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S U M M A R Y  

High spatial resolution functional MRI (fMRI) and advanced multivariate anal-
ysis techniques are promising tools for studying the cortical basis of human 
cognitive processes at the level of columns and layers. However the true spatial 
specificity of high-resolution fMRI has not been quantified, and the basis for 
decoding from fine scale structures using large voxels and relatively low mag-
netic field strength is unknown. It is also not yet known what method and 
voxel size is optimal for decoding and what voxel size is optimal for high-
resolution imaging. In this thesis we present four studies that answer part of 
these questions using a model-based approach of imaging cortical columns. 

We started our investigation of model-based analysis of high-resolution 
fMRI of cortical columns by addressing the specific problem of how it is possi-
ble to decode information thought to be mediated by cortical columns using 
large voxels at low field strength. Multivariate machine learning algorithms 
applied to human functional MRI (fMRI) data can decode information con-
veyed by cortical columns, despite the voxel-size being large relative to the 
width of columns. Several mechanisms have been proposed to underlie decod-
ing of stimulus orientation or the stimulated eye. These include: (I) aliasing of 
high spatial-frequency components, including the main frequency component 
of the columnar organization, (II) contributions from local irregularities in the 
columnar organization, (III) contributions from large-scale non-columnar or-
ganizations, (IV) functionally selective veins with biased draining regions, and 
(V) complex spatio-temporal filtering of neuronal activity by fMRI voxels. Here 
we sought to assess the plausibility of two of the suggested mechanisms: (I) 
aliasing and (II) local irregularities, using a naive model of BOLD as blurring 
and MRI voxel sampling. To this end, we formulated a mathematical model 
that encompasses both the processes of imaging ocular dominance (OD) col-
umns and the subsequent linear classification analysis. Through numerical 
simulations of the model, we evaluated the distribution of functional differen-
tial contrasts that can be expected when considering the pattern of cortical 
columns, the hemodynamic point spread function, the voxel size, and the 
noise. We found that with data acquisition parameters used at 3 Tesla, sub-
voxel supra-Nyquist frequencies, including frequencies near the main frequen-
cy of the OD organization (0.5 cycles per mm), cannot contribute to the differ-
ential contrast. The differential functional contrast of local origin is dominated 
by low-amplitude contributions from low frequencies, associated with irregu-
larities of the cortical pattern. Realizations of the model with parameters that 
reflected a best-case scenario and the reported BOLD point-spread at 3 Tesla 
(3.5 mm) predicted decoding performances lower than those that have been 
previously obtained at this magnetic field strength. We conclude that low fre-
quency components that underlie local irregularities in the columnar organiza-
tion are likely to play a role in decoding. We further expect that fMRI-based 
decoding relies, in part, on signal contributions from large-scale, non-columnar 
functional organizations, and from complex spatio-temporal filtering of neu-
ronal activity by fMRI voxels, involving biased venous responses. Our model 
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can potentially be used for evaluating and optimizing data-acquisition parame-
ters for decoding information conveyed by cortical columns.  

Having developed a model of imaging ODCs we then used this model to es-
timate the spatial specificity of BOLD fMRI, specifically at high field (7 T). Pre-
vious attempts at characterizing the spatial specificity of the blood oxygenation 
level dependent functional MRI (BOLD fMRI) response by estimating its point-
spread function (PSF) have conventionally relied on spatial representations of 
visual stimuli in area V1. Consequently, their estimates were confounded by 
the width and scatter of receptive fields of V1 neurons. Here, we circumvent 
these limits by instead using the inherent cortical spatial organization of ocular 
dominance columns (ODCs) to determine the PSF for both Gradient Echo (GE) 
and Spin Echo (SE) BOLD imaging at 7 Tesla. By applying Markov Chain Mon-
te Carlo sampling on a probabilistic generative model of imaging ODCs, we 
quantified the PSFs that best predict the spatial structure and magnitude of 
differential ODCs’ responses. Prior distributions for the ODC model parameters 
were determined by analyzing published data of cytochrome oxidase patterns 
from post-mortem histology of human V1 and of neurophysiological ocular 
dominance indices. The most probable PSF full-widths at half-maximum were 
0.82 mm (SE) and 1.02 mm (GE). Our results provide a quantitative basis for 
the spatial specificity of BOLD fMRI at ultra-high fields, which can be used for 
planning and interpretation of high-resolution differential fMRI of fine-scale 
cortical organizations. 

Our BOLD fMRI PSF findings show that the PSF is considerably smaller 
than what was reported previously. This in turn raised the question of the role 
of the imaging PSF, which now has become relevant. Next we show that the 
commonly used magnitude point-spread function fails to accurately represent 
the true effects of k-space sampling and signal decay, and propose an alterna-
tive model that accounts more accurately for these effects. The effects of k-
space sampling and signal decay on the effective spatial resolution of MRI and 
functional MRI (fMRI) are commonly assessed by means of the magnitude 
point-spread function (PSF), defined as the absolute values (magnitudes) of 
the complex MR imaging PSF. It is commonly assumed that this magnitude PSF 
signifies blurring, which can be quantified by its full-width at half-maximum 
(FWHM). Here we show that the magnitude PSF fails to accurately represent 
the true effects of k-space sampling and signal decay.  Firstly, a substantial part 
of the width of the magnitude PSF is due to MRI sampling per se. This part is 
independent of any signal decay and its effect depends on the spatial frequen-
cy composition of the imaged object. Therefore, it cannot always be expected 
to introduce blurring. Secondly, MRI reconstruction is typically followed by 
taking the absolute values (magnitude image) of the reconstructed complex 
image. This introduces a non-linear stage into the process of image formation. 
The complex imaging PSF does not fully describe this process, since it does not 
reflect the stage of taking the magnitude image. Its corresponding magnitude 
PSF fails to correctly describe this process, since convolving the original pat-
tern with the magnitude PSF is different from the true process of taking the 
absolute following a convolution with the complex imaging PSF. Lastly, signal 
decay can have not only a blurring, but also a high-pass filtering effect. This 
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cannot be reflected by the strictly positive width of the magnitude PSF. As an 
alternative, we propose to model the imaging process by decomposing it into a 
signal decay-independent MR sampling part and an approximation of the sig-
nal decay effect. We approximate the latter as a convolution with a Gaussian 
PSF or, if the effect is that of high-pass filtering, as reversing the effect of a 
convolution with a Gaussian PSF. We show that for typical high-resolution 
fMRI at 7 Tesla, signal decay in Spin-Echo has a moderate blurring effect 
(FWHM = 0.89 voxels, corresponds to 0.44 mm for 0.5 mm wide voxels). In 
contrast, Gradient-Echo acts as a moderate high-pass filter that can be inter-
preted as reversing a Gaussian blurring with FWHM = 0.59 voxels (0.30 mm 
for 0.5 mm wide voxels). Our improved approximations and findings hold not 
only for Gradient-Echo and Spin-Echo fMRI but also for GRASE and VASO 
fMRI. Our findings support the correct planning, interpretation, and modeling 
of high-resolution fMRI. 

In our first study we used our model to analyze imaging of cortical columns 
under a very specific scenario. We studied a best case scenario for decoding the 
stimulated eye from ODCs imaged at 3T using large voxels. In order to do so, 
we formalized available knowledge about fMRI of cortical columns. In particu-
lar, the ability of fMRI to resolve cortical columnar organization depends on 
several interdependent factors, e.g. the spatial scale of the columnar pattern, 
the point-spread of the BOLD response, voxel size and the signal-to-noise ratio. 
In our fourth study we aim to analyze how these factors contribute and com-
bine in imaging of arbitrary cortical columnar patterns at varying field 
strengths and voxel sizes. In addition, we compared different pattern imaging 
approaches. We show how detection, decoding and reconstruction of a fine 
scale organization depend on the parameters of the model, and we predict op-
timal voxel sizes for each approach under various scenario. 

The capacity of fMRI to resolve cortical columnar organizations depends on 
several factors, e.g. the spatial scale of the columnar pattern, the point-spread 
of the fMRI response, the voxel size, and the SNR considering thermal and 
physiological noise. How these factors combine, and what is the voxel size that 
optimizes fMRI of cortical columns remain unknown. Here we combine current 
knowledge into a quantitative model of fMRI of patterns of cortical columns. 
We compare different approaches for imaging patterns of cortical columns, in-
cluding univariate and multivariate based detection, multi-voxel pattern analy-
sis (MVPA) based decoding, and reconstruction of the pattern of cortical col-
umns. We present the dependence of their performance on the parameters of 
the imaged pattern and the data acquisition, and predict voxel sizes that opti-
mize fMRI under various scenarios. To this end, we modeled differential imag-
ing of realistic patterns of cortical columns with different spatial scales and de-
grees of irregularity. We quantified the capacity to detect and decode stimulus-
specific responses by analyzing the distribution of voxel-wise differential re-
sponses relative to noise. We quantified the accuracy with which the spatial 
pattern of cortical columns can be reconstructed as the correlation between the 
underlying columnar pattern and the imaged pattern. For regular patterns, op-
timal voxel widths for detection, decoding and reconstruction were close to 
half the main cycle length of the organization. Optimal voxel widths for irregu-
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lar patterns were less dependent on the main cycle length, and differed be-
tween univariate detection, multivariate detection and decoding, and recon-
struction. We compared the effects of different factors of Gradient Echo fMRI 
at 3 Tesla (T), Gradient Echo fMRI at 7T and Spin-Echo fMRI at 7T, and found 
that for all measures (detection, decoding, and reconstruction), the width of 
the fMRI point-spread has the most significant effect. In contrast, different re-
sponse amplitudes and noise characteristics played a comparatively minor role. 
We recommend specific voxel widths for optimal univariate detection, for mul-
tivariate detection and decoding, and for reconstruction under these three da-
ta-acquisition scenarios. Our study supports the planning, optimization, and 
interpretation of fMRI of cortical columns and the decoding of information 
conveyed by these columns. 
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S Y N O P S I S  

Modeling and analysis of mechanisms 
underlying high-resolution functional 
MRI of cortical columns 
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Introduction 

The cerebral cortex and human cognition 
How does our brain allow us to perceive the world? How does it enable us to 
remember, to plan actions and to communicate? It is widely believed that the 
cerebral cortex plays a major role in our cognitive abilities. The cerebral cortex 
is a thin, 3 mm thick sheet, extending approximately 50 cm by 50 cm. It con-
sists of individual areas, that can be distinguished based on cytorchitecture, 
patterns of neuronal connections and involvement in cognitive tasks.  

The neo-cortex comprises six layers that differ in type and density of neu-
rons. Neurons across these six layers form so called microcircuits or microcol-
umns, a basic reoccurring computational structure that might form the basis of 
cortical processing (Bastos et al., 2012; Douglas and Martin, 2004). Connec-
tions between areas originate and terminate in distinct layers. These connectiv-
ity patterns provide a basis for distinguishing two types of connections. They, 
respectively, give rise to feed-forward and feed-back flow of information rela-
tive to the input that the brain receives from the sensory organs. These differ-
ent types of connections impose a hierarchy of cortical areas, suggesting a dis-
tributed and hierarchical processing of information (Felleman and van Essen, 
1991). 

Neurons in the same microcolumn tend to share the same stimulus prefer-
ences in their responses. For example, neurons in a microcolumn in primary 
visual cortex (V1) will all respond preferentially to bars of the same orienta-
tion if presented at a certain position in the visual field through their preferred 
eye of origin. Traversing a distance of approximately 0.5 mm to 1 mm along 
the cortical sheet in a single direction, one will find neurons with a different 
preference with respect to some stimulus dimension. The results of this organi-
zation are columnar maps in which neurons form semi-periodic clusters, be-
tween 0.5 mm and 1 mm wide, in which they share the preference for some 
stimulus attribute. As neurons are generally sensitive to multiple stimulus at-
tributes, several such maps may be present within an area. Prominent exam-
ples are maps of orientation columns and ocular dominance columns (ODCs) 
in V1. 

To summarize, neurons in a cortical column respond similarly to the same 
stimulus while neurons in the same cortical layer receive input from similar 
origins within the local microcircuit and from other areas along the cortical 
hierarchy. This organization makes the spatial scale of columns and layers suit-
able to provide information about how the cortex processes information locally 
and between areas. 

Studying the neuronal basis of cognition in humans 
Most of what is known about the structure and physiology of the cerebral cor-
tex has been the result of invasive physiological and anatomical studies in an-
imals. Most notably, macaque monkeys have served as a model organism for 
cortical visual processing in humans. However, for a number of reasons it is 
desirable to study such processes in humans directly. For example, animals 
need to be trained, higher cognitive tasks like language can only be studied in 
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humans and it is not guaranteed that results in animals will apply completely 
to humans. 

However, for ethical reasons, research methods for human subjects are lim-
ited compared to animals. Available methods to study the human brain include 
the analysis of brain injuries, purely behavioral experiments, electroenceph-
alography (EEG), magnetoencephalography (MEG), transcranial magnetic 
stimulation (TMS) and positron emission tomography (PET). 

Brain injuries provide very crude spatial and no temporal resolution. Be-
havioral experiments do not allow us to observe cortical processes directly. 
EEG and MEG provide excellent temporal resolution but it is very difficult to 
infer the spatial origin of observed responses. TMS allows us to manipulate re-
sponses in the brain, but similar to EEG and MEG these responses cannot be 
localized precisely. Finally, positron emission tomography measures metabolic 
activity of the brain using radioactive tracers. In addition to its invasive nature, 
its temporal resolution is low and its spatial resolution is not sufficiently high 
to resolve layers and columns. None of these techniques allow us to study the 
human brain non-invasively at the resolution of columns and layers. 

Functional magnetic resonance imaging 
In 1990, Ogawa et al. (1990) showed that magnetic resonance imaging (MRI) 
can be sensitive to the oxygenation level of blood. This led to the development 
of blood-oxygenation-level dependent (BOLD) fMRI (Bandettini et al., 1992; 
Kwong et al., 1992; Ogawa et al., 1992). BOLD fMRI soon became arguably 
the most important tool of cognitive neuroscience. 

BOLD fMRI is based on the fact that following increases in neuronal activity 
local arterial cerebral blood flow (CBF) increases are relatively larger than the 
increases in oxygen consumption. This results in higher levels of oxygenated 
hemoglobin and consequently reduced levels of deoxygenated hemoglobin 
(deoxyhemoglobin). Deoxyhemoglobin is paramagnetic, and thus it interferes 
with the homogeneity of the magnetic field in and around blood vessels (intra- 
and extravascular effects), causing the spins of diffusing hydrogen atoms to 
dephase. The end result of reduced deoxyhemoglobin levels due to increased 
neuronal activity are signal increases in MRI sequences that are sensitive to 
dephasing-dependent changes in transversal relaxation rates. 

