
High precision calculations of particle physics at the 

NEMO cluster in Freiburg 
 

C. Heidecker, M. Giffels, G. Quast, K. Rabbertz, M. Schnepf 

Institut für Experimentelle Teilchenphysik (ETP) 

Karlsruher Institut für Technologie (KIT) 

Karlsruhe, Germany 

 
Abstract— At the Large Hadron Collider of CERN in Geneva 

particles such as protons are smashed onto each other at the 

highest man-made energies ever. Despite being gigantic in size, 

custom-designed detectors are capable of recording billions of 

such collisions with high accuracy. To accompany these 

measurements, predictions of highest precision are required, for 

some of which it took the theory community more than 20 years 

to develop the necessary methods and techniques. We explain 

how these CPU intensive calculations have been adapted to run 

efficiently on the computing resources available within the 

bwHPC project and present the required tools and infrastructure 

we developed for this purpose. 

 

Keywords—particle physics; software deployment; resource 

allocation 

I.  INTRODUCTION 

To fully profit from precise measurements of high-energy 
particle collisions by modern particle detectors, these 
measurements must be matched with at least equally precise 
theoretical predictions. For the example of proton-proton 
collisions at the Large Hadron Collider (LHC) of CERN in 
Geneva, the theory of choice is quantum chromodynamics 
(QCD) [1], which is assumed to describe all phenomena 
involving the strong interaction or, in more common terms, 
nuclear interactions. Although solutions to the equations of 
QCD are not known in general, particle collisions at high 
energy, or equivalently very small distance, can be described 
by a perturbative approach to QCD (pQCD). Leading-order 
(LO) results in pQCD have been derived already in the 
seventies but provide only an order-of-magnitude estimate for 
the production rates of particular event types. More 
specifically, the example events used in this article contain at 
least one high-energetic “particle jet”, which is the name given 
to a bundle of strongly interacting particles leaving a collision 
in roughly the same direction. Such jets are considered to be 
the visible manifestation of otherwise not freely observable 
proton constituents like quarks [2]. Next-to-leading order 
(NLO) predictions for jet production improve the relative 
precision to a level of about 5-10% and have become available 
in the nineties [3,4]. The computing time (CPU time) required 
for one such calculation is of the order of 1,000 hours. The 

pQCD calculations at next-to-next-to-leading order (NNLO) 
needed nowadays for an ultimate precision of 1-2% have 
recently been completed [5]. They require more than 100,000 
hours of CPU time per desired observable. 

In the following we describe the solutions we developed for 
the deployment of task-specific software to the worker nodes 
and for an efficient usage of the shared resources of the NEMO 
high-performance computing (HPC) cluster in Freiburg [6]. 
Their successful application is exemplified by means of a 
typical NNLO computation involving jet production. 

 

I. SOFTWARE ENVIRONMENT 

Large experimental collaborations in particle or high 
energy physics (HEP) develop and utilise their software within 
an environment adapted to their workflows. This implies the 
use of a particular operating system as well as numerous 
specific software packages. Computing resources like the 
NEMO HPC cluster that serve multiple user communities in 
the state-wide bwHPC concept cannot provide dedicated 
worker nodes without compromising their usability by all 
users. Therefore, a solution is sought to provide the software 
specific to the HEP community to the worker nodes of the 
NEMO cluster without perturbing other applications. 

A. Static provisioning of software 

One part of the solution is based on the virtualisation option 
of the HPC centre [7], which makes it possible to provide 
community-specific environments. Such a preconfigured 
environment can comprise i.a. a dedicated operating system 
with pre-installed HEP specific software packages.  

B. Dynamic provisioning of software 

Additionally, workflow- and user-specific software and 
tools that change frequently need to be provided. Here, only a 
more dynamical solution than virtualisation is feasible. 

For purpose B we employ a remote file system called 
CERN Virtual Machine File System (CVMFS) [8] that is 
commonly used in HEP. This file system was developed to 
deliver software packages to all world-wide distributed LHC 
computing centres. 

