Formation of Aβ plaques in APP23 transgenic mouse 

brains after injection of insoluble proteins from aged 

mouse brains  

To analyze whether insoluble proteins can also seed Aβ aggrega-

tion in vivo, detergent-insoluble proteins from young or old wild-

type mouse brains were injected into the hippocampus of young 

(3 months of age) APP23 transgenic mice. In transgenic mouse 

models, injection of whole brain extracts containing Aβ seeds is 

sufficient to lead to the formation and spreading of Aβ plaques 

(Kane et al. 2000; Meyer-Luehmann et al. 2006), whereas after 

injection of whole brain extracts from control patients without 

AD or wild-type mice no Aβ plaques were observed. An extract 

containing an enrichment of insoluble proteins from wild-type 

mouse brains was not analyzed so far. Six months after injection 

of detergent-insoluble proteins from 18.3 month-old wild-type 

mouse brains, the formation of Aβ plaques can be observed in 

three out of five mice (Figure 3.8, left). Injection of insoluble 

proteins from young mouse brains (2.5 months) did not lead to 

plaque formation (Figure 3.8, right). Only in one mouse a possi-

ble plaque formation can be seen (Figure 3.8 zoom, blue arrow). 

These results suggest, that insoluble proteins from old wild-type 

mouse brains seed Aβ aggregation in vivo although only a few 

plaques were observed.  
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Figure 3.8: Insoluble protein extracts from aged wild-type mouse brains 
seed Aβ aggregation in vivo. 
Left: Hippocampi of five APP23 transgenic mice injected with insoluble 
protein extracts from 18.3 month old mice.  
Middle: Zoom, formation of Aβ plaques. Red arrows indicate plaques de-
veloped after injection of insoluble protein extracts from old mice, blue 
arrow indicates possible plaque formation after injection of insoluble 
protein extracts from young mice. 
Right: Hippocampi of four APP23 transgenic mice injected with insoluble 
protein extracts from 2.5 month old mice (control).  
All mice were three months of age when injected and were histologically 
analyzed six months after injection. 
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3.1.8 Identification of insoluble proteins in wild-type mouse 

brains 

Because of the demonstrated seeding potential of proteins that 

were highly insoluble with age, a quantitative mass spectrometry 

study was performed to identify the change in aggregation with 

age of the insoluble proteins in wild-type mouse brains. Deter-

gent-insoluble proteins of three young (2.7 months on average) 

and three old (18.7 months on average) wild-type mouse brains 

were probed with heavy or light dimethyl-labeling to analyze 

whether each protein shows an increase or decrease in insolubil-

ity with age (total protein staining of the analyzed protein ex-

tracts is shown in Figure 3.9). During one measurement insolu-

ble protein extracts from one young mouse brain and from one 

old mouse brain were compared. 617 quantifiable aggregation-

prone proteins were identified in all three biological replicates. 

Figure 3.10A shows a comparison of the log2-transformed ratios 

of insoluble proteins from young versus old mice between each 

replicate. Because the ratios are normalized, only changes in 

insolubility with age versus the mean change can be analyzed. 

With the data presented here, just a few changes compared to 

the mean can be observed. To analyze if the replicates can be 

correlated to each other, the log2-transformed ratios of each 

insoluble protein from young mice versus old mice of two repli-

cates were plotted against each other (Figure 3.10B-D). Inde-

pendent of which replicates were compared no close correlation 

could be detected (Spearman r< 0.15). Already the total protein 

staining of the different insoluble protein extracts shows a high 

variability within the young mice and the old mice (Figure 3.9). 

Comparing two young mice with two aged mice, an increase in 

insolubility with age can be detected (Figure 3.9, left), but be-
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tween another young and old mouse a decrease can be seen 

(Figure 3.9, right).  

We identified 14 proteins within the top 25th percentile in all 

three replicates, i.e. with the highest change in aggregation with 

age. To analyze which proteins have the potential to seed Aβ 

aggregation, a knockdown of homologs of these mouse brain 

proteins in C. elegans in Aβ overexpressing worms and a subse-

quent motility analysis should be performed. 12 C. elegans homo-

logs were identified. Interestingly, one of these proteins was 

TDP-1 (C. elegans homolog of TDP-43). TDP-43 has already been 

shown to cross-seed Aβ (Fang et al. 2014). But immunoblot de-

tection with a TDP-43 antibody did not confirm the change in 

aggregation with age (data not shown). To analyze if a knock-

down of homologs of mouse brain proteins with the highest in-

crease in insolubility with age could influence the motility of Aβ 

overexpressing worms, a first experiment was performed with 

different control RNAi’s and two different motility analysis pro-

grams (Appendix Table 6.1). During the comparison of minimum 

and maximum speeds of the worms subjected to control RNAi’s a 

big difference within one control can be detected (for example a 

six-fold difference between minimum and maximum speed for 

HER-1 independently of the analysis program). For some videos 

only a few worms could be detected and analyzed by the pro-

grams. Even the adjustment of the parameters did not improve 

the analysis. Because the measurements with different control 

RNAi’s were not reproducible, the motility analysis was not con-

tinued and the question whether proteins with the highest 

change in insolubility with age in mouse brains could be respon-

sible for seeding Aβ aggregation could not be answered.   
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Figure 3.9: Total protein staining of insoluble protein extracts from young 
and old mice stained with Sypro Ruby protein blot stain. 
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Figure 3.10: Quantitative mass spectrometry results of insoluble proteins 
of brains from young (2.7 months) versus old (18.7 months) mice. Three 
replicates with one insoluble protein extract from a young mouse brain 
and one insoluble protein extract from an old mouse brain each were 
measured.  
A: Log2 ratio of insoluble proteins from young mouse brains versus old 
mouse brains for each replicate. Each point represents the ratio of one 
protein. 
B-D: Correlation of log2 ratio of insoluble proteins from young mouse 
brains versus old mouse brains between the different replicates.  Each 
point represents the ratio of one protein. B: Spearman r= 0.1475, C: 
Spearman r= -0.1454, D: Spearman r= 0.1349.  
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3.1.9 Summary 

To summarize, it was shown in 3.1 that age-dependent protein 

aggregates can initiate Aβ aggregation and that this cross-

seeding is conserved from nematodes to mammals. One of the 

late-aggregating proteins that is also a minor component in AD 

pathological aggregates, 14-3-3 (PAR-5), was demonstrated to 

enhance paralysis of worms overexpressing Aβ and PAR-5. 

Moreover, an increase in specific PTMs was detected in insoluble 

proteins with age in C. elegans.  

3.2 Investigation whether rapidly-aggregating proteins 

seed the aggregation of other proteins 

In parallel to the finding that age-dependent protein aggregates 

seed the aggregation of Aβ, as demonstrated in 3.1, our goal was 

to investigate whether rapidly-aggregating proteins could lead to 

the aggregation of other non-disease related proteins in C. ele-

gans. The idea was to chemically crosslink an early-aggregating 

protein, identified in 3.1.3, together with its co-aggregating pro-

teins, to purify them and to identify them by mass spectrometry.  

During the preparation of the C. elegans samples for the mass 

spectrometry analysis and the evaluation of the mass spectrome-

try results described in 3.1, a tandem-affinity purification strate-

gy in denaturing conditions was established to isolate and identi-

fy rapidly-aggregating proteins together with their co-

aggregates. The aggregation-prone protein RHO-1, a Rho GTPase 

orthologous to transforming protein RhoA in mammals, is 

known to aggregate fast when it is overexpressed in C. elegans 

(already at day 1). RHO-1 was tagged with a tandem-affinity tag 

combining a histidine tag (hexa-histidine) for Nickel affinity 

purification with a biotinylation sequence (avidin tag) for subse-
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quent avidin purification (Schaffer et al. 2010; Tagwerker et al. 

2006). The avidin tag is an artificial target motif for biotinylation 

by the E. coli biotin holoenzyme synthetase birA (Schaffer et al. 