The most commonly used BOLD fMRI pulse sequence and contrast is gradi-
ent echo (GE). GE BOLD is sensitive to the intra- and extravascular effects of 
activation-induced changes in the deoxyhemoglobin content of blood. At 
standard magnetic field strengths (1.5 T, 3 T) the signal is dominated by con-
tributions from larger blood vessels (Jochimsen et al., 2004; Uludağ et al., 
2009). At higher magnetic field strengths, the strong intravascular component 
of these large blood vessels decreases, while the extravascular signal changes 
around capillaries and smaller vessels increase (Uludağ et al., 2009; Yacoub et 
al., 2001). Additional weighting towards the microvasculature can be achieved 
by using spin echo (SE) BOLD imaging, which suppresses extravascular signal 
contributions from larger blood vessels (Uludağ et al., 2009; Yacoub et al., 
2003). 
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High spatial resolution fMRI 
The majority of fMRI studies were done using GE BOLD fMRI at 1.5 T and 

3 T at relatively low spatial resolution and were concerned with identifying 
which cortical areas were involved in which cognitive tasks. However, a num-
ber of studies used fMRI at higher magnetic field strengths with higher spatial 
resolution to successfully image columnar structures in the human cortex 

(Cheng et al., 2001; Goodyear and Menon, 2001; Yacoub	et	al.,	2008;	2007; 
Zimmermann et al., 2011). More recently, also the possibility to image layer 
dependent activity was demonstrated (Chaimow et al., 2012; 2011; De Marti-
no et al., 2015; Fracasso et al., 2016; Muckli et al., 2015). 

However, high-resolution studies are methodologically challenging. In addi-
tion to requiring high magnetic fields they place high demands on the gradient 
system in order to achieve a high nominal resolution. Furthermore they can 
suffer from relatively low SNR and motion artifacts. Finally the attainable spa-
tial resolution is ultimately limited by the spatial specificity of the BOLD re-
sponse.  

The first study to quantify the spatial specificity of the BOLD response (En-
gel et al., 1997) used an elegant phase-encoding paradigm that induced travel-
ing waves of retinotopic neural activity in the primary visual cortex (V1). As-
suming a shift-invariant linear response, Engel et al. (1997) estimated the 
point-spread function (PSF), which represents the spatial response that would 
be elicited by a small point stimulus. They found the full-width at half-
maximum (FWHM) of the GE BOLD PSF to be 3.5 mm at 1.5 T. Similar values 
(3.9 mm for GE BOLD and 3.4 mm for SE BOLD) have been reported at 3 T 
(Parkes et al., 2005) using a paradigm similar to that used in Engel et al. 
(1997). To estimate the GE BOLD PSF at 7 T, we previously measured the spa-
tiotemporal spread of the fMRI response in grey matter regions around the V1 
representation of edges of visual stimuli (Shmuel et al., 2007). To reduce con-
tributions from macroscopic veins, we excluded voxels that showed vessel-like 
response features. The mean measured and estimated FWHMs were 2.34 ± 
0.20 mm and < 2 mm, respectively. The spatial specificity of SE BOLD fMRI at 
ultra-high magnetic fields has not yet been quantified. 

All previous studies of the spatial specificity of the BOLD response had re-
lied on spatial representations of visual stimuli in V1. Because of the width and 
scatter of V1 receptive fields, such estimates are confounded. They reflect the 
combined spread of neural and BOLD response. Therefore, they only measure 
the capacity of the BOLD response to resolve retinotopic representations but 
not its ability to resolve more fine-grained neural activity. 

Multivariate pattern analysis - decoding 
A different approach towards probing fine structures relies on the application 
of multivariate pattern analysis (MVPA) methods, rather than increasing the 
spatial resolution of fMRI. The traditional approach to fMRI analysis can be 
summarized as massive univariate statistical analysis using a general linear 
model (GLM). The time-course of every voxel is separately analyzed for activa-
tion caused by experimental conditions. 
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MVPA considers the activity of multiple voxels as multivariate data points. 
Furthermore MVPA most often uses a decoding approach in which a machine 
learning algorithm is trained to predict the experimental condition from the 
measured activity. Successful  prediction (decoding) of the experimental condi-
tion from an “unseen” subset of the data, that was not available to the algo-
rithm for training, is then taken as evidence for the presence of condition spe-
cific information in the measured activity. 

A number of studies (e.g. Haxby et al., 2001; Haynes and Rees, 2005; 
Kamitani and Tong, 2005) have demonstrated that multivariate machine learn-
ing algorithms can decode visual stimuli from fMRI data. Using GE BOLD fMRI 
data obtained at 3 T, these algorithms decoded information thought to be me-
diated by cortical columns. This result seemed surprising given the large size 
of the voxels (3 × 3 × 3 mm3) relative to the mean cycle length of columns 
(2 mm or less for ODCs and orientation columns in humans). This result was 
even more surprising considering the relatively wide PSF of GE BOLD fMRI 
signals at 3T (Engel et al., 1997; Parkes et al., 2005). 

Important questions 
High spatial resolution BOLD fMRI and advanced multivariate analysis tech-
niques promise to provide a window into activity of the human cerebral cortex 
at the scale of columns and layers. The non-invasiveness and applicability of 
these methods to the living human brain make them well suited for studying 
the cortical basis of human cognitive processes. 

However the true spatial specificity of high-resolution BOLD fMRI has not 
been quantified. Furthermore the basis for decoding from fine scale structure 
using large voxels and relatively low magnetic field strength is not known. It is 
also not known what method and voxel size is optimal for decoding and what 
voxel size is optimal for high-resolution imaging. Finally it is not clear how to 
interpret imaging results from unknown cortical-columns-like patterns of activ-
ity. 

To optimally plan high-resolution BOLD fMRI studies and to correctly in-
terpret their results, it is necessary to know the inherent limits of spatial speci-
ficity of BOLD fMRI relative to the sites where changes in neuronal activity oc-
cur. It is also important to quantitatively understand how factors such as spa-
tial specificity, voxel size, noise and the structure of interest contribute and in-
teract in the process of imaging or decoding. 

In this thesis we present four studies that answer part of these question us-
ing a model-based approach of imaging cortical columns. 

Study 1: Modeling and analysis of mechanisms underlying fMRI-
based decoding of information conveyed in cortical columns 

We started our investigation of model-based analysis of fMRI from cortical col-
umns by addressing the specific problem of how it is possible to decode infor-
mation thought to be mediated by cortical columns using large voxels acquired 
at low field strength. 
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Several mechanisms had been proposed to underlie decoding of stimulus 
orientation or the stimulated eye. These include: (I) aliasing of high spatial-
frequency components, including the main frequency component of the co-
lumnar organization, (II) contributions from local irregularities in the colum-
nar organization, (III) contributions from large-scale, non-columnar organiza-
tions, (IV) functionally selective veins with biased draining regions, and (V) 
complex spatio-temporal filtering of neuronal activity by fMRI voxels. 

Out of these five mechanisms proposed to underlie decoding of stimulus 
orientation or the stimulated eye we sought to assess the plausibility of two of 
the suggested mechanisms: (I) aliasing and (II) local irregularities, by creating 
a model of imaging ODC patterns. The aim was to evaluate quantitatively what 
levels of functional contrast and classification performance can be expected 
considering basic mechanisms. By “basic mechanisms” we refer to the integra-
tion of signals that an MRI voxel overlaps, while considering the BOLD point 
spread, the process of voxel sampling, and noise. 

The model that we developed served as a basis for this and the remaining 
three studies of this thesis (Study 1, Fig. 1). The first component of the model, 
i.e. the modeling of realistic patterns of ODCs, followed Rojer and Schwartz 
(1990). It consisted of band-pass filtering of spatial white noise followed by 
applying a sigmoidal point-wise non-linearity, which controlled the smoothness 
of transitions between left and right eye preference regions. The spatial BOLD 
response was modeled as a convolution of the ODC pattern with a Gaussian 
PSF. MRI k-space sampling was modeled by restricting the spatial frequency 
space to its central part in accordance with the modeled field of view, sampling 
matrix and voxel size (Haacke et al., 1999). 

The modeled voxel differential responses followed a distribution with zero 
mean. The standard deviation of the distribution of differential responses re-
flects the dispersion of condition specific contrasts (here, contrast between re-
sponses to left and right eye stimulation) present in a set of imaged voxels. 
The larger this standard deviation, the larger the differential contrast values 
that exist in the specific distribution. We defined the term contrast range as this 
standard deviation of the distribution of differential responses. Contrast range, 
the number of voxels and the level of noise allowed us to calculate expected 
classification performance. 

First we studied how contrast range and classification performance de-
pended on the voxel width and BOLD point spread width. The BOLD PSF and 
the voxel width acted as low-pass filters, reducing information conveyed by 
high frequencies, and were found to be important factors in determining the 
functional contrast and classification performance. Nonetheless we found that 
for large point spreads, the voxel width had almost no effect on functional con-
trast. In contrast, for large voxel widths, increasing BOLD PSF still decreased 
the functional contrast. The reason for this is that MR voxel sampling simply 
discards frequencies higher than the Nyquist frequency but leaves lower fre-
quencies untouched. Therefore it has a very small effect when high frequencies 
are already filtered out by the BOLD point spread. In contrast, the BOLD PSF 
reduces contributions at every frequency, including low frequencies. 
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We analyzed the contributions of single spatial frequency components to 
the functional contrast and classification with parameters routinely used at 3 
Tesla. The results ruled out contributions of aliasing of information represent-
ed at high spatial frequency corresponding to the main frequency of the co-
lumnar organization or higher frequencies. Not only are these high-frequency 
components filtered out by the BOLD PSF, also all frequencies higher than the 
Nyquist frequency are discarded by the MR imaging process. Modeling MRI 
voxels as sinc-functions removes aliased sub-voxel signals, since they are not 
part of the k-space sampling, whereas the BOLD PSF further attenuates contri-
butions from high-frequencies that are still within the range of frequencies 
sampled in the k-space. Therefore, all locally generated contrast useable by a 
classifier, although very low in amplitude, is caused by random variations and 
irregularities of the columnar organization. Increasing these irregularities im-
proves classification performance. 

Under the assumptions of MRI voxels acting as compact kernels, BOLD-
blurring of neuronal activity, and imaging parameters used at 3 Tesla, spatial 
frequencies as high as the main frequency of ODCs (0.5 cycles per mm) cannot 
contribute to decoding of stimulus features represented in cortical ODCs. Vari-
ations in the ocular dominance maps captured by lower frequencies constitute 
the only local component that conveys significant information on the stimulat-
ed eye. The contrasts contributed by these low frequencies are very low in am-
plitude though, insufficient for accounting for classification performance re-
ported at 3 Tesla. We expect that lower frequencies, larger scale pattern varia-
tions (e.g., due to higher-amplitude responses to the contra lateral eye; and 
oblique and radial effects in the orientation domain) contribute significantly to 
fMRI based classification. We expect, in addition, that mechanisms not consid-
ered in the current model, e.g. functionally biased venous responses, spatially-
variable point spread, and possibly complex spatio-temporal filtering of neu-
ronal activity play significant roles in decoding.  

Study 2: Spatial specificity of the functional MRI blood oxygenation 
response relative to neuronal activity 

Having developed a model of imaging ODCs, we then used this model to pro-
vide a better answer to the question of spatial specificity of BOLD fMRI, specif-
ically at high field (7 T).  

All previous attempts at characterizing the spatial specificity of the BOLD 
fMRI response (Engel et al., 1997; Parkes et al., 2005; Shmuel et al., 2007) 
relied on an implicit assumption that neuronal responses to small visual stimu-
li are point-like. To estimate the spatial specificity of the BOLD response, these 
studies have conventionally relied on spatial representations of visual stimuli 
in area V1. Unlike the implicit assumption of point-like responses, the recep-
tive fields of neurons in V1 have non-zero spatial extents (Hubel and Wiesel, 
1968). In addition, electrode measurements in macaque V1, oriented orthogo-
nally relative to the surface of cortex, have demonstrated substantial scatter in 
the center of receptive fields (Hubel and Wiesel, 1974). Therefore, the pattern 
of neural activity parallel to the cortical surface is a blurred representation of 
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the visual stimulus. This implies that receptive field size and scatter pose a 
lower limit on any BOLD fMRI PSF width that is estimated using spatial repre-
sentations of visual stimuli in V1. Consequently, the previously computed esti-
mates of the spatial specificity of the fMRI response were confounded by the 
width and scatter of receptive fields of V1 neurons. Such estimates are limited 
in that they solely measure the capacity of the BOLD response to resolve reti-
notopic representations; they do not measure its ability to resolve more fine-
grained neural activity. Yet only this latter resolvability matters for functional 
imaging at the spatial scale of cortical columns. 

Our model allowed us to circumvent the limits posed by the retinotopic 
representation of visual stimuli by instead using the inherent cortical spatial 
organization in the form of ODCs. We extended our model to a probabilistic 
model in order to quantify the widths of the PSF that best predict the spatial 
structure and magnitude of ODC responses acquired at 7 T using GE and SE 
BOLD imaging. 

The key idea is to treat the Gaussian white noise, that was spatially filtered 
in order to model realistic columnar patterns, as a high dimensional parameter 
with a multivariate normal prior probability distribution. By applying Markov 
Chain Monte Carlo sampling on our probabilistic generative model of imaging 
ODCs, we quantified the PSFs that best predict the spatial structure and mag-
nitude of differential ODCs' responses. We determined prior distributions for 
the ODC model parameters by analyzing published data of cytochrome oxidase 
patterns from post-mortem histology of human V1 (Adams et al., 2007) and of 
neurophysiological ocular dominance indices (Berens et al., 2008; Hubel and 
Wiesel, 1968). We then reanalyzed fMRI data (Yacoub et al., 2007) from hu-
man ODCs. We estimated responses to left and right eye stimulations. Their 
voxel-wise difference resulted in a differential ODC map while the distribution 
of their average response and of their estimation standard error made it possi-
ble to constrain the overall BOLD amplitude and the measurement noise of the 
model.  

Using the data (differential responses), the probabilistic model and the pa-
rameter priors, we applied Markov chain Monte Carlo (MCMC) sampling in 
order to sample from the posterior distribution of FWHM parameters. The 
most probable PSF FWHMs averaged over subjects were 0.82 mm (SE) and 
1.02 mm (GE). 

Across all modeled ODC patterns, the GE PSF was almost always wider 
than the SE PSF. We calculated the resulting posterior distribution of differ-
ences between GE and SE point-spread widths. Averaged over subjects, the 
most probable difference was 0.25 mm. 

In addition, we used our 7 T GE result and how it related to previous re-
sults confounded by receptive fields to make a rough estimate of what the non-
confounded PSF widths at lower fields would be. The width of the BOLD PSF 
has been estimated to be 3.5 mm for 1.5 T GE BOLD (Engel et al., 1997), 3.9 
mm for 3 T GE BOLD and 3.4 mm for 3 T SE BOLD (Parkes et al., 2005). As-
suming that on average the receptive field effect can be modeled as another 
convolution with a Gaussian, we estimated a receptive field effect with an 
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FWHM of 1.72 mm and non-confounded PSF estimates of 3 mm (1.5 T GE 
BOLD), 2.8 mm (3 T GE BOLD) and 3.5 mm (3 T SE BOLD). 

Our results facilitate planning and interpretation of high-resolution fMRI 
studies of fine scale cortical organizations. 

Study 3: A more accurate account of the effect of k-space sampling 
and signal decay on the effective spatial resolution in functional 
MRI 

Our BOLD fMRI PSF findings (Study 2) showed that the PSF is considerably 
smaller than what was reported previously. This in turn raised the question of 
the role of the imaging PSF, which has now become relevant. The imaging PSF 
describes the effect of the MR imaging process, specifically discrete k-space 
sampling and !"/!"∗ signal decay during sampling, on the effective spatial reso-
lution. The imaging PSF contributes to the overall BOLD fMRI PSF. 