28



bwHPC Symposium 2017, Tübingen, October 4th 2017 

 

 
On the server side, files are hosted on web servers, which 

are organised in repositories. The utilisation of the HTTP 
protocol simplifies the world-wide distribution of files as well 
as the usage of caching proxies to reduce incoming traffic. In 
their standard configuration such proxies [9] cache all files 
with short life-cycles that are transferred via the HTTP 
protocol. Hence, software packages can either be provided 
directly via CVMFS or via other web services. 

On the client side, CVMFS provides a common POSIX 
read-only file system in user space, which allows the user 
transparent access to files inside the repositories. To further 
reduce traffic, each CVMFS client uses an additional cache. 

For usage within the NEMO HPC cluster, we installed two 
caching proxies, which serve as central cache and provide 
CVMFS to all worker nodes. Each one has a cache size of 240 
GBytes and is directly connected to the internal worker node 
network. For even more flexibility, we have set up our own 
CVMFS server at KIT in addition to the CVMFS repositories 
provided by CERN. 

This concept of static provisioning of the basic software 
environment via virtual machine images and the dynamic 
loading of workflow- and user-specific software packages via 
CVMFS has been operated successfully at the NEMO HPC 
cluster and is now in standard use for large-scale computing 
campaigns within our physics workflows. As a consequence, 
we were also able to adapt and test it for the deployment of our 
specific software environment to other shared resources like 
commercial cloud providers. Furthermore, other scientific 
communities with similar requirements could equally profit 
from the developed concept. 

II. RESOURCE PROVISIONING 

A. Usability requirements 

For an efficient usage of the shared resources at the NEMO 
cluster, a dynamic setup is required that matches resource 
allocation to demand of computing power. Furthermore, a 
simplified and standardised system to submit workflows is 
necessary to make virtualised NEMO resources transparently 
accessible to end-users at the KIT. 

Since the HEP community at the KIT manages computing 
resources via the batch system HTCondor [10], we have chosen 
to integrate the NEMO resources into our HTCondor pool. This 
necessitates an interface between the HTCondor system, which 
manages our workflow processing, and the Moab/Torque batch 
system [11] that is responsible for the resource management at 
NEMO. The life-cycle management of the virtual machines is 
performed by the OpenStack instance [12] at NEMO. For a 
successful operation, all three components must interact with 
each other. 

B. Virtualisation management at NEMO 

At the NEMO cluster, communication between the 
OpenStack instance and the Moab batch system is required to 
match virtual machines to allocated resources. Here, the 
assignment is handled by an automated system developed by 

the NEMO HPC team. For the integration into our HTCondor 
pool, the demand of resources has to be translated into requests 
to the NEMO cluster. Furthermore, newly allocated resources 
must be added, while unused resources are deallocated and 
removed from our HTCondor pool. 

C. Resource scheduler ROCED 

As a solution, we developed the resource scheduler 
responsive on-demand cloud-enabled deployment (ROCED) 
[13], which is designed to interact with various batch systems 
and resource providers. ROCED monitors the demand for 
resources and the current state of the resource pool. If the 
demand is higher than the amount of free resources, ROCED 
sends a resource request to a provider such as an HPC centre or 
a cloud provider. 

For that purpose, a modular structure of independent 
adapters was built around the ROCED core. These include 
requirement adapters, site adapters, and integration adapters as 
shown in Fig. 1. The requirement adapter monitors the 
HTCondor pool at the KIT and collects information about 
pending workflows waiting for free resources. Simultaneously, 
the site adapter manages the requested resources at the NEMO 
cluster. After detecting a resource demand, the ROCED core 
decides to request additional resources via the corresponding 
site adapter that communicates with the resource provider. In 
our setup, this is performed by sending a batch job with a 
request for booting an OpenStack virtual machine to the Moab 
batch system at NEMO as shown in Fig. 2. Subsequently, the 
integration adapter adds the new resources into the HTCondor 
pool at KIT. The fact that HTCondor worker nodes 
automatically connect to the configured pool at startup 
simplifies this step. 