2010). To be able to purify protein aggregates, denaturing condi-

tions (8 M urea) were needed. Therefore, the tandem-affinity tag 

was chosen, because it tolerates two-step purification under fully 

denaturing conditions (Tagwerker et al. 2006). The first purifica-

tion step was shown to efficiently remove endogenous biotinyl-

ated proteins. With the second purification step with avidin 

beads, highly purified samples should be achieved because of the 

high affinity between biotin and avidin. The avidin tag published 

by (Schaffer et al. 2010) was used for the study presented here, 

because they demonstrated a succesfull purification of proteins 

with the avidin tag from C. elegans lysates and the subsequent 

mass spectrometry analysis. Additionally, the worms expressed 

birA under the same promoter as the tagged protein. Therefore, 

tissue specificity is obtained and proteins could be selectively 

purified from a target cell type. To collect large numbers of indi-

viduals, C. elegans overexpressing the tagged RHO-1 together 

with the biotinylation enzyme birA were cultured in liquid. We 

postulated that during aging the rapidly-aggregating protein 

(potential seeding protein) co-aggregates with other proteins. To 

identify the co-aggregating proteins, our plan was to remove the 

detergent-soluble proteins from a homogenate of worms over-

expressing the tagged RHO-1 and chemically crosslink the deter-

gent-insoluble proteins (Figure 3.11). RHO-1 together with the 

crosslinked proteins would then be solved in urea and purified 

with Nickel affinity chromatography to be able to identify the 

proteins by mass spectrometry in the end.  
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Figure 3.11: Schematic showing the procedure of chemical crosslinking of 
rapidly-aggregating proteins (red) (tagged with a histidine-avidin tag) 
with their co-aggregating proteins (blue), the subsequent purification, 
digestion with trypsin and identification of tryptic peptides with mass 
spectrometry.  

3.2.1 Purification of RHO-1 without crosslinking  

3.2.1.1 Purification with imidazole 

To establish the purification protocol for rapidly-aggregating 

proteins, RHO-1 without crosslinking was purified with Nickel 

affinity chromatography using a high imidazole concentration in 

the elution buffer as it is recommended for the purification with 

the nickel column. Figure 3.12 shows an immunoblot of the first 

purification of RHO-1 detecting biotinylated avidin of the histi-

dine-avidin tag of RHO-1 in the fraction, that was loaded onto the 

column (load), in the fractions that were collected during the 

sample was loaded (flow through) and during the column was 

washed (wash) and in the elution fractions (number three to 



Results 
 

82 
 

number nine). Because a high protein amount of RHO-1 can be 

detected in the flow through fractions, a lot of RHO-1 did not 

bind to the column. One possibility is that the protein amount 

was too high so that the column could not bind additional pro-

teins anymore. Moreover, it can be seen that RHO-1 was washed 

away from the column, which means that it was not bound 

properly. Performing the elution with a linear gradient to a high 

imidazole concentration resulted to a broad elution peak with 

many fractions containing RHO-1. It seemed like RHO-1 was 

continuously washed and eluted from the column. Most of RHO-1 

was eluted with 28% elution buffer (145 mM imidazole, fraction 

number E6).  
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Figure 3.12: Purification with Nickel affinity chromatography of RHO-1 
with histidine-avidin tag. Elution was performed with a linear gradient to 
500 mM imidazole. Shown is an immunoblot detecting biotinylated avidin 
in the collected fractions. Load: Insoluble protein extract from C. elegans 
overexpressing RHO-1 that was loaded on the column. Flow through: First 
two out of 20 fractions that were collected during the extract was loaded 
on the column. Wash: First two out of 10 fractions that were collected 
during the column was washed. Elution: Seven out of 20 eluted samples. 
E3 to E9: Elution fractions number three to nine. Arrow: RHO-1 with histi-
dine-avidin tag. 

3.2.1.2 Purification under harsh conditions 

Because the first purification of RHO-1 with a high imidazole 

concentration in the elution buffer led to a broad elution of RHO-

1, a different purification was used to establish the purification 

protocol for rapidly-aggregating proteins. RHO-1 without cross-

linking was purified with Nickel affinity chromatography using a 

harsh elution buffer published by (Tagwerker et al. 2006). They 

state that stringent purification conditions remove non-
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crosslinked, interacting proteins. Therefore, unspecific binding is 

reduced. Figure 3.13A shows an immunoblot with the collected 

fractions of the purification of RHO-1 with the published buffers. 

In Figure 3.13B a silver stained SDS gel of another purification 

with the same conditions can be seen. Because there is less RHO-

1 in the flow through fractions visible, a lot of RHO-1 was bound 

to the column. Moreover, most of RHO-1 can be eluted in only 

two fractions with the harsh elution buffer. The elution fractions 

were very pure, because there were only a few other faint bands 

visible (Figure 3.13B). Most of RHO-1 was eluted with 83% or 

78% elution buffer (Figure 3.13A fraction number E17 or Figure 

3.13B fraction number E16). In general, this second purification 

protocol seemed to be useful to purify rapidly-aggregating pro-

teins. 
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Figure 3.13: Purification with Nickel affinity chromatography of RHO-1 
with histidine-avidin tag. Elution was performed with a linear gradient 
and harsh conditions (elution buffer with 2% SDS, 10 mM EDTA, 100 mM 
Tris pH 4.3). Load: Insoluble protein extract from C. elegans overexpress-
ing RHO-1 that was loaded on the column. Flow through: First two out of 
20 fractions that were collected during the extract was loaded on the 
column. Elution: Two out of 20 eluted samples. Arrow: RHO-1 with histi-
dine-avidin tag. 
 A: Immunoblot detecting biotinylated avidin in the collected fractions. 
E16, E17: Elution fractions number 16 and 17.  
B: Silver stained SDS gel with collected fractions of another purification. 
E15, E16: Elution fractions number 15 and 16. 

3.2.2 Purification of RHO-1 crosslinked with 0.4% Para-

Formaldehyde (PFA) 

After the establishment of the purification protocol under harsh 

conditions, RHO-1 was crosslinked with 0.4% Para-Formaldehye 

(PFA), which is a common crosslinker and very reactive towards 
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primary amines. But two different problems appeared. First, 

crosslinked RHO-1 could not be eluted from the column (Figure 

3.14A and B). The immunoblot detection shows only faint bands 

in the elution fractions (Figure 3.14A). With a silver staining only 

some bigger proteins (~ 60 kDa) are visible (Figure 3.14B). Even 

with the harsh elution buffer, RHO-1 was still bound to the col-

umn. 

To investigate what happened with RHO-1 after crosslinking, 

resolving in urea and centrifugation, the final pellet (not solubil-

ized by urea) was compared with the final pellet without cross-

linking of RHO-1 and the following second problem was detect-

ed: A lot of RHO-1 remained in the urea-insoluble pellet fraction 

compared to the fraction without crosslinking (Figure 3.14C). 

Therefore, it is likely that most of RHO-1 becomes so insoluble 

after crosslinking that it cannot be disrupted by urea.  
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Figure 3.14: Purification with Nickel affinity chromatography of RHO-1 
with histidine-avidin tag crosslinked with 0.4% PFA. Elution was per-
formed with a linear gradient and harsh conditions (elution buffer with 
2% SDS, 10 mM EDTA, 100 mM Tris pH 4.3). A-B: Load: Crosslinked insol-
uble protein extract from C. elegans overexpressing RHO-1 that was load-
ed on the column. Flow through: First two out of 20 fractions that were 
collected during the extract was loaded on the column. Elution: Four out 
of 20 eluted samples. Arrow: RHO-1 with histidine-avidin tag. 
 A: Immunoblot detecting biotinylated avidin in the collected fractions.   
B: Silver stained SDS gel with collected fractions. 
C: Immunoblot detecting biotinylated avidin in the urea-insoluble pellet 
from the insoluble protein extraction after crosslinking and centrifugation 
(+) or in the urea-insoluble pellet without crosslinking (-).  