Given the relatively narrow widths of the overall BOLD fMRI PSF that we 
found (0.82 mm for 7 T SE and 1.02 mm for 7T GE), results from previous im-
aging PSF studies (e.g. FWHM of ~1 mm or larger for partial Fourier 7T SE 
using 0.5 mm voxels; Kemper et al., 2015) would suggest that the contribution 
of the imaging PSF to the overall BOLD fMRI PSF could be quite substantial. 
Paradoxically, its width might be even larger than that of the overall BOLD 
fMRI PSF. This necessitates a careful analysis of how the imaging PSF had been 
modeled.   

The imaging PSF is commonly studied in form of the magnitude point-
spread function, defined as the absolute values (magnitudes) of the complex 
MR imaging PSF. It is commonly assumed that this magnitude PSF signifies 
blurring, which can be quantified by its full-width at half-maximum (FWHM). 
However, in Study 3 we show that the magnitude PSF fails to accurately repre-
sent the true effects of k-space sampling and signal decay.  

Firstly, a substantial part of the width of the magnitude PSF is due to MRI 
sampling per se. This part is independent of any signal decay and its effect de-
pends on the spatial frequency composition of the imaged object. Therefore, it 
cannot always be expected to introduce blurring. Secondly, MRI reconstruction 
is typically followed by taking the absolute values (magnitude image) of the 
reconstructed complex image. This introduces a non-linear stage into the pro-
cess of image formation. The complex imaging PSF does not fully describe this 
process, since it does not reflect the stage of taking the magnitude image. Its 
corresponding magnitude PSF fails to correctly describe this process, since 
convolving the original pattern with the magnitude PSF is different from the 
true process of taking the absolute following a convolution with the complex 
imaging PSF. Lastly, signal decay can have not only a blurring, but also a high-
pass filtering effect. This cannot be reflected by the width of the magnitude 
PSF. 

We simulated T2/T2∗ decay of GE and SE EPI at 7T and MR sampling of 
simulated realistic columnar patterns. We found that for MR imaging with no 
signal decay, the imaged pattern was very similar to the original pattern. How-
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ever, the FWHM of the magnitude PSF corresponding to MRI with no signal 
decay was 0.6 mm. GE imaging had the effect of a moderate high-pass filter. 
Also this result could not be expected by simply considering the FWHM of the 
magnitude PSF, which was 0.67 mm. The SE image was slightly blurred. How-
ever, convolutions of the original pattern with Gaussian PSFs of the same 
widths as those computed from the SE magnitude PSFs and convolutions with 
the SE magnitude PSF itself resulted in stronger blurring. 

In order to characterize the complete non-linear MRI process using a PSF, 
we propose an alternative method. First we approximated the MRI process lin-
early. For small deviations from a spatially constant baseline pattern, the re-
sulting linear approximation is identical to a convolution with the real compo-
nent of the complex imaging PSF. 

In a second step, we fitted Gaussians to the MTF of the real component of 
the imaging PSF (and to its inverse). This allowed us to approximate the MRI 
process as a convolution with a Gaussian PSF or, if the effect is that of high-
pass filtering, as reversing the effect of a convolution with a Gaussian PSF, fol-
lowed by MR sampling with no decay. We found that signal decay in SE has a 
moderate blurring effect (FWHM = 0.89 voxels, corresponds to 0.44 mm for 
0.5 mm wide voxels). In contrast, GE acts as a moderate high-pass filter that 
can be interpreted as reversing a Gaussian blurring with FWHM = 0.59 voxels 
(0.30 mm for 0.5 mm wide voxels). 

The magnitude PSF describes the absolute level of influence that neighbor-
ing positions in the original pattern have on each other’s value in the image. 
However, it fails to characterize the nature of this influence (e.g. blurring or 
high-pass filtering). While our approach is an approximation, it results in an 
intuitive characterization of the effect of signal decay and makes it possible to 
compare it to previously reported FWHMs of PSFs associated with the entire 
BOLD fMRI process (BOLD PSF). 

Study 4: Optimization of functional MRI for detection, decoding and 
imaging the response patterns of cortical columns 

In Study 1 we used our model to analyze imaging of cortical columns under a 
very specific scenario. We studied a best case scenario for decoding the stimu-
lated eye from ODCs imaged at 3T using large voxels. In order to do so, we 
formalized the currently available knowledge about fMRI of cortical columns. 
In particular, the ability of fMRI to resolve cortical columnar organization de-
pends on several interdependent factors, e.g. the spatial scale of the columnar 
pattern, the point-spread of the BOLD response, voxel size and the signal-to-
noise ratio. 

In Study 4 we aimed to analyze how these factors contribute and combine 
in imaging of arbitrary cortical columnar patterns at varying field strengths 
and voxel sizes. We compared different pattern imaging approaches and show 
how detection, decoding and reconstruction of a fine scale organization de-
pend on the parameters of the model and predict optimal voxel sizes for each 
approach under various scenarios. 
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Extending our model employed in study 1, we modeled generic isotropic 
columnar patterns of varying spatial scale and degree of irregularity. We 
demonstrate how contrast-to-noise ratio (CNR) can be determined from the 
spatial frequency spectrum of the columnar pattern, the BOLD point-spread 
function, the voxel width, and noise. 

CNR and the number of voxels were used to estimate expected decoding 
accuracy for a linear classifier and the probability to detect a condition-specific 
response in single voxels (univariate) and to detect a pattern response (multi-
variate). The probability to achieve statistically significant decoding and the 
probability to detect a pattern response were virtually identical. The accuracy 
of reconstructing fine scale organizations was quantified as the correlation be-
tween the underlying columnar patterns and the imaged pattern. 

We simulated univariate and multivariate detection probability and pattern 
correlation as a function of voxel size and show how optimal voxel size arises 
as a trade off between functional contrast and noise. 

We further estimated how optimal voxel width changes as a function of the 
spatial organization of the pattern and as a function of the BOLD point-spread 
function. For regular patterns, optimal voxel widths for univariate detection, 
multivariate detection and decoding, and reconstruction were close to half the 
main cycle length of the organization. Optimal voxel widths for irregular pat-
terns were less dependent on the main cycle length, and differed between uni-
variate detection, multivariate detection and decoding, and reconstruction. 

We compared the effects of different factors of GE fMRI at 3 T, GE fMRI at 
7T and SE fMRI at 7T, and found that for all measures (detection, decoding, 
and reconstruction), the width of the fMRI point-spread has the most signifi-
cant effect. In contrast, different response amplitudes and noise characteristics 
played a comparatively minor role. 

Finally, we recommend specific voxel widths for optimal univariate detec-
tion, for multivariate detection and decoding, and for reconstruction under 
these three data-acquisition scenarios.  

Implications for columnar imaging 

Resolving cortical columns using 7T BOLD fMRI 
In Study 2 we quantified the BOLD PSF in human subjects relative to neuronal 
activity, avoiding the confounding effects of scatter and size of visual receptive 
fields which were not eliminated in previous estimations (Engel et al., 1997; 
Parkes et al., 2005; Shmuel et al., 2007). The most probable PSF FWHMs were 
0.82 mm (SE) and 1.02 mm (GE). Our PSF widths provide a quantitative basis 
for resolving cortical columns and allow to model the spatial spread of the 
BOLD response. 

Table 2 of Study 4 shows that columnar patterns with cycle lengths of 1.4 
mm or larger are expected to be well imaged at 7 T using GE or SE BOLD. As-
suming differential analysis, their imaged patterns are expected to have corre-
lations of 0.7071 or higher relative to the original pattern. This minimal cycle 
length of 1.4 mm corresponds in differential analysis to column widths of 0.7 
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mm, which is narrower than human ODCs (~0.9 mm; Adams et al., 2007) and 
orientation columns (~0.8 mm; Yacoub et al., 2008). 

The imaging PSF, which accounts for k-space sampling effects (discrete fi-
nite sampling of k-space and signal decay during sampling) is part of the over-
all BOLD PSF. We have shown in study 3 that the effect of signal decay is rela-
tively small compared to the overall BOLD PSF. Its effect is proportional to the 
voxel width and therefore its contribution to the overall BOLD PSF decreases 
with decreasing voxel width. The effect of k-space sampling per se is not ex-
pected to cause blurring if the voxel width is sufficiently small for sampling the 
larger part of the original spatial frequencies. 

GE vs. SE BOLD fMRI 
In Study 2 we found the SE BOLD PSF (FWHM = 0.82 mm) to be narrower 
than the GE BOLD PSF (FWHM = 1.02 mm). This is expected because the re-
focusing pulse in SE imaging suppresses the extravascular signal around larger 
blood vessels while leaving the signal around the microvasculature intact 
(Uludağ et al., 2009; Yacoub et al., 2003). However, we found that the differ-
ence between the PSF widths of GE and SE was relatively small. We believe 
that this is due to the fact that the influence of larger blood vessels was re-
duced by using a differential imaging paradigm, even when using 7T GE BOLD 
fMRI. 

Consequently, both GE and SE BOLD imaging techniques seem capable of 
resolving cortical columns when applying differential imaging analysis. How-
ever, GE maps are more susceptible to confounds introduced in voxels contain-
ing blood vessels which may not be fully suppressed in differential imaging. 
Therefore, obtaining results of high spatial specificity using GE depends on the 
region of interest and on methods to mask out blood vessels or reduce their 
effect. 

SE is less susceptible to large-vessel confounds, that may not be suppressed 
by differential imaging. The response amplitude of SE is lower than that of GE.  
However, for imaging of highly granular structures such as ODC’s at such high 
resolutions, the differential contrast is similar for GE and SE fMRI. Overall, we 
believe that SE or the related GRASE pulse sequence (Feinberg et al., 2008; 
Oshio and Feinberg, 1991) are the methods of choice for mapping fine struc-
tures, especially when relying on single-condition analysis. However, which 
data acquisition method is optimal depends on the goal of the study and the 
spatial scale of the neuronal architecture under investigation. 

Probing columns at lower fields by means of multivariate pattern analy-
sis 
Small PSF widths are necessary to reconstruct true fine-scale organizations. 
Yet, such small PSF widths can only be expected at high field. At standard 
magnetic field strengths, we inferred the width of the BOLD PSF with no re-
ceptive field confounds to be 2.8 mm (1.5 T GE BOLD), 3.3 mm (3 T GE 
BOLD) and 2.7 mm (3 T SE BOLD). These PSF widths are considerably larger 
than our estimates for 7T GE BOLD and 7T SE BOLD. The reason for this is 
that the BOLD signal (both GE and SE BOLD) at lower field strengths is domi-
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nated by intravascular signals from draining veins (Jochimsen et al., 2004; 
Uludağ et al., 2009). At higher field strengths, the contributions from intravas-
cular signals are reduced due to a shortening of the venous blood T2. In paral-
lel, the relative contributions of extravascular signals around small vessels in-
crease (Duong et al., 2003; Uludağ et al., 2009; Yacoub et al., 2003; 2001). 

In Study 4 we show that such wide PSFs as obtained for magnetic field 
strengths of 3T, make it impossible to resolve fine-scale organizations at the 
scale of cortical columns. But, as our study shows, there is a difference be-
tween resolving columnar patterns, thus reconstructing their true organization, 
and detection of stimulus specific information encoded in their responses. 
Making this distinction explicit allowed as to estimate optimal imaging param-
eters for each of the approaches, and to demonstrate that optimal parameters 
are not necessarily identical between approaches.  

In particular, reconstruction generally requires smaller voxel size than de-
tection. This is especially true for irregular patterns, where detection can bene-
fit from low-frequency components using relatively large voxels with high 
SNR, whereas accurate reconstruction requires high spatial-frequency content 
to be captured, which can only be achieved with smaller voxels. As a result and 
in line with our Study 1, relatively large voxels at lower field strength may pick 
up information present in lower spatial frequencies due to the inherent irregu-
larities of columnar patterns. However, Studies 1 and 4 also show that these 
low-spatial-frequency contributions are expected to be relatively small. The 
fact that a number of studies decoded information thought to be mediated by 
cortical columns with more precision than our modeling predicted suggests 
that additional factors not considered by our model may be at play.  Such fac-
tors in include: (1) underestimated contributions of irregularities, (2) large-
scale bias, (3) biased draining regions, and possibly (4) spatiotemporal com-
plex kernels. 

(1) The role of irregularities 
Higher classification performance in decoding studies could be explained if we 
considerably underestimated low frequency components in the ODC pattern. 
Following Rojer and Schwartz (1990) we used a filter composed of two Gauss-
ians to model ODC columns. There are indications (Blasdel et al., 1995; Rojer 
and Schwartz, 1990) that the spatial frequency spectra of real ODC columns 
correspond to a more heavy-tailed filter function than the Gaussian filter. In 
other words, ODC organizations are expected to include higher contributions 
of relatively lower spatial frequencies than those we modeled. Note that we 
refer here to low-spatial-frequency components caused by local random varia-
tions of ODCs, even when considering equal representations of the two eyes at 
the more global level. This could potentially be a source for larger contrast 
contributions by lower spatial frequencies, and would imply improved classifi-
cation performance.  

Experimental evidence for significant, local rather than global, contribu-
tions of lower spatial-frequency components to the pattern of ODCs was 
demonstrated by Shmuel et al. (2010). Figs. 2–4 in this paper show OD pat-
terns following low-pass filtering (cycles shorter than 4 mm were filtered out). 
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Note significant contributions of low-frequency components to the differential 
maps (Shmuel et al., 2010); these low-frequency components carry discrimina-
tive power (panel B). Whereas some of these eye-selective broad structures 
correspond to macroscopic blood vessels, others correspond to regions in 
which gray matter contributions dominate (Shmuel et al., 2010). We expect 
that the latter are caused by local variations in the ODC pattern. Similarly, 
Swisher et al. (2010) reported that, in cat visual cortex, reliable orientation 
bias could still be found at spatial scales of several millimeters. In the human 
visual cortex, the majority of orientation information imaged at a resolution of 
1×1×1 mm3 was found on millimeter scale (Swisher et al., 2010). 

(2) Large scale bias 
In addition to moderately low spatial frequencies reflecting irregularities of the 
columnar pattern, very low spatial frequencies, reflecting large-scale compo-
nents of the organization were proposed to play a role (Op de Beeck, 2010). 
These include the oblique and radial effects (Furmanski and Engel, 2000; Sa-
saki et al., 2006) associated with the representation of orientation, and the 
higher amplitude response to stimulation of the contra-lateral eye associated 
with the representation of ODCs (Tychsen and Burkhalter, 1997). Consistent 
with these expectations, Swisher et al. (2010) reported contributions to decod-
ing of orientation in the human visual cortex from larger-scale spatial biases 
exceeding 1 cm. Freeman et al. (2011; 2013) confirmed the existence of a 
coarse scale topographic organization of orientation preference in human V1 
and found that this organization suffices to explain successful decoding using 
larger voxels at low field. Beckett et al. (2012) found a large scale retinotopy 
dependent organization for direction of motion and showed that it is sufficient 
to allow decoding.  

While there seems to be ample evidence that large scale organizations con-
tribute to decoding, it is not clear whether they provide a sufficient explana-
tion. Furthermore their exact nature and spatial scales are still being debated 
(Alink et al., 2013; Carlson, 2014; Carlson and Wardle, 2015; Maloney, 2015; 
Mannion et al., 2009; Pratte et al., 2016; Wang et al., 2014). 