In our current setup, a maximum runtime of one day is 
configured for the virtual machines. Up to 8,000 CPU cores, 
the maximum that can be allocated to one user, can be used. 
Each of these virtual machines only accepts user workflows 
with a suitable runtime and automatically shuts down either 
when reaching its runtime limit or when being idle for some 
time. For testing reasons, the maximum was raised to over 
11,000 CPU cores so we could demonstrate the capability of 

 
Fig. 1. Modular structure of ROCED based on three independent adapters 
connected via the ROCED core. 

29



bwHPC Symposium 2017, Tübingen, October 4th 2017 

 

 
our setup to dynamically request, boot up, and shut down such 
an amount of virtual machines within a short duration. This 
demonstrated flexibility is also observed during normal daily 
operation. Fig. 3 shows our usage of the NEMO cluster as a 
function of time for one month. The blue area represents the 
number of CPU cores running user workflows, while the red 
area corresponds to the number of idle CPU cores. For the 
latter, matching workflows could not be found because of 
memory, disk space, or runtime constraints resulting in a small 
share of allocated but unused resources. Red and blue numbers 
together represent the total number of CPU cores allocated at 
the NEMO cluster. The excess of idle CPUs that can be seen 
versus the end of the one-day runtime of the virtual machines is 
caused by the fact that jobs with a suitable runtime cannot be 
found anymore and new virtual machines must be started. 

The demand for computing resources varies over time. 
Hence, a highly dynamical setup like ours facilitates the 
efficient usage of shared resources, which are allocated only 
during processing of workflows and are given back afterwards. 
Also, the resources of large (commercial) computing providers 
can be accessed in a similar way opening up additional 
possibilities for peak demands of scientific projects. 

III. APPLICATION WORKFLOW 

A typical pQCD calculation at NNLO performed by us on the 

NEMO cluster proceeds in three steps. First, the setup for the 

numerical integration of many complex multidimensional 

integrals must be optimised. This is performed through direct 

submission with Moab of one multicore job per job type of the 

NNLOJET program [5] and needs about 2,000 hours of total 

CPU time. Secondly, interpolation grids for later fast 

reevaluations for varying input parameters such as 

assumptions on the proton structure are prepared by exploring 

the phase space in terms of proton momentum fractions and 

the energy scale accessible in the examined process. Two 

software packages are available for this technique, fastNLO 

and APPLGRID [13,14], which can save enormous amounts 

of computing time by avoiding to rerun the full NNLO 

computation in many cases. We apply the latest version of the 

fastNLO framework [15]. In the third step thousands of single-

core jobs are submitted in parallel, each for about 20h of CPU 

time, in order to evaluate the prepared integrals by generating 

pseudo-events and filling the interpolation grids. Table I gives 

an overview of the resources typically required in this last 

step. In a test campaign on the NEMO cluster we were able to 

finish one such computation in only two days with at 

maximum 7,800 cores working in parallel. 
 

Table 1. Production Campaign of a typical pQCD calculation at NNLO 
accuracy. The job type corresponds to different parts of such a computation, 

which are evaluated separately. 

Job type # Jobs Events / 

job / 

millions 

CPU 

time / 

job [h] 

# Events 

/ billions 
Total 

output 

[GBytes] 

Total 

CPU 

time [h] 

LO 10 140 20.6 1.4 0.024 206 

NLO-R 200 6 19.0 1.2 1.3 3,800 

NLO-V 200 5 21.2 1.0 1.2 4,240 

NNLO-

RRa 
5,000 0.06 22.5 0.3 26 112,500 

NNLO-

RRb 
5,000 0.04 20.3 0.2 27 101,500 

NNLO-

RV 
1,000 0.2 19.8 0.2 6.4 19,800 

NNLO-
VV 

300 4 20.5 1.2 2.0 6,150 

Total 11,710 –  –  5.5 64 248,196 

 

IV. SUMMARY 

To cope with frequent changes in community- and user-

specific software environments we use the virtualisation 

option of the NEMO cluster to provide a static virtual machine 

image and dynamically load workflow specific software via 

CVMFS. For an efficient and user-friendly utilisation, we 

integrate virtualised resources of the NEMO cluster into our 

HTCondor batch system. To manage these resources 

dynamically, we employ the resource scheduler ROCED 

developed at KIT. 