3.2.3 Purification of RHO-1 crosslinked with Disuccinimidyl 

glutarate (DSG) 

Because the crosslinking with PFA prevented the solubilisation 

of aggregated RHO-1 proteins in urea, we investigated whether 

another crosslinker would be more appropriate. Disuccinimidyl 

glutarate (DSG) reacts with primary amines on the N-termini and 

ε-amine of lysine residues forming an amide bond. Concentra-

tions between 0.25 mM and 0.0025 mM were used. The cross-

linked detergent-insoluble protein extracts and the urea-
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insoluble pellets were analysed with an immunoblot, shown in 

Figure 3.15. The lowest protein amount of detergent-insoluble 

proteins and the highest protein amount in the urea-insoluble 

pellet were detected in the sample with the highest DSG concen-

tration suggesting too high crosslinking similar to the results 

with PFA. When comparing the sample without crosslinking with 

the samples with low DSG concentrations, no difference can be 

seen, which raised the question whether the crosslinking did not 

work with low concentrations. Therefore, a purification was 

performed with the extract crosslinked with the highest concen-

tration (0.25 mM DSG), but no improvement could be detected in 

comparison to the treatment with PFA. Nothing could be seen in 

the elution fractions, which suggests that RHO-1 could not be 

eluted from the column (Figure 3.16) and there was still a high 

amount of RHO-1 in the urea-insoluble pellet fraction, as already 

shown in Figure 3.15B.   
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Figure 3.15: Immunoblots detecting biotinylated avidin of histidine-avidin 
tag of crosslinked RHO-1. Arrow: RHO-1 with histidine-avidin tag. 
A: Detergent-insoluble protein extracts from C. elegans overexpressing 
RHO-1 after crosslinking with different concentrations of DSG or without 
crosslinking (-).  
B: Urea-insoluble pellet from the insoluble protein extraction after cross-
linking with different concentrations of DSG or without crosslinking (-).  
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Figure 3.16: Purification with Nickel affinity chromatography of RHO-1 
with histidine-avidin tag crosslinked with 0.25 mM DSG. Elution was per-
formed with a linear gradient and harsh conditions (elution buffer with 
2% SDS, 10 mM EDTA, 100 mM Tris pH 4.3). Shown is an immunoblot 
detecting biotinylated avidin in the collected fractions. Load: Crosslinked 
insoluble protein extract from C. elegans overexpressing RHO-1 that was 
loaded on the column. Flow through: First two out of 20 fractions that 
were collected during the extract was loaded on the column. Elution: Nine 
out of 20 eluted samples. Arrow: RHO-1 with histidine-avidin tag. 

3.2.4 Summary 

To summarize, RHO-1 aggregates solved in urea can be purified 

with Nickel affinity chromatography using a harsh elution buffer. 

After crosslinking of RHO-1 it could not be eluted from the col-

umn anymore under harsh conditions independent of the type 

and the amount of the crosslinker. Moreover, with increasing 

amounts of crosslinker most of RHO-1 becomes so insoluble that 
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it cannot be disrupted by urea. Because the problems with the 

crosslinking of RHO-1 could not be solved, we were not able to 

analyze co-aggregating proteins.  
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4 Discussion 

4.1 Identifying age-dependent heterologous seeds for 

amyloid-β aggregation 

This chapter includes a part of the discussion reproduced from: 

Groh N, Bühler A, Huang C, Li KW, van Nierop P, Smit AB, 

Fändrich M, Baumann F and David DC (2017) Age-Dependent 

Protein Aggregation Initiates Amyloid-β Aggregation. Front. 

Aging Neurosci. 9:138. Doi: 10.3389/fnagi.2017.00138 

The discovery of widespread protein aggregation with age has 

raised the question whether these assemblies influence disease-

related protein aggregation. The study described here demon-

strates, that a direct interaction between insoluble proteins from 

aged C. elegans or aged mouse brains initiates Aβ aggregation in 

vitro. These results could have important implications for our 

understanding of the initial pathogenesis steps in AD, particular 

in late-onset cases.  

A recent study revealed that wild-type spinal cord homogenates 

injected into transgenic mice expressing α-synuclein with the 

A53T mutation induced early α-synuclein pathology (Sacino et 

al. 2016). As cortical homogenates from wild-type mice had no 

effect, the authors speculate that higher levels of myelinated 

white matter in the spinal cord could be responsible. A myelin 

component is unlikely to be the seeding agent in the data pre-

sented here. First, a very stringent procedure was performed to 

isolate highly-insoluble proteins while removing the lipids using 

sucrose flotation and then high concentrations of strong deter-

gents including SDS. Second, brain homogenates without spinal 

cord, brain stem and cerebellum were used. Third, the effect 
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observed is age-dependent and therefore unlikely to be due to 

the basic composition of the brain tissue used. Fourth, numbers 

of oligodendrocytes decrease with age (Pelvig et al. 2008). 

Therefore, it is reasonable to conclude that the induction of Aβ 

seeding in the present study is due to highly-insoluble proteins 

rather than a lipid contaminant. In addition, the findings pre-

sented here cannot be explained by age-related changes in en-

dogenous Aβ (Mahler et al. 2015) as C. elegans lack homologs of 

BACE and no Aβ-like peptides have been detected. 

Previous in vitro studies have shown cross-seeding between Aβ 

and other disease-associated aggregating proteins including α-

synuclein, scrapie prion protein (PrPSc), human islet amyloid 

polypeptide (hIAPP), tau and TAR DNA-binding protein 43 (TDP-

43) (Fang et al. 2014; Morales, Moreno-Gonzalez, and Soto 2013; 

Vasconcelos et al. 2016). Interestingly, acetylcholinesterase, a 

minor component in Aβ plaques, was also shown to accelerate 

Aβ aggregation in vitro (Inestrosa et al. 1996). This raised the 

possibility that minor components in disease-associated aggre-

gates could also play a role in seeding the main component. Re-

cently, this hypothesis has gained support with the discovery 

that these minor components are significantly over-represented 

in the age-dependent insoluble proteome (David et al. 2010). 

Therefore, a large number of minor components are themselves 

aggregation-prone. The present data support the notion that 

misfolding and aggregation of minor components during age 

constitute heterologous seeding events for disease-associated 

aggregation. A recent study examined the expression levels of 

minor components found in plaques and NFTs in healthy brains 

(Freer et al. 2016). Interestingly, the regions known to be the 

first affected by NFT pathology in AD displayed higher levels of 

these minor aggregate components compared to non-affected 
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regions. Of the 16 minor components identified as late- or early-

aggregating proteins in the analysis presented here, seven out of 

10 evaluated in the study by (Freer et al. 2016) followed this 

pattern. Therefore, it is possible that higher levels of age-

dependent seeds accumulate in these regions and induce tissue-

specific vulnerability to disease protein aggregation in AD. Over-

all, it will be important to determine which proteins and in which 

locations have seeding activity.  

The presented proteomic timeline analysis highlights several 

minor plaque or NFT components that should be prime candi-

dates as initiators of Aβ or tau seeding events to be investigated 

in future studies. One of these candidates, 14-3-3, has already 

been confirmed as a heterologous seed for tau aggregation (Li 

and Paudel 2016). It was also shown that a knockdown of 14-3-3 

rescued Aβ toxicity in C. elegans (Ayyadevara, Balasubramaniam, 

Parcon, et al. 2016). Importantly, the present study shows that 

14-3-3 overexpression accelerated Aβ toxicity in a C. elegans 

model for Aβ aggregation. With a staining of these paralyzed 

double-transgenic worms with an amyloid-specific dye (K114) 

or an Aβ-specific antibody (6E10) no obvious difference in the 

abundance of Aβ was detected compared to the staining of 

worms solely overexpressing Aβ (data not shown). However, the 

staining was variable between worms in each strain. A quantifi-

cation of the fluorescence intensity was also not possible, be-

cause of the high background. To analyze whether paralyzed 

worms overexpressing Aβ together with the C. elegans homolog 

of 14-3-3 (PAR-5) have more Aβ aggregates than worms solely 

overexpressing Aβ and whether a co-localization of Aβ and PAR-

5 could be observed, the staining has to be improved. In addition, 

we did not see any obvious differences in the insoluble Aβ levels 

detected by western blot. For the future, the next step would be 
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to analyze whether insoluble protein extracts of worms overex-

pressing PAR-5 accelerate the aggregation of Aβ in vitro. Moreo-

ver, it would be interesting to perform an in vitro tau seeding 

assay to analyze whether detergent-insoluble protein extracts 

from aged wild-type individuals can also seed the aggregation of 

tau in vitro.   