(3) Biased draining regions 
Alternatively, draining regions that cover cortical maps and columns non-
homogeneously may cause selective responses of their corresponding blood 
vessels (Gardner, 2010; Gardner et al., 2006; Kamitani and Tong, 2006; 2005; 
Kriegeskorte and Bandettini, 2007; Shmuel, 2010). In this scenario selective 
signals from macroscopic blood vessels can be captured by large voxels; there-
fore, they can contribute to the decoding of stimuli encoded at the resolution 
of cortical columns. Evidence in support of this phenomenon was provided by 
Gardner et al. (Gardner et al., 2006), Shmuel et al. (Shmuel et al., 2010) and 
Thompson et al. (2011). However, while random biases in draining are likely 
to play a role, Adams et al. (Adams et al., 2014) and Blinder et al. (2013) 
found no systematic specialization of the vascular supply for cortical columns. 
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(4) Variations in PSF or spatiotemporal complex kernels 
Lastly, Kriegeskorte et al. (Kriegeskorte et al., 2010) introduced the hypothesis 
that a voxel's BOLD response can be modeled as a complex spatio-temporal 
filter of neuronal activity. These authors described how such a model can ac-
count for representation of high-frequency components of the cortical maps by 
the sampled voxels, and for decoding of information conveyed by cortical col-
umns. Note that the functionally selective responses of veins demonstrated by 
Gardner et al. (Gardner et al., 2006) and Shmuel et al. (Shmuel et al., 2010) 
constitute a specific scenario of the more general concept of interpreting fMRI 
sampling as spatio-temporal filtering of neuronal activity.  

What does decoding at low field strength tell us? 
Irrespective of the exact mechanisms, all proposed mechanisms reflect neu-

ronal selectivity. Even though the exact spatial information is lost, the signals 
are expected to originate at the neuronal level. MVPA allows us to detect the 
presence of information about a stimulus or an experimental condition within 
an area. This information, when not detectable with conventional univariate 
analysis, indicates the possibility that fine scale structures such as cortical col-
umns are involved in its processing. Studies at low magnetic field strengths 
can therefore help to find what kind of columnar level information processing 
an area is involved in. But it is unlikely that such studies would be sensitive to 
all aspects of columnar activity and ultimately they are not capable of resolv-
ing the activity in individual columns. Such a resolvability, however, may be 
necessary in order to understand local information processing. 

Limitations of our current approach and questions for future 
research 

There is a number of issues that were beyond the scope of this work but that 
we believe need to be addressed in order to better understand and advance the 
use of high spatial resolution fMRI to study cortical processes.  

Imaging of layer dependent activity 
Our investigation focused mainly on columnar patterns. The other fine-scale 
cortical structure of interest is the organization of the cortical sheet into layers. 
As we have discussed above, layer dependent activity may play a role in differ-
entiating the origin of information flow that causes local responses as well as 
differences in how the local microcircuit processes information. 

The PSF that we studied in our Study 2 describes the spread along the cor-
tical manifold averaged over all cortical depths. It can be termed the average 
tangential PSF. There are two additional aspects that need to be studied in or-
der to understand the spatial specificity with respect to cortical layers. The first 
aspect is the depth dependence of the tangential PSF. It is not known how the 
layer specific tangential PSF varies quantitatively as a function of depth and 
how this variation may depend on imaging methods and parameters. The fact 
that it does vary has been shown by Polimeni et al. (2010) who demonstrated 
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that the spatial specificity with respect to a retinotopic stimulus was lowest 
towards the pial surface  

The second aspect is the spatial specificity across layers, orthogonal to the 
spread that the tangential PSF describes. It should be noted that there are 
some differences in cerebrovascular organization with respect to radial and 
angular direction (Duvernoy et al., 1981). The largest blood vessels are the pi-
al surface veins that extend in various orientations along the tangential plane. 
Somewhat smaller are cortical- penetrating veins that are organized radially, 
traversing the different cortical layers. The smallest vessels, the capillaries, 
form a fine mesh that locally appears to be isotropic. However, their density 
varies with cortical layers (Weber et al., 2008). For these reasons, we cannot 
directly apply our PSF to the imaging of cortical layers. In addition, the distinc-
tiveness of layers and the bounded nature of the cortical depth continuum ap-
pear to make a PSF convolution model ill-suited for fMRI of cortical layers. 
Nonetheless, the laminar organization of the vasculature (Adams et al., 2014) 
may turn out to benefit the resolvability of layer specific activity using fMRI, 
provided that the signal contributions of penetrating veins and pial draining 
veins can be minimized. 

 Recent results (Chaimow et al., 2012; 2011; De Martino et al., 2015; Fra-
casso et al., 2016; Muckli et al., 2015; Olman et al., 2012) suggest that it is 
possible to differentially resolve layer-specific signals on the scale of 1 mm or 
finer. For example, in a study which is not part of this thesis (Chaimow et al., 
2012; 2011) we measured layer responses in areas V1 and MT to visual stimuli 
of coherently and incoherently moving random dot patterns as well as to flick-
ering checkerboards. We found different layer response profiles for different 
types of stimuli. In particular coherently moving dots caused smaller responses 
in superficial layers of V1 than incoherently moving dots. This suppression of 
responses may reflect feedback from MT, where the detection of coherent mo-
tion leads to suppression of downstream areas compatible with the concept of 
predictive coding. 

We believe layer studies to be a promising direction of further research, es-
pecially within the context of theories about feed-forward and feed-back flow 
of information such as predictive coding. 

Arbitrary orientations of voxels and curved cortex 
Our studies focused on two dimensional imaging. We assumed that fMRI data 
were acquired from a slice that overlapped tangentially with a flat region of 
cortical gray matter whose thickness was similar to the thickness of the visual 
cortex (2.5 mm). This approach has been successfully implemented in several 
studies of columnar imaging from V1 (Cheng et al., 2001; Goodyear and Men-
on, 2001; Shmuel et al., 2010; Yacoub et al., 2008; 2007). Still, it poses limita-
tions on the area of interest and on the cortical anatomy of subjects.  

A more general approach would consider curved cortex as well as arbitrary 
positions and orientations of voxels relative to the cortex. This more general 
situation would result in potential partial volume effects, affect the alignment 
of the voxel integration functions relative to the cortical manifold and could 
introduce differences in column-to-column distances along the pial surface of 
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the cortex compared to distances along the gray matter/white matter bounda-
ry.  

As we discussed in Study 4, our optimization results are likely to generalize 
approximately for the scenario of arbitrary voxel orientations and sampling of 
curved cortex. It is however possible, that under these circumstances, detec-
tion, decoding performance, and reconstruction quality are somewhat reduced, 
and that optimal voxels will be somewhat smaller in order to reduce effects 
related to partial volume and curved cortex. However, the exact consequences 
of considering such a general scenario need to be examined through additional 
modeling and empirical studies preferably taking laminar aspects into account. 

Variations in PSF, blood vessel and response variation 
Our estimated PSF is an average “first order” model.  It has been proposed 
(Kriegeskorte et al., 2010) and demonstrated (Polimeni et al., 2010) that the 
BOLD response depends on the cortical site, suggesting that it is more complex 
than a convolution with a single prototypical Gaussian. The spatial extent and 
the magnitude of the response may vary due to local variations in vascular ge-
ometry. As a consequence, a convolutional model with a single Gaussian func-
tion could only be an approximating simplification. Modeling the spatial BOLD 
response as a Gaussian PSF is a useful approximation for comparing fMRI con-
trasts, quantitative modeling, interpretation, and planning of high-resolution 
fMRI studies. 

But it is of interest to quantify not only the first approximation but also its 
higher order variations. Is there a more precise model that describes the spatial 
specificity of fMRI methods (in tangential and radial direction with respect to 
cortical organization). As an example, Aquino et al. (2012) modeled the BOLD 
response as a travelling wave evolving in time and found that deconvolution of 
neural dynamics using such a model resulted in physiologically more plausible 
spatiotemporal patterns than when using a model separable in space and time 
(Aquino et al., 2014). 

If the PSF varies as a function of location, to which extent does it vary? 
What does this variation depend on? Does it vary in amplitude, width and 
shape? The relatively wide distribution of average responses across voxels in 
Fig.4 of our Study 2 (distribution of l/r averg. resp.) indicates that spatial vari-
ation in response amplitude may be a factor that needs to be considered. 

Finally what consequences does the variability of spatial specificity have for 
our expected ability to detect stimulus specific columnar response patterns, to 
decode from these responses and to reconstruct their fine scale organization? 
PSF variations may not matter much for reconstruction of a pattern as they are 
unlikely to influence the average correspondence between the true and the im-
aged pattern. Such variations could however have an effect on decoding algo-
rithms that employ feature selection and would benefit disproportionally from 
voxels with narrow or biased PSFs. However, the true effect of the variability 
needs to be studied empirically by future studies which will apply high-
resolution fMRI to large volumes of the brain.  
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Empirical studies 
In addition to estimating the spatial specificity of BOLD fMRI at 7T, we used 
other current knowledge about columnar patterns, MR imaging, signal-to-noise 
ratios in fMRI and analysis methods, and developed quantitative models in or-
der to make predictions about imaging of columns. Ultimately, empirical stud-
ies need to test how well our predictions work and to inform us about possible 
gaps in our knowledge. 

Conclusions 

We believe that high-resolution fMRI is an important tool for studying the cor-
tical basis of cognitive processes in humans. In this thesis we have used model-
based analysis of columnar imaging in order to study the spatial specificity of 
BOLD fMRI and to analyze factors involved in decoding from and imaging of 
fine-scale columnar patterns. We found that 7T BOLD imaging is capable of 
imaging typical columnar patterns and we quantified its spatial specify and its 
potential to reconstruct and detect patterns. This quantitative knowledge may 
help to build models, plan studies and interpret results. Imaging approaches at 
lower field strengths relying on MVPA may exploit low-spatial-frequency in-
formation present due to irregularities in columnar patterns. Several additional 
mechanisms may explain unexpectedly high classification performances in the 
literature and are still under debate. Additional studies will be needed in order 
to further advance the potential of high-resolution fMRI to contribute to the 
understanding of the cortical basis of human cognitive processing. 
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Multivariate machine learning algorithms applied to human functional MRI (fMRI) data can decode
information conveyed by cortical columns, despite the voxel-size being large relative to the width of columns.
Several mechanisms have been proposed to underlie decoding of stimulus orientation or the stimulated eye.
These include: (I) aliasing of high spatial-frequency components, including the main frequency component of
the columnar organization, (II) contributions from local irregularities in the columnar organization, (III)
contributions from large-scale non-columnar organizations, (IV) functionally selective veins with biased
draining regions, and (V) complex spatio-temporal filtering of neuronal activity by fMRI voxels. Here we
sought to assess the plausibility of two of the suggested mechanisms: (I) aliasing and (II) local irregularities,
using a naive model of BOLD as blurring and MRI voxel sampling.
To this end, we formulated a mathematical model that encompasses both the processes of imaging ocular
dominance (OD) columns and the subsequent linear classification analysis. Through numerical simulations of
the model, we evaluated the distribution of functional differential contrasts that can be expected when
considering the pattern of cortical columns, the hemodynamic point spread function, the voxel size, and the
noise. We found that with data acquisition parameters used at 3 Tesla, sub-voxel supra-Nyquist frequencies,
including frequencies near the main frequency of the OD organization (0.5 cycles per mm), cannot contribute
to the differential contrast. The differential functional contrast of local origin is dominated by low-amplitude
contributions from low frequencies, associated with irregularities of the cortical pattern. Realizations of the
model with parameters that reflected best-case scenario and the reported BOLD point-spread at 3 Tesla
(3.5 mm) predicted decoding performances lower than those that have been previously obtained at this
magnetic field strength. We conclude that low frequency components that underlie local irregularities in the
columnar organization are likely to play a role in decoding.We further expect that fMRI-based decoding relies,
in part, on signal contributions from large-scale, non-columnar functional organizations, and from complex
spatio-temporal filtering of neuronal activity by fMRI voxels, involving biased venous responses. Our model
can potentially be used for evaluating and optimizing data-acquisition parameters for decoding information
conveyed by cortical columns.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Recent studies have demonstrated that multivariate machine
learning algorithms can decode visual stimuli from functional MRI
(fMRI) data (Haxby et al., 2001; Kamitani and Tong, 2005; Haynes and
Rees, 2005a). Using gradient-echo (GE) blood oxygenation level
dependent (BOLD) fMRI data obtained at 3T, these algorithms decoded
information thought to be mediated by cortical columns. This result
seems to be surprising given the large size of the voxels
(3×3×3 mm3) relative to the mean cycle length of columns (2 mm

or less for ocular dominance columns (ODCs) and orientation columns
in humans). This result is even more surprising considering the
relatively wide point-spread function of GE BOLD fMRI signals at 3T
(~3.5 mm; Engel et al., 1997; Parkes et al., 2005; Shmuel et al., 2007).

The mechanism by which low-resolution imaging decodes
information represented at a fine scale relative to the voxel size is
not clear. In the following we mention five alternative mechanisms
that have been hypothesized (we believe the terms we use are
appropriate for describing these mechanisms, although the original
publications may have used different terms). (I) Aliasing of high
spatial-frequency components of the columnar organization by the
large voxels has been suggested (Boynton, 2005). The “aliasing”
mechanism, also termed the “hyperacuity” mechanism (Op de Beeck,
2010), involves components of the columnar organization with
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frequencies higher than the Nyquist frequency of the MRI sampling
process, that were thought to contribute to the sampled voxels. (II) It
was hypothesized that random, local variations and irregularities in the
functional organization contribute to decoding (Kamitani and Tong,
2005, 2006;Haynes andRees, 2006; Kriegeskorte and Bandettini, 2007).
The argument is that due to the irregular underlying columnar pattern,
each voxel overlaps columns with different preferences unequally,
resulting in biases towards specific preferences. If irregularities exist, the
columnar organization cannot consist of one single spatial-cortical
frequency: it is likely to involve a distribution of frequencies, including
frequencies lower than the main frequency of the organization (Rojer
and Schwartz, 1990). Note that these components, with frequencies
lower than the main frequency of the columnar organization, may be
present even if the overall preferences represented by the columns are
distributed equally across the investigated cortical region. Indeed,
Swisher et al. (2010) and Shmuel et al. (2010) demonstrated
contributions from low frequency components of the functional
columnar organization to decoding. (III) Very low spatial frequencies,
reflecting large-scale components of the organizationwere proposed to
play a role too (Op de Beeck, 2010). These include the oblique and radial
effects (Sasaki et al., 2006; Furmanski and Engel, 2000) associated with
the representation of orientation, and the higher amplitude response to
stimulation of the contra-lateral eye associated with the representation
of ODCs (Tychsen and Burkhalter, 1997).

Alternatively (IV), draining regions that cover cortical maps
and columns non-homogeneously may cause selective responses of
their corresponding blood vessels (Kamitani and Tong, 2005, 2006;
Gardner et al., 2006; Kriegeskorte and Bandettini, 2007; Shmuel et al.,
2010). In this scenario, henceforth termed “biased draining regions,”
selective signals from macroscopic blood vessels can be captured by
large voxels; therefore, they can contribute to the decoding of stimuli
encoded at the resolution of cortical columns. Evidence in support of
this phenomenon was provided by Gardner et al. (2006) and Shmuel
et al. (2010). Lastly (V), Kriegeskorte et al. (2010) introduced a
model in which fMRI voxels sample neuronal activity as complex
spatio-temporal filters. These authors described how such a model
can account for representation of high-frequency components of the
cortical maps by the sampled voxels, and for decoding of information
conveyed by cortical columns. Note that the functionally selective
responses of veins demonstrated by Gardner et al. (2006) and Shmuel
et al. (2010) constitute a specific scenario of the more general concept
of interpreting fMRI sampling as spatio-temporal filtering of neuronal
activity. Irrespective of the exact mechanisms, all five proposed
mechanisms mentioned above reflect neuronal selectivity. Even
though the exact spatial information is lost, the signals are expected
to originate at the neuronal level.