Precision measurements at the forefront of physics require 

equally precise theoretical predictions leading to the most 

CPU intensive workflow we have successfully exercised with 

 
Fig. 3. Allocation and deallocation of virtual machines during one month. 

 
Fig. 2. Management cycle of ROCED for interaction between our local user 

group at KIT and the NEMO cluster. 

30



bwHPC Symposium 2017, Tübingen, October 4th 2017 

 

 

the described setup and the large resources available to us 

thanks to the NEMO cluster in Freiburg. As demonstrated, the 

presented components allow us to run workflows with about 

100,000 CPU hours in just days. Moreover, our presented 

concepts can be adapted to similar needs of other scientific 

communities and can facilitate the access to resources of 

commercial computing providers for example in times of peak 

demands. 

ACKNOWLEDGMENT 

The authors acknowledge support by the state of Baden-

Württemberg through bwHPC and the German Research 

Foundation (DFG) through grant no INST 39/963-1 FUGG.  

REFERENCES 

[1] R.K. Ellis, W.J. Stirling, B.R. Webber, “QCD and Collider Physics”, 
Cambridge University Press, 1996. 

[2] K. Rabbertz, “Jet Physics at the LHC”, Springer, Berlin, 2016. 

[3] S.D. Ellis, Z. Kunszt, D.E. Soper, “One-jet inclusive cross section at 
order alpha_s^3: Quarks and Gluons”, Phys. Rev. Lett. 64 (1990), 2121. 

[4] W.T. Giele, E.W.N. Glover, D.A. Kosower, “Higher order corrections to 
jet cross-sections in hadron colliders”, Nucl. Phys. B 403 (1993) 633. 

[5] J. Currie, E.W.N. Glover, J. Pires, “Next-to-Next-to Leading Order QCD 
Predictions for Single Jet Inclusive Production at the LHC ”, Phys. Rev. 
Lett. 118 (2017) 072002. 

[6] NEMO HPC Cluster https://www.hpc.uni-freiburg.de/nemo accessed 
01.03.2018 

[7] K. Meier et al., “Dynamic provisioning of a HEP computing 
infrastructure on a shared hybrid HPC system”, J. of Phys., Conf. Ser. 
Vol. 762 (2016) 012012. 

[8] P. Buncic et al., “CernVM – a virtual software appliance for LHC 
applications”, J. of Phys., Conf. Ser. Vol. 219 Part 04 (2010) 042003. 

[9] Squid proxy http://www.squid-cache.org/ accessed 10.12.2017  

[10] HTCondor https://research.cs.wisc.edu/htcondor/ accessed 10.12.2017  

[11] Moab HPC Suite http://www.adaptivecomputing.com/products/hpc-
products/moab-hpc-basic-edition/ accessed 10.12.2017 

[12] OpenStack https://www.openstack.org/ accessed 10.12.2017 

[13] ROCED https://github.com/roced-scheduler/ROCED accessed 
10.12.2017 

[14] T. Kluge, K. Rabbertz, M. Wobisch, “fastNLO: Fast pQCD calculations 
for PDF fits”, in Proc. of  14th International Workshop on Deep Inelastic 
Scattering (DIS 2006), doi:10.1142/9789812706706_0110. 

[15] T. Carli et al., “A posteriori inclusion of parton density functions in 
NLO QCD final-state calculations at hadron colliders: The APPLGRID 
Project”, Eur. Phys. J. C 66 (2010) 503. 

[16] D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, “New features in 
version 2 of the fastNLO project”, in Proc. of 20th International 
Workshop on Deep Inelastic Scattering (DIS 2012), doi:10.3204/DESY-
PROC-2012-02/165. 

 

 

31


	Proceedings_bwHPC2017
	conference_071817
	bwhpc_gorska_camera_ready
	bwHPC_martin_camera_ready
	schaefer_bwhpc2017_cameraready
	bwhpc_bartusch_camera_ready
	bwhpc_witte_cameraready
	bwhpc_kratzke_cameraready
	bwHPC_rabbertz_camera_ready
	bwhpc_baumann_cameraready
	bwhpc_janczyk_cameraready
	bwhpc_renze_cameraready
	kley_bwhpc2017_cameraready