Another possibility to explain why insoluble proteins become 

effective seeds with age is that changes in the structure of these 

proteins could occur. It would be interesting to analyze whether 

minor plaque or NFT components, which were identified as late-

aggregating proteins, are in an amyloid state.  

As some seeding proteins may not be sufficiently abundant to be 

detected in disease aggregates, it will be relevant to investigate 

the other late-aggregating proteins as well as early-aggregating 

proteins that continue to become more insoluble with age. With 

a first analysis presented here we wanted to investigate whether 

a knockdown of two different early-aggregating proteins that 

continued to aggregate strongly at day 10 and day 14 (NEX-1 and 

LEC-5) would rescue the reduced motility of Aβ overexpressing 

worms. But motility measurements at different time points of Aβ 

overexpressing worms subjected to RNAi against NEX-1 or LEC-5 

with the Parallel Worm Tracker software (Ramot et al. 2008) led 

to contrary results. Already for the controls different results 

were obtained, with one control showing a decrease in motility 

with age as expected and one showing an increase. The main 

problem was, that very often only a few worms were detected 

automaticaly by the software. This resulted to big differences in 

speed between the single tracks and less reproducibility. We 

tried to adjust the minimum and maximum size of an object that 

will be identified as a single worm, as suggested in the publica-

tion. But even the adjustment of the software parameters did not 
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improve the detection of the worms. The reason why we wanted 

to establish a motility assay was to be able to analyze a lot of 

different conditions in short time. For the assay Aβ overexpress-

ing worms were used that were kept at 20°C to delay the onset of 

paralysis, but the motility defect was not clear enough with age. 

The model is only useful to study paralysis rates after switching 

the worms to 25°C at day 1. Because the worms start to paralyze 

one day after the temperature shift, we are not able to see effects 

of preventing age-dependent protein aggregation by RNAi. Still, 

it would be interesting to continue with the analysis of late-

aggregating proteins (and also early-aggregating proteins that 

continue to become more insoluble with age). In particular, pro-

teins associated with the eight pathways highlighted by the IPA 

analysis should be promising candidates. For future studies a 

paralysis assay could be performed as demonstrated for the 

worms overexpressing Aβ and PAR-5. Therefore, double-

transgenic worms overexpressing Aβ and one of the candidates 

need to be generated to analyze whether an increase in paralysis 

can be seen. Then the respective protein would be a good candi-

date for a dangerous aggregating protein that seed Aβ aggrega-

tion.  

Moreover, the finding that aggregating proteins co-localize 

would help to demonstrate that they interact with each other. To 

analyze whether co-localization between Aβ and an inherent 

aggregating protein in C. elegans could be observed, strains ex-

pressing Aβ and a protein that is known to aggregate in the 

body-wall muscle should be generated. Preliminary results sug-

gest that low numbers of Aβ aggregates and variability between 

animals will make the analysis challenging (data not shown).  

Another point that should be considered is the possibility that 

post-translational modifications (PTMs) occurring with age in-
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fluence the seeding ability of late-aggregating proteins as well as 

early-aggregating proteins that continue to become more insolu-

ble with age. A number of PTMs have been identified in disease-

associated aggregates, and a recent study detected carbonylation 

in the mouse age-dependent insoluble proteome (Tanase et al. 

2016). (Tanase et al. 2016) determined, that PTMs are conduc-

tive of aggregate formation. PTMs could lead to unfolding of 

proteins and exposure of their hydrophobic sites which increas-

es their tendency to aggregate. In humans, phosphorylation of 

tyrosine residues, catalyzed by tyrosine kinases, plays a role in 

cellular signal transduction (as described in the human metabo-

lome database (Wishart et al. 2013)). Phosphorylation of tyro-

sines of proteins with age could change their structural stability 

leading to their unfolding and at least to their aggregation.  

Ubiquitination directs proteins for degradation by the pro-

teasome or by lysosomes (as described in 1.). Ubiquitinated un-

folded proteins often assemble in large aggregates. The present 

data demonstrate by western blot analysis, that insoluble pro-

teins from C. elegans show an increase in phosphorylation of 

tyrosines and ubiquitination with age. Moreover, three other 

PTMs were analyzed: dimethylation of arginines, citrullination 

(irreversible conversion of arginine into citrullin) and phosphor-

ylation of serines and threonines. No difference could be detect-

ed. However, only a few faint bands were visible. Either the 

western blot protocol has to be improved or different antibodies 

should be tried out. For the future it would be interesting to ana-

lyze whether other PTMs could be detected or whether these 

findings could be confirmed with the insoluble proteins of mouse 

brains. Besides the identification of changes in aggregation with 

age of the insoluble mouse brain proteome by mass spectrome-

try as discussed later, changes in PTMs with age could be ana-

lyzed. For the PTM analysis of insoluble proteins of young and 
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aged mouse brains by mass spectrometry, the results presented 

here cannot be used, because the methodology to analyze PTMs 

is different including an enrichment strategy of the proteins or 

peptides. 

Because of the demonstrated seeding potential of highly insolu-

ble proteins from aged mouse brains, we performed a quantita-

tive mass spectrometry study of young and aged wild-type 

mouse brains to identify the change in aggregation with age of 

the insoluble proteome. Overall, there was no general increase in 

insolubility with age and our results suggest variabilities in the 

insoluble protein fraction preparation. After normalization, we 

found very little correlations between fold changes in levels of 

insoluble proteins between the three replicates. This is similar to 

the previous findings where only a limited number of proteins 

changing their insolubility with age was observed (Ottis et al. 

2013). (Ottis et al. 2013) demonstrated, that absolute changes in 

the levels of insoluble proteins of hippocampal proteomes from 

rats were small compared to the findings in the whole C. elegans 

insoluble proteome. Moreover, (Walther and Mann 2011) per-

formed a proteomic analysis of three brain regions as well as 

heart and kidney in mice aged five or 26 months without any 

enrichment for insoluble proteins. They showed that mean pro-

tein abundance changes of more than twofold between young 

and old mice were detected in less than 1% of all proteins and 

very few of these were statistically significant. Still, to continue 

with the mass spectrometry results presented here, 14 proteins 

that aggregate the most with age in all three replicates were 

determined with 12 homologues in C. elegans. One of the identi-

fied proteins was TDP-43. Inclusions of TDP-43 are hallmarks of 

frontotemporal lobar dementia (FTLD) and amyotrophic lateral 

sclerosis (ALS). Intriguingly, human TDP-43 was shown to form 
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oligomers that cross-seed Aβ to form amyloid oligomers (Fang et 

al. 2014). Because these proteins seemed to be interesting can-

didates for seeding, the goal was to perform a motility analysis of 

Aβ overexpressing worms subjected to RNAi against homologues 

of all 12 proteins. During the first experiment only worms sub-

jected to control RNAi's were analyzed with two different motili-

ty analysis programs. The measured speeds were variable and 

not reproducible within the same group and differed between 

the worms subjected to different control RNAi's independent of 

the software used, as discussed previously. Therefore, the analy-

sis was not continued with the candidates.  