In order to assess the plausibility of the aliasing (hyperacuity)
mechanism and the contributions of low-frequency components of
the columnar organization, it is necessary to quantify their respective
expected biases and the corresponding classification performances. In
this current study, we aimed to create a model that can be used for
studying themechanisms underlying fMRI-based decoding of features
represented in cortical columns. In addition, we sought to evaluate the
distribution of responses, differential contrasts, and classification
performance that can be expected when using large voxels under
realistic conditions. The realization of these objectives can support the
planning of studies involving decoding.

To address these objectives, we developed amodel to image a region
with afine-scale organization of cortical columns, followed by decoding.
Themodelfirst creates a realistic pattern of ODCs organization.Next, the
model addresses the responses of neuronal assemblies within this
organization to specific stimulus conditions. The spatial features of the
BOLD response are then considered, followedbymodeling theprocessof
voxel sampling. In the subsequent decoding portion of the model, we
show that classification performance can be predicted from quantities
obtained within the model. Specifically, decoding performance is fully

characterized by thedistribution of differential contrasts, the noise level,
and the number of analyzed voxels.

Using our model, we demonstrate the dependence of differential
contrast and classification performance on parameters of the studied
functional organization including the sharpness and irregularity of the
cortical map. We further evaluate the dependence of differential
contrast and classification performance on parameters of the data
acquisition process, including the BOLD point spread function (PSF)
and voxel size, and the number of voxels. Lastly, we compare results
obtained by the model to those obtained in decoding studies.

Methods

Overview

We developed a model that enables the prediction of classification
performance as a function of several parameters of interest. The
model is based on linear classification. Linear classification has been
used in previous fMRI-based decoding studies in the form of linear
discriminant analysis (LDA) (e.g. Haynes and Rees, 2005a,b) or linear
support vector machines (Kamitani and Tong, 2005). Here we briefly
describe the structure of the model, and the different stages it
involves. Variables and parameters of the model are presented in
Table 1. All mathematical derivations and details of the model can be
found in the Appendix.

Imaging model

The goal of the imaging model was to model the distribution of
voxel-wise differential responses (Fig. 1). We use the term “contrast
range” to describe how large the expected differential responses are
on average. To quantify the contrast range, we used the standard
deviation of the distribution of single voxel differential responses. This
is a measure of how much contrast between stimulation conditions
can be expected. It will be used later on in calculating the expected
classification performance.

Realistic patterns of ocular dominance columns
The spatial pattern of cortical columns was modeled by spatial

filtering of 2D Gaussian white noise (Rojer and Schwartz, 1990). The
structure of the resulting pattern depends on the shape of the filter.

Table 1
Variables and parameters of the model.

Variable Description Formula

ρ Main frequency of ODC pattern
δ Pattern irregularity, variations orthogonal

to ODC bands
ε Pattern branchiness, variations parallel

to ODC bands
α Sharpness parameter of the sigmoidal

non-linearity in ODC
f xð Þ =

1
1 + e−αx

σBOLD Bold point spread width FWHM=2.35·σBOLD

β Maximal BOLD response
w Voxel width
μYz Mean multivariate voxel-wise response

to condition z
μYz=(μ1,z, μ2,z, …)

tSNR Time-course SNR
σ Time-course noise in a single voxel (standard

deviation of signal change during baseline)
σ = 1

tSNR

d
Y

Multi-voxel mean difference between
conditions

d
Y

= μY1−μY2

di Single voxel difference between conditions d
Y

= d1; d2;…ð Þ

c Contrast range c =
ffiffiffiffiffiffiffiffiffi
〈d2i 〉

q

OCNR Overall contrast-to-noise ratio
ffiffiffiffi
nt

p
c

σ
n Number of voxels
t Number of averaged volumes
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An anisotropic band-pass filter was used, which yields realistic
patterns of elongated ODCs. The ODC filter was parameterized by
the main pattern frequency ρ, which determines the width of the
columns. ρwas set to 0.5 cycles/mm corresponding to a columnwidth
of 1 mm (Yacoub et al., 2007). Two additional parameters, irregularity
(δ) and branchiness (ε), were employed in order to control the level of
pattern irregularities, orthogonal and parallel respectively, to the ODC
columns. When not otherwise noted, parameters δ and ε were set to
0.3 cycles/mm and 0.4 cycles/mm, respectively. These numbers were
based on the analysis of macaque ODC maps (Rojer and Schwartz,
1990) which we scaled to fit the spatial frequency of ODCs in humans.
Herewe assumed that human ODCmaps have a very similar structure,
only scaled in space according to Horton et al. (1990), Adams et al.
(2007) and Yacoub et al. (2007).

The filter was normalized so that the output had a standard
deviation of 1. The filtered noise was passed through a sigmoidal non-

linearity with parameter α that controlled the sharpness of the
transitions from one column to the adjacent columns (Rojer and
Schwartz, 1990). When not otherwise noted, we used α=4, resulting
in a moderate level of sharpness.

Neuronal response
The neuronal response was defined on an arbitrary scale from 0 to

1, where 0 stands for no response and 1 represents a maximal
response. The two stimulation conditions were assumed to produce
opposing patterns of neuronal responses proportional to their
respective preferences as defined by the ODC map.

BOLD response
The spatial characteristics of the BOLD responseweremodeled as a

convolution of the neuronal response with a two-dimensional BOLD
point spread function (Engel et al., 1997; Parkes et al., 2005; Shmuel

Fig. 1.Model overview. In stage 1, ODC maps are modeled by spatial filtering of white noise. In stage 2 we simulate the neuronal response to right- or left eye stimulation. In stage 3
the neuronal response is convolved with a BOLD point-spread function. In stage 4 the BOLD response is transformed into a voxel pattern. In stage 5 the difference between the
responses to the two stimulation conditions is computed in order to obtain a voxel pattern of differential response. All voxels in this pattern create the distribution of differential
response contrast values. This distribution is characterized by its standard deviation, which reflects the range of contrasts in the set of imaged voxels (= “contrast range”).
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et al., 2007). The width of the convolution kernel was parameterized
using the full width at half maximum (FWHM) measure. A second
parameter, β, stood for the absolute scaling of the kernel. Its role was
to generate realistic response amplitude values such that the maximal
neuronal response results in a steady state BOLD response of
amplitude β. Following a realistic best-case scenario approach β was
chosen to be 5% (Krüger et al., 2001; Boynton et al., 1996; our own
experience). We assumed that residual head motion was comparable
between studies that reported PSF at 3 Tesla and decoding studies.
Therefore, rather than directly accounting for residual motion, our
model considers residual head motion implicitly through the
convolution with the BOLD PSF.

MR imaging process and voxel sampling
The MR imaging process was modeled as sampling the k-space

representation of the BOLD response patterns at discrete steps
determined by the field of view and the voxel width, and a subsequent
discrete Fourier transform (Haacke et al., 1999). The responses to the
two conditions were subtracted to result in a voxelized differential
response pattern.

Prediction of classification performance

We analyzed classification performance of a linear discriminant
classifier. Hypothetical fMRI responses (percent change relative to
baseline) of n voxels were considered as n-dimensional vectors
associated with one of two stimulation conditions. We assumed that
the voxels respondedwith amplitudes sampled from twomultivariate
normal distributions, each of which was associated with one stimulus
condition. Each distribution was characterized by its multivariate
mean, reflecting the expected (in the sense of statistical expectance)
voxel-wise relative responses, and by its covariancematrix represent-
ing all sources of noise. The distributions of noise associated with
different stimulation conditions and in different voxels were all
assumed to be equal, and independent of each other.

Expected classification performance was estimated by calculating
the expected fraction of vectors classified correctly as being associated
with the stimulus condition of their origin. A linear classifier partitions
the feature space into two regions separated by a decision boundary.
The fraction of correctly classified vectors from one stimulation
condition equals the integral of the corresponding probability
density function over the feature space region associated with that
condition.

Differential responses and contrast range
The expected multivariate difference of voxel-wise responses dY

determines the position of the decision boundary relative to the two
distributions. dY was approximated using the standard deviation of
the expected distribution of single voxel differential responses
(referred to as “contrast range”), and the number of voxels. Eq. 1 in
the Appendix shows classification performance as a function of
contrast range, the number of voxels, and the noise level.

Overall contrast-to-noise ratio
Contrast range, the number of voxels, and noise level were

combined into one measure of overall contrast-to-noise ratio (OCNR).
OCNR is proportional to contrast range and the square root of number
of voxels. It is inversely proportional to the noise level. Overall
contrast-to-noise ratio completely determines the classification
performance (Eq. 2 in the Appendix) and is directly related to the
Fisher criterion in linear discriminant analysis.

Noise

The relative noise level σ is the standard deviation of all signal
changes not related to an external stimulus, relative to baseline. It is

the inverse of time-course signal to noise ratio (tSNR). Noise
dependence on voxel size was modeled using the following formula
from Triantafyllou et al. (2005).

1
σ

= tSNR Vð Þ = κ × Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + λ2 × κ2 × V2

p ;

where V is the voxel volume, λ is a field and scanner independent
constant governing the relation between temporal SNR and image
SNR, and κ is the proportionality constant between volume and image
SNR that is field strength and hardware dependent. Both constants
were estimated by fitting this equation to the data given in Table 3 of
Triantafyllou et al. (2005) using a Trust-Region non-linear least
squares algorithm in MATLAB (The Mathworks, Inc., 2007). Based on
the fitting, we set λ=0.01297 and κ=6.641. Note that the tSNR
values in Table 3 of Triantafyllou et al. (2005) were obtained using
TR=5.4 s. In section C of the Appendix we show how the modeled
tSNR values from Triantafyllou et al. (2005) were modified to tSNR
values expected with different TRs.

Model implementation

We implemented the model using numerical simulations in
MATLAB (The MathWorks Inc., Natick, MA, USA). We simulated a
square area with a field of view between 48 mm×48 mm and
192 mm×192 mm, depending on the specific simulation. The latter
relatively large field of view was necessary for obtaining a high
enough k-space resolution when studying the contributions of
different spatial frequencies. The area was divided into 1024×1024
evenly spaced points.

We ran numerical simulations of the model components described
above (Fig. 2) while varying different parameters. Contrast range was
computed by calculating the standard deviation over a simulated
differential voxel pattern response. Contrast range values obtained in
multiple runs were averaged in order to increase the robustness of the
results. Single frequency contributions to contrast rangewere computed
by restricting the spatial frequency representation of the ODC pattern to
a small range of absolute frequencies ∆k around the frequency under
investigation. The obtained contrast range was divided by ∆k resulting
in an estimate of contrast range per frequency unit.

Results

We aimed to analyze the mechanisms underlying decoding of
information represented in a fine-scale functional organization using
large voxels and a relatively wide point spread function. Classification
performance depends on the differential contrast between stimula-
tion conditions, the number of voxels, and the relative noise level
(see Eq. 1 in the Appendix). In this section we briefly introduce
the model, and demonstrate its function by means of a numerical
realization. We then study how the differential contrast depends on
BOLD point spread and voxel size. Next, we evaluate the frequency
components of the neuronal ODC organization that are reflected in
fMRI voxels, and therefore potentially contribute to decoding. We
demonstrate the effects of the BOLD PSF and the MR imaging process
on these frequency components. We demonstrate how voxel-size
specific noise, functional contrast, and number of voxels combine to a
measure of overall CNR that determines classification rate. In the last
section, we evaluate the dependence of classification performance on
parameters of the functional columnar organization.

Contrast range

The model
In order to quantify the functional contrast at the single voxel level,

we developed a model of imaging cortical columns, specifically for
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Fig. 2. Numerical realization of the model. The figure presents a numerical simulation of the model. Each row shows the results of one single stage of the model: the Gaussian white
noise input, the ODC map, the neuronal response, the BOLD response, the voxel response, and the differential voxel response. The BOLD response and the voxel response show
patterns that differentiate the stimulation conditions, although they do not seem to reflect the spatial organization of the ODC pattern.
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ODCs. The end result of the model is a distribution of single voxel
differential responses. The modeled voxel differential responses
follow a distribution with zero mean. The standard deviation of the
distribution of differential responses reflects the dispersion of
condition specific contrasts (here, contrast between responses to
left and right eye stimulation) present in a set of imaged voxels. The
larger this standard deviation, the larger the contrast values that exist
in the specific distribution. Through the rest of the manuscript, the
standard deviation of the distribution of differential functional
contrast will be referred to as the “contrast range.”

Numerical realization
Fig. 2 presents a numerical realization of the model using a BOLD

point spread with FWHM of 3.5 mm and a voxel size of 3 mm. It is
evident that the results of both the BOLD response stage and the
subsequent voxel sampling show condition specific patterns. None-
theless, these patterns do not directly reflect the structure of the ODC
pattern, which is dominated by higher spatial frequencies. In addition,
the functional contrasts following the BOLD response and voxel
sampling stages are very small.

Dependence of contrast range on BOLD point spread and voxel size
We simulated differential response patterns while varying voxel

width and BOLD point spread width. We computed the contrast range
from these patterns and plotted the contrast range as a function of
BOLD PSF width and voxel width (Fig. 3). The contrast range
decreased with increasing width of the BOLD PSF (Fig. 3A and B)
and with increasing voxel-width (Fig. 3C and D). Qualitatively, the
effects of BOLD point-spread width and of voxel width are similar, as
reflected in the approximately symmetric pattern in Fig. 3E. Assuming
infinitesimally small voxels, with a BOLD point spread FWHM of
3.5 mm the contrast range drops to 0.09%, which is ~2% of its expected
value (4%) if there was no spread (Fig. 3A). The effect of voxel
sampling is similar. Assuming no effect of BOLD point-spread, at a
voxel width of 3 mm the contrast range drops to 0.16%, ~4% of its
value (4%) using infinitesimally small voxels (Fig. 3C). With narrow
BOLD PSF or with small voxels, changes in the other parameter (voxel

size or BOLD PSF, respectively) have substantial effects on contrast
range (Fig. 3A, C, E). In contrast, for wide BOLD point spreads or large
voxels, the effect of varying the other parameter is not as pronounced
(Fig. 3B, D, E). At a point spread of 3.5 mm, the contrast range is almost
independent of voxel size (Fig. 3D). Taken together, BOLD point
spread with FWHM of 3.5 mm and voxel width of 3 mm, which are
typical to BOLD imaging at 3T, reduced the contrast range to 0.08%,
~2% of its original value (Fig. 3B, D, and E).

Frequency contributions to contrast range and aliasing
We have shown that the contrast range is considerably reduced by

the BOLD point spread and sampling with large voxels. We next
sought to estimate the relative contributions of different frequency
components of the ODC organization to the contrast available for
decoding (Figs. 4 and 5).