An important aspect to be addressed was to determine the seed-

ing activity of age-dependent protein aggregation in vivo. There-

fore, an established mouse model for Aβ seeding was used, in 

which past experiments showed that intracerebral injection of 

Aβ-rich brain extracts in young APP-transgenic mice induced Aβ 

plaque formation prior to the appearance of endogenous Aβ 

deposits (Meyer-Luehmann et al. 2006). In the present study 

insoluble protein extracts from aged mouse brains were injected. 

After six months the formation of some Aβ plaques was observed 

in three out of five mice. Of note, it was unclear whether this in 

vivo model would be sufficiently sensitive to detect heterologous 

seeding by the age-dependent insoluble proteome within the 

time window preceding the emergence of endogenous plaques 

and cerebral amyloid-β angiopathy. Indeed, the low amount of 

detected Aβ plaques could be explained by the in vitro data 

showing a reproducible but relatively low seeding activity com-

pared to Aβ seeds and therefore successful in vivo seeding stud-

ies may require repeated injections of insoluble extracts and/or 

very long incubation times. 
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In summary, the study described here shows that protein aggre-

gates formed during normal aging in C. elegans and in mouse 

brains initiate Aβ aggregation in vitro. In agreement with the late 

onset of neurodegeneration in humans, cross-seeding activity 

appears in the later stages of life in C. elegans. The study demon-

strates that several minor components identified previously in 

NFTs and amyloid plaques in AD are prone to aggregate with 

age. Additionally, overexpression of one of these proteins, PAR-5 

(C. elegans homolog of 14-3-3), accelerates Aβ toxicity in C. ele-

gans.  

Together, the present findings emphasize the need to under-

stand better why protein insolubility is prevalent in older age 

and how the cellular quality-control systems fail to prevent it. 

Abrogating the formation of heterologous seeds could signifi-

cantly reduce disease-associated seeding events and delay the 

onset of AD. As perspective it would be interesting to map the 

aggregating proteome throughout the brain in healthy individu-

als and in patients with neurodegeneration to clarify whether 

aging seeds associate with specific disease types in specific ana-

tomical areas. 

4.2 Investigation whether rapidly-aggregating proteins 

seed the aggregation of other proteins 

A variety of neurodegenerative diseases are associated with the 

aggregation of specific proteins. Moreover, aging is a major risk 

factor for neurodegeneration. In recent years protein aggrega-

tion with age, in the absence of disease, has been investigated by 

several groups (David et al. 2010; Reis-Rodrigues et al. 2012; 

Walther et al. 2015). In parallel to the first study presented here, 

showing that age-dependent protein aggregates seed the aggre-

gation of Aβ (3.1), a second study was performed to investigate 
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whether rapidly-aggregating proteins lead to the aggregation of 

other non-disease related proteins in C. elegans. Our goal was to 

crosslink proteins in an aggregate, purify them in denaturing 

conditions and to identify the co-aggregating proteins by mass 

spectrometry. Finally, we intended to quantify changes in co-

aggregating proteins with age. To establish the protocol for tan-

dem-affinity purification under denaturing conditions for the 

isolation and identification of rapidly-aggregating proteins with 

co-aggregating proteins, an aggregation-prone protein was used. 

RHO-1, a Rho GTPase orthologous to transforming protein RhoA 

in mammals, is known to aggregate fast when it is overexpressed 

in C. elegans. Therefore, transgenic worms were generated over-

expressing RHO-1 tagged with a tandem-affinity tag combining a 

histidine tag for Nickel affinity purification with a biotinylation 

sequence (avidin tag) for subsequent avidin purification 

(Schaffer et al. 2010; Tagwerker et al. 2006). 

First of all, an insoluble protein extraction with the homogenate 

of RHO-1 overexpressing worms and a subsequent purification 

of RHO-1 with Nickel-affinity chromatography was performed. A 

well-established elution buffer with a high imidazole concentra-

tion was used. In theory, imidazole competes with the histidine 

tag of the protein for the binding to nickel and therefore lead to 

the elution of the protein that is bound on the column. The first 

purification presented here resulted to a broad elution of RHO-1 

in many fractions. To analyze whether this purification method 

could be used for other proteins, the purification of KIN-19 (a 

serine/threonine kinase orthologous to human Casein Kinase I), 

that is also known to aggregate fast if it is overexpressed in C. 

elegans, was performed. But, as a preliminary result, KIN-19 

could not be eluted from the column (data not shown). Because 

using high imidazole concentrations led to a broad elution of 
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RHO-1 and another protein, KIN-19, could not be eluted, a differ-

ent protocol with harsh conditions was chosen (Tagwerker et al. 

2006). Using the harsh elution buffer, we were able to elute 

RHO-1 in only a few fractions. Next, RHO-1 was chemically cross-

linked with its co-aggregates with the common crosslinker PFA 

(Sutherland, Toews, and Kast 2008) and purified as established 

for RHO-1 without crosslinking under harsh conditions. But the 

following two problems appeared: First, the protein RHO-1 could 

not be eluted from the column anymore. The elution buffer con-

tained EDTA which removes the nickel ions from the column and 

therefore should also remove RHO-1 that was bound with its 

histidine tag to nickel. But in the elution fractions no RHO-1 

could be detected. PFA is a strong crosslinker. Even with low PFA 

amounts it seemed that most of RHO-1 was getting highly insol-

uble and accumulates to big aggregates (together with the co-

aggregates) that stick on the column and cannot be removed. The 

assumed formation of large intractable aggregates could also 

lead to the second problem: a high amount of crosslinked RHO-1 

could not be loaded onto the column because the aggregates 

cannot be disrupted, even with high urea concentrations.  

To continue, the second crosslinker DSG was used, which also 

reacts with primary amines like PFA, but the results could not be 

improved. Still, we were not able to elute RHO-1 from the col-

umn or to get more RHO-1 aggregates solved before loading it 

onto the column. Additionally, lower DSG concentrations were 

used, but no crosslinking could be observed anymore.  

To conclude, the demonstrated purification protocol under harsh 

conditions can be used to purify non-crosslinked RHO-1, but the 

protocol is not applicable to crosslinked proteins. For future 

studies the following possibilities are suggested: First, another 

crosslinker could be tried out that is reactive to different groups 
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compared to PFA or DSG, for example Bis(maleimido)hexane 

(BMH) that crosslinks sulfhydryl groups. Second, to avoid unspe-

cific crosslinking, the pellet after removal of detergent-soluble 

proteins could be diluted in a low amount of urea (1 M) before 

crosslinking and then the crosslinked proteins are solubilized 

with the high amount of urea (8 M). Another possibility is to 

perform the crosslinking already with the detergent-soluble 

proteins. This could help to avoid the formation of huge cross-

linked aggregates that cannot be disrupted by urea anymore.   

(Ayyadevara et al. 2015) isolated and characterized protein 

components of Q40 aggregates using a C. elegans strain express-

ing Q40 as a model of polyglutamine array diseases such as Hun-

tington’s. They found three Q40-associated proteins that were 

inferred to promote aggregation. The knockdown of one of these 

proteins, CRAM-1, reduced the Q40 aggregates up to 86%. Re-

cently, it was shown that a knockdown of six human muscle-

aggregate orthologs, that significantly decreased protein aggre-

gate counts of Q40 and increased muscle mass, also consistently 

rescued worms from amyloid paralysis (Ayyadevara, 

Balasubramaniam, Suri, et al. 2016). (Fonte et al. 2002) used C. 

elegans expressing human Aβ to identify proteins that interact 

with intracellular Aβ and demonstrated that one of these pro-

teins, HSP-16, co-localizes with Aβ. If co-aggregating proteins of 

RHO-1 were successfully identified it would be possible to over-

express RHO-1 together with an interesting candidate in C. ele-

gans and evaluate co-localization or changes in their aggregation 

pattern. Moreover, lifespan analysis can be performed with 

worms overexpressing a rapidly-aggregating protein or with 

worms subjected to RNAi against a rapidly-aggregating protein 

to investigate whether a decrease or an increase in lifespan could 

be observed. Then, this protein (for example RHO-1) would be a 
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candidate for a dangerous aggregating protein that could lead to 

the aggregation of other proteins.  