To this end, we first considered the effect of the MRI data-
acquisition and reconstruction processes. MRI voxels are often
thought of as taking the shape of a rect-function in the image space
(Fig. 4A, in cyan). However, MRI is not equivalent to integrating the
signal over the area of a rect-function-like voxel. Instead, MRI samples
the k-space at discrete steps up to the Nyquist frequency, which is the
inverse of twice the voxel width. This is equivalent to integrating the
signal in the image space as weighted by a sinc-function (Fig 4A, in
blue). In other words, a more precise model of a voxel in image space
follows a sinc-function (Haacke et al., 1999; See also here, Section B.4
of the Appendix). Fig. 4B presents the frequency-space representation
of a 3 mmwide rect-voxel, a 3 mmwide sinc-voxel, and the frequency
content of a realistic neuronal ODC organization. To obtain the latter,
we calculated the contributions of different spatial frequency
components to the contrast range by decomposing the ODC map
into its spatial frequency components.

Fig. 4C presents the frequency components of the ODC organiza-
tion that remain following the voxel sampling process for 3 mm rect-
voxels (cyan) and 3 mm sinc-voxels (blue), assuming infinitesimally
small BOLD PSF. Rect-voxel sampling reduces the contrast range
across all pattern frequencies (Fig. 4C, cyan curve). It reduces the
contributions to contrast range of multiples of the sampling frequency

Fig. 3. Dependence of contrast range on voxel width and BOLD point spread. Contrast range is defined as the standard deviation of the distribution of differential responses (percent
change relative to baseline). Contrast range in a set of imaged voxels is presented as a function of FWHM of BOLD point spread (A and B), voxel width (C and D) or both (E). In A, the
voxel width is infinitesimally small, while in B it is held constant at w=3mm. In C, the BOLD point spread is assumed to be infinitesimally small, while in D it is held constant at
FWHM=3.5 mm. Contrast range decreases fast with increasing voxel size and increasing point spread width.
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(0.33 cycles/mm, 0.66 cycles/mm) more than it does for other
frequencies. However, its effect on the relative contributions of
frequency components lower or higher than the main frequency of
the organization (0.5 cycles/mm) is small (compare to Fig. 4B, gray
curve). The contrast depends almost entirely on frequencies that are
higher than the Nyquist frequency (fNyquist=0.167 cycles/mm). It
includes significant contributions from frequencies near the main
frequency of the ODC organization (0.5 cycles/mm).

In contrast, when using sinc-voxels the contrast beyond the
Nyquist frequency drops sharply (Fig. 4C, blue curve), and it is
completely eliminated beyond the Nyquist frequency that corre-
sponds to the diagonal of the k-space (0:167⋅

ffiffiffi
2

p
). Contributions from

most of the frequency components of the ODC pattern are eliminated.
All information from frequencies around the main frequency of the
organization (0.5 cycle/mm) is lost. Only contributions from frequen-
cies lower than the main frequency of the organization, that are
present due to the irregularity of the ODC pattern, prevail.

Panels D and E in Fig. 4 present frequency contributions to the
functional contrast as a function of varying voxel width for rect-voxels
and sinc-voxels, respectively. True for both types of voxels, the contrast
with origin in the main frequency of the organization decreases with
increasing voxel width. However, while 3–4 mm wide rect-voxels still
carry functional contrast with origin in that frequency, sampling with
sinc-voxels wider than ~1.4 mm eliminates it completely.

In Fig. 4 we considered contrast contributions from various
frequency components while assuming infinitesimally small BOLD
PSF. Next we studied the effect of the BOLD PSF on the frequency
contributions to contrast range. Fig. 5A presents the frequency
representation of a Gaussian PSF with FWHM of 3.5 mm (red
curve), along with the frequency representation of a sinc-voxel and
the ODC organization. The BOLD point spread, even when assuming
infinitesimally small voxels, acts as a strong low pass filter (Fig. 5A and
B). High frequencies of the columnar pattern are filtered out almost
completely. A convolution with a realistic BOLD PSF therefore shifts
the distribution of the frequency components that contribute to the
functional contrast towards lower frequencies (Fig. 5B).

Fig. 5C shows that convolving the neuronal response with a
3.5 mm BOLD PSF prior to MRI sampling diminishes the differences
between the frequency components captured by sinc-voxels and rect-
voxels. In both cases, only very low frequencies prevail.

Classification performance
Contrast range, the number of voxels and the level of noise can be

combined into a single measure of overall-contrast-to-noise ratio
(OCNR). Overall contrast-to-noise ratio is proportional to contrast
range, the square root of the number of voxels, and the square root of
the number of averaged volumes (assuming time-independent noise;

Fig. 4. Comparing theMR imagingprocess that relieson sinc-shapedvoxels to integrating over rect-shapedvoxels. Thefigurepresents the contributions of spatial frequencycomponents in
theODCpattern to the range of contrasts in the set of imaged voxelswhich are sampled as integral over thevoxel area (rect-function in image space) or as a sinc-functionweighted integral
in the image space. The contrast range per frequency (standard deviation of the distribution of differential responses) was computed by restricting the k-space representation of the ODC
pattern to different spatial frequencies and calculating the resulting contrast range. (A) The image space representation of a 3-mm wide MRI sinc-shaped voxel (in blue) and the
corresponding 3 mmrect-voxel (in cyan). (B) The spatial frequency representations of theMRI imagingprocess (in blue), voxel as a rect-function (in cyan), and the frequency components
of the ODC organization (in gray). “fNyquist” refers to the Nyquist frequency (0.167 cycles/mm for 3 mm voxel). The dotted blue line represents the higher frequencies sampled in k-space
along thediagonal rather than along the shortermain coordinate axes. (C) The effect of voxel samplingon the imaged frequency components of theODCorganization.MRI 3 mmwide sinc-
voxel sampling (in blue) is compared to samplingby integrating overa 3-mmrect-shapedvoxel in image space (in cyan). The originalODC frequency components presented inB are shown
in gray for comparison. The sinc-shaped voxel is frequency-band limited, while the rect-function is not. With sinc-shaped voxels, contributions from frequencies higher than the Nyquist
frequency are sampled along the diagonal in k-space up to a frequency equal to 1.4 times the Nyquist frequency.With rect-shaped voxels, frequencies higher than the Nyquist frequency
contribute to contrast range by means of aliasing. (D) Frequency contributions for varying rect-shaped voxel size (BOLD PSF effects were not applied). Aliasing contributions can be
observed here at frequencies with cycle lengths larger than twice the voxel width. (E) Frequency contributions for varying sinc-shaped voxel size (BOLD PSF effects were not applied). In
contrast to the frequency contributions seen with rect-shaped voxels (D), no contributions can be observed at frequencies with cycle lengths larger than twice the voxel width.
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see section A of the Appendix). It is inversely proportional to the noise
level.

In order to calculate classification performance, we modeled noise
according to Triantafyllou et al. (2005). We predicted time-course
SNR (tSNR; see section C of the Appendix) for a TR of 2 s. tSNR
increases with increasing voxel width (Fig. 6A). Fig. 6B presents the
dependence of classification performance on the voxel size for a BOLD
point spread width of 3.5 mm. We varied the in-plane width of the
voxel, while holding the slice thickness constant at 3 mm and keeping
a constant number of voxels. We considered voxel size dependent
noise, as demonstrated in Fig. 6A. The expected classification
performance using 100 voxels, each of which covering a volume of
(3 mm)3, resulting in a voxel volume dependent noise level of 1.5%
(tSNR=68, TR=2 s) relative to the temporal mean of the baseline,
and a BOLD PSF of 3.5 mm, was 61% (with chance level being 50%).
Fig. 6C shows how classification performance depends on overall
contrast-to-noise (OCNR) ratio. The logarithmic scaling of the OCNR-
axis illustrates that increases in OCNR result in only moderate

increases in decoding performance. When using 100 (3 mm)3 voxels
with a BOLD PSF of 3.5 mm, OCNR is 0.55. In this range, a factor of two
improvement in OCNR results in 10% increase in decoding perfor-
mance. In order to obtain 75% correct classifications, an overall CNR of
1.3 is needed. To obtain 95% correct classifications, the overall CNR
needs to reach 3.3.

Sharpness of the ODC organization
The results reported thus far were based on ODC maps with a

moderate, realistic sharpness (alpha=4; Fig. 7B). In order to
assess the effect of smoother and sharper transitions between
neighboring columns on the contrast range and classification
performance, we simulated smooth ODC patterns that were not
passed through a sigmoidal non-linearity (Fig. 7A) and binary ODC
patterns (Fig. 7C), representing the two extreme alternatives along
the pattern sharpness domain. We then computed contrast range as a
function of voxel width and BOLD point spread. Qualitatively,
the resulting patterns of contrast range were similar across all three

Fig. 5. Contributions of pattern spatial frequency components to the contrast range. The figure presents contributions of spatial frequency components in the ODC pattern to the
range of contrasts in the set of imaged voxels, in a format similar to that used in Fig. 4. In A–C, different subsets of the model were used to illustrate their respective effects. (A) The
frequency contributions reflect the spectrum of the ODC pattern (gray curve, with no voxel sampling, and no BOLD point spread). This spectrum is dominated by the main pattern
frequency (0.5 cycles/mm). Due to the irregularity of the pattern, significantly higher and lower frequencies contribute to the pattern as well. The spatial frequency representation of
theMR voxel sampling process (blue) and of the BOLD point spread (red) are shown for comparison. The dotted blue line represents the higher frequencies sampled in k-space along
the diagonal rather than along the shorter main coordinate axes. (B) The effect of a BOLD point spread with FWHM=3.5 mm on the imaged frequency components (in red; voxel
sampling effects were not applied) is that the BOLD response acts as a low pass filter. The contrast range is dominated by low frequency pattern components. The original ODC
frequency contributions presented in A are shown in gray for comparison. (C) Frequency specific contributions for rect-function voxel sampling versus MRI sinc-shaped voxel
sampling with 3 mmwide voxels following the convolution in image space with a BOLD point spread with a FWHM (in image space) of 3.5 mm. The BOLD point spread acts as low
pass filter, removing aliased high frequency contributions in the rect-shaped voxel sampling, making the result of both sampling models more comparable.

Fig. 6. Classification performance. (A) Time-course SNR (tSNR) as a function of voxel width at 3 Tesla. Noise levels were computed following Triantafyllou et al. (2005), using TR=2 s
(see section C in the Appendix). B presents classification performance as a function of in-plane voxel width. The slice thickness was held constant at 3 mm. A BOLD point spread
FWHM of 3.5 mm was applied; Voxel volume dependent noise levels at 3 Tesla were computed following Triantafyllou et al. (2005), modified for a TR of 2 s. Classification
performance is presented in units of percent correct classification and is plotted for 50, 100, 150 and 200 voxels. In C, classification performance is shown as a function of overall
contrast-to-noise ratio. Classification performance depends on the contrast range, the number of voxels and the relative noise level. All three factors can be combined into one
quantity: the overall contrast-to-noise ratio. The overall contrast to noise ratio is proportional to the contrast range and to the square root of the number of voxels. It is inversely
proportional to the noise level.
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versions of ODC organizations (Fig. 7, middle row). All three patterns
demonstrated approximately symmetric roles of BOLD PSF and voxel
width, similar to those demonstrated in Fig. 3. Quantitatively, for large
BOLD point spreads and/or large voxel sizes, ODC maps with sharper
transitions produced larger contrast ranges compared to their
counterparts with smoother transitions.

For 3 mm wide voxels and a 3.5-mm BOLD PSF, a binary ODC map
produced a contrast range of 0.15% (70% classification performance
with 100 voxels and a TR of 2 s), and an ODC map with intermediate
sharpness level (α=4) produced a contrast range of 0.08% (61%
correct classificationwith 100 voxels and a TR of 2 s). This is compared
to 0.015% (52% classification performance with 100 voxels and a TR of
2 s) for the smooth ODC map model.

Irregularities in the ODC organization
Local variations and irregularities in cortical maps were proposed

as a possible source of selective signals available for decoding. We

therefore sought to study the effect of irregularities in the ODC pattern
on classification performance. To this end, we varied the parameters δ
(irregularity) and ε (branchiness) that control the level of pattern
irregularities orthogonal and parallel to the axis of anisotropy of the
ODC organization.

Fig. 8A demonstrates the dependence of the ODC pattern on
the irregularity (δ) and branchiness (ε) parameters. High values
of δ make the pattern of the ODC more irregular along the axis
orthogonal to their major anisotropy axis, introducing wide regions
in space that are biased towards one of the two eyes. In contrast,
higher values of ε decrease local biases by interfering with the
regular structure orthogonal to the columns. Panels B and C in
Fig. 8 support this intuitive description. They show that classifica-
tion performance increases with increases in irregularity (δ;
Fig. 8B), and decreases with increases in branchiness (ε; Fig. 8C).
Fig. 8D demonstrates that the effect of varying irregularity on
classification performance is more pronounced than the
corresponding effect of branchiness.

Fig. 7. The effect of varying ODC pattern sharpness on the sampled contrast range. The sharpness of transitions between ODCs can be modeled by a sigmoidal non-linearity with a
degree controlled by parameter α. The figure shows the effect of this non-linearity on the model results by using different alpha values. The top row shows simulated ODC patterns.
The middle row shows the corresponding contrast ranges as a function of voxel size and point spread, in a format similar to that used in Fig. 3. The bottom row shows contrast range
as a function of voxel width while the BOLD point spread width is held constant at 3.5 mm. (A) shows a smooth ODC pattern. This pattern was obtained directly from the filtered
white noise. (B) shows an intermediate level of sharpness (α=4). This pattern is the most realistic of the three ODC patterns presented here. Therefore, it was used in the analysis
throughout the rest of the paper. The dependence of contrast range here on voxel width and BOLD point spread is qualitatively similar to that obtained with the smooth ODC pattern.
However, the contrast ranges are significantly higher than those obtained using the smooth pattern. (C) shows a binary pattern with sharp edge transitions between neighboring
columns (α approaches infinity). The qualitative results are similar to those presented in A and B but the contrast ranges are even larger than those obtained with the intermediate-
level sharpness.

635D. Chaimow et al. / NeuroImage 56 (2011) 627–642



 48 

  

Discussion

Summary of the results

We developed a model of imaging cortical columns and subse-
quent decoding of information conveyed by them. When considered
separately, the width of the BOLD point spread function and the width
of the sampled voxels were found to be important factors in
determining the functional contrast and classification performance
(Fig. 3). BOLD PSF and the voxel width act as low-pass filters in a
comparable manner. We analyzed the contributions of single spatial
frequency components to the functional contrast and classification
with parameters routinely used at 3 Tesla. The results ruled out
contributions of aliasing of information represented at high spatial
frequency corresponding to the main frequency of the columnar
organization or higher frequencies (Figs. 4 and 5). Not only these
high-frequency components are filtered out by the BOLD PSF, also all
frequencies higher than the Nyquist frequency are discarded by the
MR imaging process. Modeling MRI voxels as sinc-functions removes
aliased sub-voxel signals, since they are not part of the k-space
sampling, whereas the BOLD PSF further attenuates contributions
from high-frequencies that are still within the range of frequencies
sampled in the k-space. Therefore, all locally generated contrast
useable by a classifier, although very low in amplitude, is caused by
random variations and irregularities of the columnar organization,

which contribute to low frequency components of this organization.
Increasing these irregularities improves classification performance
(Fig. 8).