After the establishment, the protocol could be used to analyse 

whether early-aggregating proteins, identified in 3.1.3, lead to 

aggregation of other proteins. Co-aggregating proteins from 

young and aged worms could be compared by the quantification 

of differences in co-aggregation with age with mass spectrome-

try. Because we recently showed that KIN-19 accelerates PAB-1 

(polyadenylate-binding protein 1) aggregation in C. elegans and 

that both proteins co-localize in large aggregates in double-

transgenic animals (Lechler et al. 2017), we think that co-

aggregation and seeding of protein aggregation by inherent-

aggregating proteins can occur with age. Our goal is to discover 

proteins that lead to further aggregation as a reason for cellular 

dysfunction during aging. This investigation would give insights 

into the general mechanisms of protein aggregation with age and 

therefore could help to understand better the mechanisms in-

volved in neurodegenerative diseases.  

 

In conclusion, the results of both studies presented in this thesis 

help to advance our understanding of aging in the absence of 

disease. Moreover, the first study helps to understand the influ-

ence of aging on pathophysiology. How age-dependent protein 

aggregation and disease-associated protein aggregation influ-

ence each other, is still an open question. The first study sup-

ports the hypothesis of a direct interaction whereby disease-

associated proteins and age-dependent aggregation-prone pro-

teins co-aggregate. We were able to show that misfolded pro-

teins aggregating with age form heterologous seeds that initiate 

Aβ aggregation in vitro. As a prevention strategy, heterologous 
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seeds could be targeted before the onset of the disease. In gen-

eral, the investigation of physiological age-dependent protein 

aggregation could give insights into molecular and cellular 

mechanisms that regulate protein aggregation and could help to 

understand the effect of protein insolubility on organisms health.  
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6 Appendix 

6.1 Abbreviations 

Aβ Amyloid-beta 

AD Alzheimer’s disease 

APP Amyloid precursor protein 

APS Ammonium persulfate 

BMH Bis(maleimido)hexane 

BSA Bovine serum albumin 

CaCl2 Calcium chloride 

C. elegans Caenorhabditis elegans 

CV Column volume 

Da Dalton 

DSG Disuccinimidyl glutarate 

dsRNA Double-stranded RNA 

DTT Dithiothreitol 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethyleneglycoltetraacetic acid 

ER Endoplasmic reticulum 

FDR False discovery rate 

FRANK Fibrillization of Recombinant Aβ Nucleation Kinetic 
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GFP Green fluorescent protein 

HCD Higher energy collision dissociation 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HGM High Growth Medium 

HRP Horseradish peroxidase 

HSP Heat-shock protein 

iTRAQ isobaric tags for relative and absolute quantitation 

K114 (trans,trans)-1-bromo-2,5-bis-(4-hydroxy) 

styrylbenzene 

LB Lysogeny broth 

LC Liquid chromatography 

MES 4-Morpholineethanesulfonic acid 

mRNA Messenger RNA 

MS Mass spectrometry 

MS/MS Tandem mass spectrometry 

NaCl Sodium chloride 

NaF Sodium fluoride 

NG Nematode growth  

NP40 Nonidet P40 

N2 Wild-type C. elegans strain 

PBS Phosphate-buffered saline 

PEP Posterior error probability 
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PFA Para-Formaldehyde 

PMSF Phenylmethylsulfonyl fluoride 

PrPSc Scrapie prion protein 

PS-1, -2 Presenilin-1, -2 

PVDF Polyvinylidene difluoride 

RAB Reassembly 

RFP Red fluorescent protein 

RIPA Radioimmunoprecipitation assay 

RNA Ribonucleic acid 

RNAi RNA interference 

rpm rounds per minute 

SAM Significant Analysis of Microarrays 

SDO Sodium deoxycholate 

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

TBS Tris-buffered saline 

TBST TBS with 0.1% Tween20 

TDP-43 Transactive response (TAR) DNA-binding protein 

43 

TEMED Tetramethylethylenediamine 

ThT Thioflavin T 

Tris Tris(hydroxymethyl)aminomethane 
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UPR Unfolded protein response 

x g times gravity 
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6.2 Motility analysis 

6.2.1 Settings for The Parallel Worm Tracker software 

Settings were obtained from Dr. Jan Kubanek (Stanford Universi-

ty, USA). 

 

6.2.1.1 Settings to track worm videos with MATLAB R2015b 

 

%open 

outmovie = sprintf('tracked.mp4'); 

MovieOutObj = VideoWriter(outmovie, 'MPEG-4'); Mov-

ieOutObj.FrameRate = framerate; open(MovieOutObj); 

 

%read 

hasFrame(MovieObj); %touch the frame pointer MovieFrame = 

readFrame(MovieObj); 

 

%write 

framepar.resolution = [RES_H, RES_V]; 

frame = fig2frame(gcf, framepar); 

writeVideo(MovieOutObj, frame); 

 

%close 

close(MovieOutObj); 



Appendix 
 

122 
 

6.2.1.2 Settings to analyze videos taken for other time periods 

than 30 s 

 

function TrackWorms() 

 

% 2015-05-04    Updated to accept movie formats beyond .avi, 

using 

% VideoReader (introduced in R2010b) 

% Author: Jan Kubanek (kubanek@go.wustl.edu) 

 

recordbw = 0; %whether to record the video as bw instead of 

gray 

 

WormTrackerPrefs.MinWormArea = 300; 

WormTrackerPrefs.MaxWormArea = 2000; 

WormTrackerPrefs.MaxDistance = 50; 

WormTrackerPrefs.SizeChangeThreshold = 500; 

WormTrackerPrefs.MinTrackLength = 100; 

WormTrackerPrefs.AutoThreshold = 1; 

WormTrackerPrefs.ManualSetLevel = 0.5; 

WormTrackerPrefs.DarkObjects = 0; 

WormTrackerPrefs.PlotRGB = 0; 

WormTrackerPrefs.PauseDuringPlot = 0; 

WormTrackerPrefs.PlotObjectSizeHistogram = 0; 
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% WormTrackerPrefs.CorrectFactor = 0.3; 

WormTrackerPrefs.CorrectFactor = 0.09; 

%image resolution 

RES_H = 2048; 

RES_V = 1536; 

framerate = 20; %fps 

NumberOfFrames = 139; %total number of video frames 

 

%--------------------- 

%clipping 

 

%clip to a rectangle; no clip if empty 

rectangularclip = []; 

%   rectangularclip = [20,310,180,480]; 

 

%clip to a circle; no clip if empty 

 

%focus 2015-10-05 nobact 

%focuspar = [310, 130, 6]; 

 

%2015-10-12 

focuspar = [220, -40, 7]; 
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center_x = RES_H / 2 - focuspar(1); 

center_y = RES_V / 2 - focuspar(2); 

radius = RES_V / focuspar(3); 

circularclip = [center_x, center_y, radius]; %center_x, center_y, 

radius 

%     circularclip = []; % 

 

% Setup figure for plotting tracker results 

% ----------------------------------------- 

WTFigH = findobj('Tag', 'WTFIG'); 

if isempty(WTFigH) 

    WTFigH = figure('Name', 'Tracking Results', ... 

        'NumberTitle', 'off', ... 