Assumptions, simplifications, and upper bound of classification
performance

Exclusive consideration of basic mechanisms
We aimed to develop a model that would show the levels of

contrast and classification performance that can be expected
considering basic mechanisms. By “basic mechanisms” we refer to
the integration of signals that an MRI voxel overlaps, while
considering the BOLD point spread (i.e., voxel as a compact kernel,
and BOLD-as-blurring model, Kriegeskorte et al., 2010), the process of
voxel sampling, and noise. Therefore, of the mechanisms proposed to
account for decoding, our model evaluates (I) “aliasing of the main
frequency components of the organization” and (II) “contributions of
irregularities in the columnar organization,” but not “very low-
frequency large-scale components of the organization,” “selectivity of
draining veins” and “complex spatio-temporal filters.” Because we
aimed to consider basic mechanisms exclusively, we refer to our
model as a “naive”model. The results of this naivemodel are intended
to serve as baseline when evaluating more complex mechanisms that
potentially contribute to successful decoding of information conveyed
by cortical columns.

Fig. 8. The effect of pattern irregularities on classification rate. The irregularity of the ODC pattern is varied to study its effect on classification performance. Classification performance
is predicted for 100 voxels and a TR of 2 s. (A) demonstrates the effects of the irregularity parameter (δ) and the branchiness parameter (ε) on the ODC pattern. The panel presents
different patterns resulting from combinations of δ and ε values of 0, 0.5 and 1. (B) shows classification performance as a function of irregularity (δ) with branchiness (ε) held
constant at 0.4. Increasing irregularity leads to increasing classification performance, since larger contributions of low frequency components are introduced into the ODC pattern.
(C) shows classification performance as a function of branchiness (ε) with irregularity (δ) held constant at 0.3. With increasing branchiness, classification performance decreases,
because branchiness counteracts the effect of low frequency biases introduced by the irregularity. (D) shows classification performance as a function of irregularity (δ) and
branchiness (ε). Classification performance depends on irregularity more than on branchiness.
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Simplifications leading to best-case scenario of classification
performance

We made several simplifying assumptions, which cause overesti-
mation of classification performance. These simplifications and
assumptions, described in more detail below, include: (1) binary
(and separately, smooth) representation of ocular dominance col-
umns and maps, (2) uncorrelated noise model, (3) a perfectly learned
model, and (4) the employment of an optimal decision boundary.
Therefore, our model offers a best-case estimate (or an upper bound)
of classification performance when considering basic mechanisms.

(1) Binary ODC representation. Our model included a non-linearity
introduced in the process of simulating the ODC maps, which
produced spatial transitions of varying degrees of sharpness.
Quantitatively, for large point spreads and/or large voxel sizes, ODC
maps with sharper transitions produced larger contrast ranges
compared to their counterparts with smooth transitions (Fig. 7). For
3-mm-wide voxels and a 3.5-mm point spread of BOLD response, a
binary ODC map produced a contrast range of 0.15% (70% classifica-
tion performance with 100 voxels and a TR of 2 s).

A binary ODCmap, consisting of columnswith neurons responding
exclusively to either the left or the right eye, is not realistic. Therefore,
assuming a binary map contributes to our approach of estimating an
upper bound for classification performance.

(2) Uncorrelated noise model. Our model does not consider spatial
correlation of noise between voxels. In reality, the noise in a subset of
the voxels would be correlated, in part depending on their spatial
distance. This will decrease the effective degrees of freedom, and
result in decoding performance comparable to that obtained with a
reduced number of voxels. Similarly, when considering averaging of
volumes before classification, we assume the noise to be uncorrelated
in time, which maximizes the SNR gains achieved by averaging.
Therefore, in considering independent noise, ourmodel overestimates
classification performance.

(3) Perfectly learned model. In our analysis of classification perfor-
mance, we assumed that the estimated means are equal to the real
means of the response distributions. This situation corresponds to a
perfectly learned model. In reality, there will be differences between
the estimated and the real means of the classified patterns, which will
decrease classification performance. The choice of classification
algorithm will have an effect on how well the model is learned. The
more data used for learning, the closer the estimated means will be to
the real means. Our model reflects this asymptotic limit, conforming
to our approach of modeling the best case scenario.

(4) Choice of classification framework and optimal decision boundary.
We assumed that evoked responses to stimulation of the left or the
right eye follow two respective normal distributions in each voxel.
Linear classification is the simplest and optimal choice for classifying
this type of data.We applied a decision boundary perpendicular to the
line separating the means of the two distributions, that results in a
minimum-error-rate classification (Duda et al., 2006), in line with our
best-case scenario approach. While this boundary is optimal when
considering a perfectly learned model, it is also the decision boundary
that linear classifiers such as linear discriminant analysis or linear
support vector machines (SVM) would converge to, given a large
enough data-set available for learning. Thus, our choice of optimal
decision boundary follows our approach of modeling the best-case
scenario.

Ocular dominance columns vs. orientation columns
Here we analyzed decoding of information conveyed by ODCs.

These were the basis for a study that decoded the visual percept
during binocular rivalry (Haynes and Rees, 2005b). Other decoding

studies were based on orientation columns (Kamitani and Tong, 2005;
Haynes and Rees, 2005a). Orientation is not a binary stimulus
dimension: it varies continuously. Furthermore, orientation columns
in monkeys have slightly higher spatial frequencies than ODCs
(Obermayer and Blasdel, 1993). These differences are expected to
decrease differential contrast obtained after considering BOLD point
spread and voxel sampling. However, we have shown that classifica-
tion performance at 3 Tesla depends solely on information repre-
sented at spatial frequencies lower than the main frequency of the
organization. It may well be the case that differences between ODCs
and orientation columns, such as the main spatial frequency and the
arrangement of columns (anisotropic and isotropic, respectively)
have negligible effects on decoding. In contrast, the exact nature of the
small and seemingly irrelevant low frequency signals associated with
the two organizations may play a key role in decoding. Indeed,
ongoing preliminary simulations show that similar columnar patterns
with only subtle differences in their low frequency content can result
in very different decoding performances.

Voxel selection and number of voxels
In multivariate classification it is often beneficial to reduce the

number of features (voxels) (Pereira et al., 2009). Voxels can be either
selected based on condition-unspecific criteria such as their location
or general response strength. Alternatively, condition-specific criteria,
such as differential contrast between conditions, may be employed in
order to optimize decoding performance while reducing the number
of voxels.

In our current model, we did not include condition-specific voxel
selection. However, our model can be extended to include forms of
voxel selection. This can be done, for example, by taking into account
changes in the distribution of voxel differential contrasts due to voxel
selection (e.g., removing the voxels with the lowest contrast).

The decoding studies to which we compare our model selected
voxels according to cortical position relevant to the paradigm and
response to a localizer (Kamitani and Tong, 2005) or a measure of
response magnitude to the group of stimuli (Haynes and Rees, 2005a)
(in a second step, the latter study employed a condition-specific
criterion in order to further reduce the number of voxels below 100).
The purpose of this kind of voxel selection is to obtain functionally
responsive voxels in the gray matter of V1, in accordance with the
assumption we employed in our model (voxels localized in gray
matter) following a best-case scenario approach.

Classification performance in decoding studies is higher than the
modeled upper bound

For 3 mm wide voxels and a 3.5 mm point spread of BOLD
response, a binary ODC map produced a contrast range of 0.15%, and
correct classification rate of 70% (Fig. 7) with 100 voxels and a TR of
2 s. An intermediate sharpness (α=4) introduced to the ODC map
produced a contrast range of 0.08% (61% classification performance
with 100 voxels and a TR of 2 s), compared to 0.015% (52%
classification performance with 100 voxels and a TR of 2 s) for the
smooth ODCmap model. As discussed above, a binary ODC map is not
realistic. Nonetheless, it gives an upper bound for classification
performance (70%). Considering that α = 4 is much more likely to
reflect realistic ODC patterns, and taking into account all other best-
case scenario approximations, we expect that realistic classification
performance based solely on basic mechanisms and 100 voxels is in
the range of 55–65%.

A previous study that considered ODCs (Haynes and Rees, 2005b)
obtained ~75% correct classification. Haynes and Rees classified
binocular rivalry percepts projected onto a model based on training
with monocular stimulation and stable perception (Haynes and Rees,
2005b, Fig. 4C). Our estimated realistic classification (55–65%) is
significantly lower than that obtained in this study, although the
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modeled best-case scenario performance with a binary ODC map
(70%) is comparable to the one obtained by Haynes and Rees (2005b).
Note however, that this study used a TR of 1.3 s and only 50 voxels for
classification. With this TR and number of voxels, our model predicts
a best-case scenario classification performance of 64% for a binary
ODC pattern and 57% for a realistic ODC pattern (ODC model with
intermediate sharpness).

Our estimated realistic- and best-case scenario classification
performances are lower than those obtained for two orthogonal
orientation stimuli using LDA (~80%; Haynes and Rees, 2005a). This
study used a TR of 1.3 s and 100 voxels, for which our model predicts
decoding performance of 69% for the binary ODC map and 60% for the
realistic ODC map with intermediate sharpness (α=4).

Our estimated realistic- and best-case scenario classification
performances are lower than those obtained for two orthogonal
orientation stimuli using a linear support vector machine (~96%;
Suppl. Fig. 4, Kamitani and Tong, 2005). However, Kamitani and Tong
(2005) averaged 8 volumes together before classification, which is
expected to increase decoding performance. Taking this effect
into account, our model predicts a decoding performance of 98%
for the binary ODC map and 86% for the ODC map with intermediate
sharpness (α=4). Although this latter classification rate (86%) that
considers a realistic ODC sharpness depends on several best-case
scenario assumptions, it is still lower than the actual results (96%)
obtained by Kamitani and Tong (2005).

Overall, themodeled classification performance is lower thanwhat
has been obtained in decoding studies at 3 Tesla, although it considers
several best-case scenario assumptions. In the rest of this section we
discuss mechanisms of fMRI-based decoding and possible reasons for
these differences.

Mechanism of fMRI-based decoding of information conveyed in cortical
columns

Aliasing is not possible in MRI: sampling with sinc-function voxels
Whereas typically, MRI voxels are considered to be squares, they

are in fact more accurately described as sinc-functions in the space
domain (Haacke et al., 1999). This more accurate description rules out
spatial aliasing of subvoxel-scale signals in MRI.

If the imaging PSF (not to be confused with the BOLD PSF) is
considered to be a rect-function, then in the Fourier domain, the MR
signal is described by a sinc-function multiplied with the Fourier
representations of the columnar organization and associated BOLD
PSF (Figs. 4 and 5). Since the "ripples" in the tails of the sinc-function
extend infinitely, this means that spatial frequency components
higher than the MRI Nyquist frequency (sub-voxel) can contribute to
themeasured signal in k-space; in other words, subvoxel-scale signals
are spatially aliased into lower spatial frequencies in the recon-
structed image. These sub-voxel signals are further attenuated by the
low-pass BOLD PSF, which acts as an anti-aliasing filter (Fig. 5).

However, a better characterization of the imaging PSF is as a sinc-
function in the space domain, not the Fourier domain (Haacke et al.,
1999). This means that the Fourier domain representation of the
signal is a rect-function multiplied with the Fourier representations of
the columnar organization and the BOLD PSF. A rect-function has
compact support, meaning that high spatial frequency components
are zeroed out, and cannot be spatially aliased into lower frequencies
in the reconstructed image. In this more accurate model of the
imaging process, it is impossible for MRI to be sensitive to sub-voxel,
supra-Nyquist scale signals, regardless of the BOLD PSF.

As described by Greenspan (2009), MRI super-resolution is
impossible in the phase and frequency encode directions, as MRI is
inherently band limited in these directions. Mayer and Vrscay (2007)
suggested that while super-resolution may be technically possible in
the Phase-Encoding direction, it can at best contribute only a very
limited amount of additional information. Therefore, band limitations

of the imaging and reconstruction processes prevent or limit
detection of sub-voxel supra-Nyquist signals. These band limitations
hold for fMRI and fMRI-based decoding (Swisher et al., 2010) and rule
out, under the assumption that an MRI voxel acts as a compact kernel
(rather than a spatio-temporal filter), the possibility of sub-voxel
scale contributions via aliasing as a contributing mechanism to
decoding.

The effects of voxel size and the PSF of the imaging signal
We found strong dependence of classification performance on the

point spread of the imaging signal, especially when small voxels are
used. This result can be explained by the substantial decrease in
functional contrast with increasing point-spread (Fig. 3A and B).

The BOLD point spread and the voxel sampling have very similar
effects on the functional contrast: both act as low-pass filters,
reducing information conveyed by higher frequencies. Nonetheless
we found that for large point spreads, the voxel width has almost no
effect on functional contrast (Fig. 3D). In contrast, for large voxel
widths, increasing BOLD PSF still decreases the functional contrast
(Fig. 3B). The reason for this is thatMR voxel sampling simply discards
frequencies higher than the Nyquist frequency but leaves lower
frequencies untouched. Therefore it has a very small effect when high
frequencies are already filtered out by the BOLD point spread. In
contrast, the BOLD PSF reduces contributions at every frequency,
including lower frequencies.

The classification performance obtainedwhen considering a 3.5-mm
wide point-spread was lower than previously reported (Kamitani and
Tong, 2005; Haynes and Rees, 2005a,b). This phenomenon suggests that
rather than considering the reported mean point-spread, one needs to
consider possible variability of the point-spread in space (Kriegeskorte
et al., 2010). Along these lines, it is possible that previous decoding
studies relied in part on data from cortical sites in which the PSF was
significantly lower than 3.5 mm, while excluding data associated with
wider PSF. This can be done implicitly by the learning algorithm, by
assigning high-weights to data from voxels with selective responses
that are presumably associated with narrow PSF.

Yet another possibility is that the reported BOLD point spread at 3
Tesla was overestimated. One reason for such overestimation could be
the relatively large voxels (2×2×2 mm3) used in these studies
(Parkes et al., 2005). Using large voxels for sampling introduces low-
pass filter properties that can contribute to an overestimated point
spread width. Based on our previous analysis of this effect (Fig. 8 in
Shmuel et al., 2007), we expect that the mean GE-BOLD PSF at 3 Tesla
is approximately 3 mm. Our imaging model assumes the BOLD point
spread width to be only BOLD response related, with low-pass
contributions from the voxel sampling process considered
independently.

The convolution with the BOLD PSF in our model cannot be
compared to spatial smoothing of already obtained fMRI data (Op de
Beeck, 2010; Swisher et al., 2010; Kamitani and Sawahata, 2010). In
our imaging model, the convolution with the PSF precedes both the
voxel sampling and the consideration of noise. Therefore, the reduced
classification performance obtained here following the convolution
with the BOLD PSF is not in disagreement with the findings on the
effect of spatial smoothing on classification rate (Swisher et al., 2010;
Op de Beeck, 2010; Kamitani and Sawahata, 2010).

Irregularities/low spatial frequency components of columnar
organizations in V1

It was hypothesized that random, local variations and irregularities
in the functional organization contribute to decoding (Kamitani and
Tong, 2005, 2006; Haynes and Rees, 2006; Kriegeskorte and Bandettini,
2007). The argument is that due to the irregular underlying columnar
pattern, each voxel overlaps columns with different preferences
unequally, resulting in biases towards specific preferences. Irregularities
are thought to be manifested through components of the columnar
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organization with frequencies higher and lower than the main
frequency of the organization (Rojer and Schwartz, 1990). These
componentsmay be present even if the overall preferences represented
by the columns are distributed equally across the investigated cortical
region.