        'Tag', 'WTFIG'); 

else 

    figure(WTFigH); 

end 

 

%settings for movie output 

% axis tight; 

% set(gca,'nextplot','replacechildren'); 

% set(gcf,'Renderer','zbuffer'); 
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% Start Tracker 

% ------------- 

for MN = 1, %for all movies 

     

%     MovieObj = VideoReader(MovieNames{MN}); 

    Tracks = []; 

     

    % can use the information if necessary 

%     NumberOfFrames = MovieObj.NumberOfFrames; 

     

    %initiate video output 

    %can use the following R2014b+ (see more comments on that 

below) 

%     outmovie = sprintf('tracked.mp4'); 

%     MovieOutObj = VideoWriter(outmovie, 'MPEG-4'); 

%     MovieOutObj.FrameRate = framerate; 

%     open(MovieOutObj); 

 

    %in R2015a, use avifile 

    hFig = figure('Visible','off'); 

    set(hFig, 'PaperPositionMode','auto', 'InvertHardCopy','off') 

    aviobj = avifile('tracked.avi', 'fps', framerate); 
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    %   if circular clipping, precompute the clip area (use it as a 

multiplication mask) 

    if ~isempty(circularclip), 

        cx = round(circularclip(1)); 

        cy = round(circularclip(2)); 

        ra = round(circularclip(3)); 

         

%         MovieFrame = read(MovieObj, 1); %if read() is still sup-

ported (R2014a doensn't have readFrame yet) 

         

        SX = RES_H; 

        SY = RES_V; 

         

        mask = ones(SY, SX, 1); 

        for xx = 1 : SX 

            for yy = 1 : SY 

                if (xx - cx)^2 + (yy - cy)^2 > ra^2, %outside the circle 

                    mask(yy, xx, :) = 0; 

                end 

            end 

        end 

        mask = uint8(mask); 

    end     
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    % Analyze Movie 

    % ------------- 

    firstframe = 1; 

    for frameno = firstframe : NumberOfFrames, 

        fprintf('Processing frame no %d\n', frameno); 

         

        try 

%             MovieFrame = read(MovieObj, frameno); %if read() is 

still supported (R2014a doensn't have readFrame yet) 

            MovieFrame = imread(sprintf('Image_%d.bmp', frame-

no)); 

        catch 

            hasFrame(MovieObj); %touch the frame pointer 

            MovieFrame = readFrame(MovieObj); %if read is no more 

supported, readFrame will (readFrame doesn't need the frameno 

argument; it just reads the next frameno; haven't tested though!) 

        end 

         

        if ~isempty(rectangularclip), 

            MovieFrame = MovieFrame(rectangularclip(1) : rectangu-

larclip(2), rectangularclip(3) : rectangularclip(4), :); 

        end 
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        %record the stimulus (LED at the very edge of the image) 

        stimval = double(MovieFrame(end, end, :)); 

         

        if ~isempty(circularclip), 

            %apply the circular mask 

            MovieFrame = MovieFrame .* mask; 

             

            %reduce the size 

            MovieFrame = MovieFrame(cy - ra : cy + ra, cx - ra : cx + ra, 

:); 

        end 

%         [a, MSGID] = lastwarn(); 

%         warning('off', MSGID); 

                 

        if frameno == firstframe, 

            figure; 

            imshow(MovieFrame); 

%             pause; 

        end 

         

        % Convert frame to a binary image 

        if WormTrackerPrefs.AutoThreshold       % use auto thresh-

olding 
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            Level = graythresh(MovieFrame) + WormTracker-

Prefs.CorrectFactor; 

            Level = max(min(Level,1) ,0); 

        else 

            Level = WormTrackerPrefs.ManualSetLevel; 

        end 

        if WormTrackerPrefs.DarkObjects 

            BW = ~im2bw(MovieFrame, Level);  % For tracking dark 

objects on a bright background 

        else 

            BW = im2bw(MovieFrame, Level);  % For tracking bright 

objects on a dark background 

        end 

         

        % Identify all objects 

        [L,NUM] = bwlabel(BW); 

        STATS = regionprops(L, {'Area', 'Centroid', 'FilledArea', 'Ec-

centricity'}); 

         

        % Identify all worms by size, get their centroid coordinates 

        WormIndices = find([STATS.Area] > WormTracker-

Prefs.MinWormArea & ... 

            [STATS.Area] < WormTrackerPrefs.MaxWormArea); 

        NumWorms = length(WormIndices); 
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        WormCentroids = [STATS(WormIndices).Centroid]; 

        WormCoordinates = [WormCentroids(1:2:2*NumWorms)', 

WormCentroids(2:2:2*NumWorms)']; 

        WormSizes = [STATS(WormIndices).Area]; 

        WormFilledAreas = [STATS(WormIndices).FilledArea]; 

        WormEccentricities = [STATS(WormIndices).Eccentricity]; 

         

        % Track worms 

        % ----------- 

        if ~isempty(Tracks) 

            ActiveTracks = find([Tracks.Active]); 

        else 

            ActiveTracks = []; 

        end 

         

        % Update active tracks with new coordinates 

        for i = 1:length(ActiveTracks) 

            Tracks(ActiveTracks(i)).Stimulus = 

[Tracks(ActiveTracks(i)).Stimulus; stimval]; 

            DistanceX = WormCoordinates(:,1) - 

Tracks(ActiveTracks(i)).LastCoordinates(1); 

            DistanceY = WormCoordinates(:,2) - 

Tracks(ActiveTracks(i)).LastCoordinates(2); 

            Distance = sqrt(DistanceX.^2 + DistanceY.^2); 
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            [MinVal, MinIndex] = min(Distance); 

            if (MinVal <= WormTrackerPrefs.MaxDistance) & ... 

                    (abs(WormSizes(MinIndex) - 

Tracks(ActiveTracks(i)).LastSize) < WormTracker-

Prefs.SizeChangeThreshold) 

                Tracks(ActiveTracks(i)).Path = 

[Tracks(ActiveTracks(i)).Path; WormCoordinates(MinIndex, :)]; 

                Tracks(ActiveTracks(i)).LastCoordinates = WormCoor-

dinates(MinIndex, :); 

                Tracks(ActiveTracks(i)).Frames = 

[Tracks(ActiveTracks(i)).Frames, frameno]; 

                Tracks(ActiveTracks(i)).Size = 

[Tracks(ActiveTracks(i)).Size, WormSizes(MinIndex)]; 

                Tracks(ActiveTracks(i)).LastSize = 

WormSizes(MinIndex); 

                Tracks(ActiveTracks(i)).FilledArea = 

[Tracks(ActiveTracks(i)).FilledArea, WormFilledAre-

as(MinIndex)]; 

                Tracks(ActiveTracks(i)).Eccentricity = 

[Tracks(ActiveTracks(i)).Eccentricity, WormEccentrici-

ties(MinIndex)]; 

                WormCoordinates(MinIndex,:) = []; 

                WormSizes(MinIndex) = []; 

                WormFilledAreas(MinIndex) = []; 

                WormEccentricities(MinIndex) = []; 

            else 
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                Tracks(ActiveTracks(i)).Active = 0; 

                if length(Tracks(ActiveTracks(i)).Frames) < 

WormTrackerPrefs.MinTrackLength 

                    Tracks(ActiveTracks(i)) = []; 

                    ActiveTracks = ActiveTracks - 1; 

                end 

            end 

        end 

         

        % Start new tracks for coordinates not assigned to existing 

tracks 

        NumTracks = length(Tracks); 

        for i = 1:length(WormCoordinates(:,1)) 

            Index = NumTracks + i; 

            Tracks(Index).Active = 1; 

            Tracks(Index).Path = WormCoordinates(i,:); 

            Tracks(Index).LastCoordinates = WormCoordinates(i,:); 

            Tracks(Index).Frames = frameno; 

            Tracks(Index).Size = WormSizes(i); 

            Tracks(Index).LastSize = WormSizes(i); 

            Tracks(Index).FilledArea = WormFilledAreas(i); 

            Tracks(Index).Eccentricity = WormEccentricities(i); 

            Tracks(Index).Stimulus = double(0.0); 
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        end 

         

        % Display every FrameRate'th frame 

        if ~mod(frameno, 1) 

            if recordbw, 

                mov.cdata = BW; 

                mov.colormap = []; 

            else 

                mov.cdata = MovieFrame; 

                mov.colormap = colormap; 

            end                 

            PlotFrame(WTFigH, mov, Tracks); 

            FigureName = sprintf('Tracking Results for frame %d   ', 

frameno); 

            set(WTFigH, 'Name', FigureName); 

             

            if WormTrackerPrefs.PlotRGB 

                RGB = label2rgb(L, @jet, 'k'); 

                figure(6) 

                set(6, 'Name', FigureName); 

                imshow(RGB); 

                hold on 

                if ~isempty(Tracks) 
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                    ActiveTracks = find([Tracks.Active]); 

                else 

                    ActiveTracks = []; 

                end 

                for i = 1:length(ActiveTracks) 

                    plot(Tracks(ActiveTracks(i)).LastCoordinates(1), ... 

                        Tracks(ActiveTracks(i)).LastCoordinates(2), 'wo'); 

                end 

                hold off 

            end 

             

            if WormTrackerPrefs.PlotObjectSizeHistogram 

                figure(7) 

                hist([STATS.Area],300) 

                set(7, 'Name', FigureName); 

                title('Histogram of Object Sizes Identified by Tracker') 

                xlabel('Object Size (pixels') 

                ylabel('Number of Occurrences') 

            end 

             

            if WormTrackerPrefs.PauseDuringPlot 

                pause; 
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            end 

             

            %write frame to video 

            %frame = getframe(gcf); %getframe sucks, capture any-

thing 

            %that's on the screen 

             

            %the following is an alternative to getframe, but only 

works in 

            %R2014b+; But R2015b has issue with exporting eps (ex-

ports triangular objects) so not using it; 

            %try to see whether R2015 fixes that; in that case, can use 

the 

            %following code: 

%             framepar.resolution = [RES_H, RES_V]; 

%             [frame] = fig2frame(gcf, framepar); 

%             writeVideo(MovieOutObj,frame); 

 

%so for now, use the deprecated avifile (may slow things down) 

            aviobj = addframe(aviobj, gcf); 

        end 

         

    end    % END for frameno = 1:MovieObj.NumFrames 
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    %save the video 

    %use in R2014b+ 

    %close(MovieOutObj); 

    %for the moment (R2014a), use: 

    aviobj = close(aviobj); 

     

    % Get rid of invalid tracks 

    DeleteTracks = []; 

    for i = 1:length(Tracks) 

        if length(Tracks(i).Frames) < WormTracker-

Prefs.MinTrackLength 

            DeleteTracks = [DeleteTracks, i]; 

        end 

    end 

    Tracks(DeleteTracks) = []; 

     

    % Save Tracks 

    SaveFileName = sprintf('wormcords.mat'); 

    save(SaveFileName, 'Tracks'); 

     

    close all; %close fig 

end 
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6.2.2 Motility analysis of Aβ overexpressing C. elegans sub-

jected to control RNAi 

Table 6.1: Motility analysis of Aβ overexpressing worms subjected to dif-
ferent control RNAi’s (L4440, HER-1, GFP). Shown are the speeds of the 
worms (mm/s) after analysis with MatLab or ImageJ. For both analysis 
programs the minimum speed is highlighted in red and the maximum 
speed is highlighted in green. The average speed is shown bold.   

L4440 HER-1 GFP 

MatLab ImageJ MatLab ImageJ MatLab ImageJ 

0.014846 
0.012329 
0.012123 
0.010499 
0.0097831 

0.021533333 
0.0175 
0.019875 
0.016647059 
0.012866667 

0.0056622 
0.0061692 
0.0050093 
0.0050337 
0.0067667 

0.011294118 
0.011470588 
0.0094 
0.010111111 
0.011166667 

0.014553 
0.015467 
0.010147 
0.010635 
0.011438 

0.021375 
0.030636364 
0.013 
0.017555556 
0.0305 

0.01975 
0.0154 
0.011947 
0.011763 
0.0089456 

0.038157895 
0.0331 
0.021 
0.023 
0.019263158 

0.022927 
0.0055339 
0.0051462 
0.022897 
0.022708 

0.06325 
0.0269 
0.025777778 
0.028071429 
0.0314 

0.0069989 
0.0057541 
0.0057969 
0.0057378 
0.0058266 

0.013928571 
0.0124 
0.012833333 
0.012153846 
0.011923077 

0.020185 
0.010325 
0.011594 
0.010209 
0.010137 

0.0288125 
0.0228125 
0.019625 
0.0153125 
0.01475 

0.024152 
0.010978 
0.037393 
0.014137 
0.018501 

0.0481 
0.042642857 
0.0495 
0.03625 
0.017785714 

0.015416 
0.0084805 
0.010284 
0.010398 
0.0079139 

0.023166667 
0.02 
0.0151 
0.016125 
0.013125 

0.012656 0.0202625 0.014201 0.027320994 0.0096564 0.017588161 
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6.3 Statement of contributions 

All experiments and data analyses described for the first project 

with the title "Identifying age-dependent heterologous seeds for 

amyloid-β aggregation" were performed by myself besides the 

ones that are listed in the next paragraph. Briefly, I performed 

the following experiments and analyses: strain generation of 

DCD296, C. elegans liquid culture, insoluble protein extraction 

and quick protein extraction, gel electrophoresis and western 

blotting, mass spectrometry analysis with C. elegans samples 

(dialysis, preparation, labeling), mass spectrometry analysis 

with mice samples (dialysis and data analysis), motility analysis, 

paralysis assay and staining of C. elegans with K114. 

Anika Bühler performed the FRANK Assay, in detail the prepara-

tion of the Assay plate and the measurements, supervised by Dr. 

Frank Baumann who also evaluated the data. Both worked at the 

Hertie Institute for Clinical Brain Research, Tübingen. For the 

FRANK assay, the peptide Aβ(1-40) was expressed and purified 

by Prof. Marcus Fändrich (University Ulm). Dr. Frank Baumann 

removed the mouse brains for the FRANK Assay or mass spec-

trometry analysis. The intracerebral injection into APP23 trans-

genic mice and analysis were performed by Ulrike Obermüller 

and supervised by Dr. Frank Baumann (Hertie Institute for Clini-

cal Brain Research, Tübingen). Mass spectrometry and data 

analysis with samples from C. elegans were performed by Dr. Ka 

Wan Li, Pim van Nierop and Prof. August B. Smit (VU University 

Amsterdam). Mass spectrometry analysis with mice samples, in 

detail the labeling of the samples and nano-liquid chromatog-

raphy-MS/MS analysis, were performed by Dr. Ana Velic (Prote-

ome Center Tübingen). The Ingenuity Pathway Analysis was 

performed by Dr. Chaolie Huang (DZNE, Tübingen). The intern 

Stavros Vagionitis performed the motility analysis after knock-
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down of early-aggregating proteins that continued to aggregate 

strongly at day 10 and day 14 (DZNE, Tübingen). To be able to 

use the Parallel Worm Tracker software changes were made in 

the MATLAB code by Björn Müller (CIN, Tübingen) and Angelos 

Skodras (DZNE, Tübingen). 

The following colleagues contributed to the second project de-

scribed in this thesis with the title "Investigation whether rapid-

ly-aggregating proteins seed the aggregation of other proteins":  

Dr. Emily Crawford developed the tandem-affinity purification 

strategy and generated a Gateway vector with histidine-avidin 

tag. Katja Widmaier performed the construct injection into N2 

animals to generate the transgenic C. elegans line used for the 

project. Both worked at the DZNE, Tübingen. 

All other experiments and data analyses described for the second 

project were performed by myself. Briefly, I performed the clon-

ing and strain generation (besides the construct injection), 

C. elegans liquid culture, insoluble protein extraction with and 

without chemical crosslinking, protein purification with nickel 

affinity chromatography, gel electrophoresis and western blot-

ting.   
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