Here, we have shown that signal from the main frequency of the
columnar organization (0.5 cycles/mm) cannot contribute to decod-
ing (Fig. 4). The only local contributions to contrast range arise from
frequency components that are considerably lower than the main
frequency of the columnar organization and are lower than the
Nyquist frequency which corresponds to the diagonal in k-space
(Fig. 5). These low frequencies, in conjunction with frequencies
higher than the main frequency of the organization, underlie random
variations and irregularities in the columnar pattern. Indeed, varying
the content of these irregularities had a strong effect on decoding
performance (Fig. 8).

Higher classification performance in decoding studies could be
explained if we considerably underestimated low frequency compo-
nents in the ODC pattern. Following Rojer and Schwartz (1990) we
used a filter composed of two Gaussians to model ODC columns. There
are indications (Rojer and Schwartz, 1990; Blasdel et al., 1995) that
the spatial frequency spectra of real ODC columns correspond to a
more heavy-tailed filter functions than the Gaussian filter. In other
words, ODC organizations are expected to include higher contribu-
tions of low spatial frequencies than those we modeled. Note that we
refer here to low-spatial frequency components caused by local
random variations of ODCs, even when considering equal representa-
tions of the two eyes at themore global level. This could potentially be
a source for larger contrast contributions by low frequencies, and
would imply improved classification performance over those
obtained with the Gaussian-filter based maps we analyzed here.

Experimental evidence for significant, local rather than global,
contributions of low-spatial-frequency components to the pattern of
ODCs was demonstrated by Shmuel et al. (2010). Figs. 2–4 in this
paper show OD patterns following low-pass filtering (cycles shorter
than 4 mm were filtered out). Note significant contributions of low-
frequency components to the differential maps (panel A in Figs. 2–4,
Shmuel et al., 2010); these low-frequency components carry
discriminative power (panel B). Whereas some of these eye-selective
broad structures correspond to macroscopic blood vessels, others
correspond to regions in which gray matter contributions dominate
(panel C in Figures 2, 4, 5 S1 and 5 S3, Shmuel et al., 2010). We expect
that the latter are caused by local variations in the ODC pattern.
Similarly, Swisher et al. (2010) reported that, in cat visual cortex,
reliable orientation bias could still be found at spatial scales of several
millimeters. In the human visual cortex, the majority of orientation
information imaged at a resolution of 1×1×1 mm3 was found on
scales of millimeters (Swisher et al., 2010).

Large-scale organizations in V1
Additional contributions from very low-frequency components to

decoding of the stimulated eye could be of a more global origin, e.g.
higher response amplitude to the contra-lateral eye in V1. This
mechanism was not evaluated by our model. Such higher response
amplitude could result from unequal representations of the two eyes,
termed ‘nasotemporal asymmetry’ (Tychsen and Burkhalter, 1997).

Low-frequency large-scale organizations of a more global nature
that may contribute to decoding of orientation are the radial bias
(Sasaki et al., 2006) and the oblique effect (Furmanski and Engel,
2000). The radial bias is an overrepresentation of orientations in
cortical positions in which these orientations are retinotopically radial
relative to the center of the visual field. It introduces very low
frequency components on top of the low frequency components
caused by local random variations as described above. The oblique
effect is an overrepresentation of cardinal orientations (horizontal
and vertical) compared to oblique orientations. This effect is expected

to introduce very low-frequency, large-scale differences between the
response to cardinal and oblique orientations; it may contribute to
distinguishing between these two groups of orientations. Consistent
with these expectations, Swisher et al. (2010) reported contributions
to decoding of orientation in the human visual cortex from larger-
scale spatial biases exceeding 1 cm.

Functional selectivity of macroscopic blood-vessels and complex spatio-
temporal filters

Asmentioned above,we developed amodel of basicmechanisms that
estimates contributions to functional contrast and classification from
aliasing and low-frequency components caused by random variations in
the columnar organization. Our model does not consider contributions
from functionally selective macroscopic blood vessels (Gardner et al.,
2006; Shmuel et al., 2010). Therefore, the differences between our
modeled classification performance and those obtained in previous
decoding studies could be accounted for, in part, by contributions of
macroscopic blood vessels to decoding. Lastly, Kriegeskorte et al. (2010)
introduced the hypothesis that a voxel's BOLD response can be modeled
as a complex spatio-temporal filter of neuronal activity. Assuming that
this hypothesis proves true, it may account for part of the differences
between previously measured- and our modeled classification
performance.

Conclusions

Under the assumptions of MRI voxels acting as compact kernels,
BOLD-blurring of neuronal activity, and imaging parameters used at 3
Tesla, spatial frequencies as high as the main frequency of ODCs (0.5
cycles per mm) cannot contribute to decoding of stimulus features
represented in cortical ODCs. Variations in the ocular dominance
maps captured by lower frequencies constitute the only local
component that conveys significant information on the stimulated
eye. The contrasts contributed by these low frequencies are very small
though, insufficient for accounting for classification performance
reported at 3 Tesla. We expect that lower frequency, larger scale
pattern variations (e.g., due to higher-amplitude responses to the
contra lateral eye; and oblique and radial effects in the orientation
domain) contribute significantly to fMRI based classification. We
expect, in addition, that mechanisms not considered in the current
model, e.g. functionally biased venous responses, spatially-variable
point spread, and complex spatio-temporal filtering of neuronal
activity play significant roles in decoding.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Acknowledgments

We thank Bruce Pike, Peter O'Connor, Ze-Shan Yao, Javeed Shaikh,
Debra Dawson, Lars Omlor and Sebastian Schmitter for their helpful
comments. Supported by a Max-Plank Society fellowship awarded to
DC, NIH grants P41 RR08079, P30 NS057091, R01-MH070800 and
R01-EB000331, Natural Sciences and Engineering Research Council of
Canada grant 375457-09, Human Frontier Science Program grant
RGY0080/2008, and by the Canada Research Chairs program.

Appendix A. Performance of a linear classifier

Let n be the number of voxels. Consider a voxel responsemap as an
n-dimensional data vector →xt . Each vector →xt is sampled from one of
two normal distributions N →μA;ΣA

! "
and N →μB;ΣB

! "
corresponding to

the two stimulation conditions.
The means→μA = μ1

A ; μ
2
A ; :::

! "
and→μB = μ1

B ; μ
2
B ; :::

! "
characterize the

expected voxel-wise activation in all voxels under each condition.
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We assume that the data is zero centered in the sense that →μA =
−→μB. Defining the expected differential activation

→
d = →μB−→μA

! "
, we

can write →μA = −
→
d
2 and →μB = +

→
d
2.

The covariance matrices of the two distributions ΣA=ΣB=σ2I
characterize the relative noise, which is assumed to be independent
and identically distributed between voxels.

For classification, we project each data vector →xt onto the
normalized vector →w =

→
d= ∥→d∥ pointing in the direction of the line

connecting the means of the two distributions. This results in one-
dimensional variables yt, given by:

yt = →wT→xt =
→
d

T

∥→d∥
→xt :

These resulting variables yt will also be normally distributed
according to N (mA,s2) or N (mB,s2), depending on which condition
their corresponding activation vectors →xt were associated with. The

distribution means are given by mA = →w
T→μA = −∥→d∥

2 and mB =
→w

T→μB = ∥→d∥
2 . The variance is given by s2 = →w

T
σ2→w = ∥→w∥2σ2 = σ2.

If ytb0 then xt is classified as belonging to A, otherwise xt is
classified as belonging to B.

The expected percentage p of correct classifications does not
change if we restrict our analysis to responses coming from one
condition only, due to the symmetry of conditions. Without loss of
generality we can choose condition A and compute p as the expected
fraction of yt associated with condition A (yt∼N (mA,s2)) that is also
classified as coming from condition A (ytb0).

p = ∫
0

−∞ fN −∥→d∥
2 ;σ2

! " yð Þdy = ∫
∥→d∥
2σ

−∞ fN yð Þdy;

where fN is the probability density function of N .
We define the contrast range c to be the standard deviation of the

distribution of differential contrasts that can be obtained in a single
voxel:

c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i=1
d2i

s

=
1ffiffiffi
n

p ∥→d∥:

The equation for p reduces to

p = ∫
ffiffi
n

p
c

2σ
−∞ fN yð Þdy: ð1Þ

Defining the overall contrast-to-noise ratio to be OCNR =
ffiffiffi
n

p
c

σ
we

get:

p = ∫
OCNR
2

−∞ fN yð Þdy: ð2Þ

OCNR is related to Fisher's criterion
∥→d∥2
2σ2 =

OCNR2

2
. Fisher's

criterion measures the ratio between within-class variance and
between-class variance and is maximized in linear discriminant
analysis.

When averaging multiple volumes before classification it is
possible to reduce the noise level σ to σavr. Assuming that temporal

noise is uncorrelated, the reduced noise level is σavr =
σffiffi
t

p , where t is

the number of averaged volumes. The overall contrast-to-noise-ratio

is then OCNR =
ffiffiffiffiffi
nt

p
c

σ
.

Appendix B. Definition of the model components

We define each single step of the model as a transformation with
input variables denoted as x and output variables denoted as y. In
general these are two dimensional fields (real-valued functions on

R2), representing quantities in two-dimensional image space. →r∈R2

denotes spatial position and
→
k∈R2 denotes coordinates in k-space.

B.1. ODC model

The ODC pattern is modeled by filtering Gaussian spatial white
noise according to Rojer and Schwartz (1990). The shape of the filter is
defined in k-space as the sum of two two-dimensional Gaussian
functions (reflecting the symmetry of k-space):

F̃ODC
→
k

$ %
:= e

−
2 log 2

!2
k21 +

2 log 2
δ2

k2−ρð Þ2
& '

+ e
−

2 log 2
!2

k21 +
2 log 2
δ2

k2 + ρð Þ2
& '

;

where ρ is the principal frequency determining the columnwidth. δ is
the width (full width at half maximum) of each Gaussian parallel to
the filter orientation. δ determines the variation in column width. ε is
the width (full width at half maximum) of each Gaussian orthogonal
to the filter orientation. ε determines the branchiness of the columns.

In order for the ODC maps to have the same variance as the
Gaussian white noise, we normalize the filter:

FODC
→
k

$ %
:=

F̃ODC
→
k

$ %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫ℝ2 F̃

2
ODC

→
k ′

$ %
d
→
k ′

r :

Using the spatial representation of the filter fODC : = F−1 FODCð Þ,
the transformation that creates the ODC pattern y →r

! "
from the white

noise input x →r
! "

is defined as:

y →r
$ %

= x →r
$ %

* fODC
→r

$ %
:

We then pass the output of the filter, now denoted by x, through a
sigmoidal non-linearity that controls the sharpness of transitions in
neighboring ODCs (Rojer and Schwartz, 1990):

y =
1

1 + e−αx :

B.2. Neuronal response

The response of the neuronal population depends on the stimulus
condition.We assume amaximal response of 1 formonocular neurons
when stimulated through their preferred eye. Using the ODC map
x →r
! "

as the input, we obtain the two condition specific responses
yA →r

! "
and yB →r

! "
.

yA
→r

$ %
=

1
2

+
x →r
$ %

2

yB
→r

$ %
=

1
2
#
x →r
$ %

2
:

B.3. BOLD response

The BOLD response is modeled by convolving the neuronal
response with a Gaussian spatial impulse response function given by:

fBOLD
→r

$ %
=

β
2πσ 2

BOLD
⋅e

−
r21 + r22
2σ2

BOLD ;

where σBOLD defines the spatial width of the response. It is related to
the full width at half maximum of the response by FWHM =
2

ffiffiffiffiffiffiffiffiffiffi
2ln2

p
⋅σBOLD≈2:35⋅σBOLD. The response magnitude β is the maximal

response corresponding to a neuronal response of 1.
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The BOLD response y →r
! "

elicited by the neuronal response x →r
! "

is
then given by:

y →r
# $

= x →r
# $

* fBOLD
→r

# $
:

B.4. Voxel sampling

Sampling of a voxel is modeled according to the MRI measurement
process (Haacke etal. 1999), by sampling the k-space representation

of the signal X̃ k1; k2ð Þ = F ðx̃ð→r ÞÞ at discrete steps and calculating the

inverse discrete Fourier transform. The resulting sampled signal is

ỹ l;mð Þ = w2Δk2 ∑
N−1

p=−N
∑
N−1

q=−N
X pΔk; qΔkð Þeiπpqlm=N2

;

where ỹ(l, m) is the signal associated with the voxel with indices (l,m),
w is the voxel width and 2N is the number of sampled points along
one dimension in k-space.

In order to obtain the signal change y(l,m) relative to the baseline of
an MRI-sampled signal, we consider a spatially constant baseline
pattern of amplitude b and a pattern x →r

! "
of change relative to

baseline.
The signal to be sampled is x̃stim →r

! "
= b + b⋅x →r

! "
during

stimulation and x̃bl →r
! "

= b during baseline.
It follows then, that the sampled change relative to baseline is

y l;mð Þ =
ỹ l;mð Þ x̃stim →r

! "! "

ỹ l;mð Þ x̃bl →r
! "! " −1

=
ỹ l;mð Þ b + b⋅x →r

! "! "

ỹ l;mð Þ bð Þ
−1

=
b⋅w2 + b⋅ỹ l;mð Þ x →r

! "! "

b⋅w2 −1

=
1
w2 ỹ l;mð Þ x →r

! "! "

= △k2 ∑
N−1

p=−N
∑
N−1

q=−N
X p△k; q△kð Þeiπpqlm=N2

:

To obtain the signal value of one voxel, we pick without loss of
generality the center voxel at l=0,m=0:

y 0;0ð Þ = △k2 ∑
N−1

p=−N
∑
N−1

q=−N
X p△k; q△kð Þ:

For N≫1, we can apply integration instead of summation, taking

into account that N△k =
1
2w

. Our voxel sampling process is then

modeled by

y = lim
N→∞

y 0;0ð Þ = ∫+ 1
2w

− 1
2w
∫+ 1

2w
− 1

2w
X k1; k2ð Þdk1dk2:

Using a rect-function in k-space, we can drop the integration
boundaries:

y = ∫R2 rect wk1ð Þrect wk2ð ÞX k1; k2ð Þdk1dk2:

The integral of a function over the entire k-space equals the
value of its Fourier transform at 0. Furthermore, we replace the

product in k-space by a convolution in image space, and calculate its
value at 0 taking the symmetry of the sinc-function into account:

y = F rect wk1ð Þrect wk2ð ÞX k1; k2ð Þ½ $ 0ð Þ

= x →x
# $

*
1
w2 sinc

πr1
w

# $
sinc

πr2
w

# $% &% &
0ð Þ

=
1
w2 ∫ℝ2x →r

# $
sinc

π r ′1−r1
! "

w

% &
sinc

π r ′2−r2
! "

w

% &% &
dr1dr2j→r ′ =0

=
1
w2 ∫ℝ2x →r

# $
⋅ sinc

πr1
w

# $
sinc

πr2
w

# $# $
dr1dr2:

The last line shows that the signal sampled by a voxel can be
regarded as an integral over image space weighted with a sinc-
function centered on the voxel.

B.5. Differential activation

The differential activation y is obtained by subtracting the
activations of the two conditions:

y = x1−x2:

Appendix C. Time-course signal to noise ratio and its dependence
on repetition time

Time-course signal to noise ratio tSNR is modeled using the
following formula (Triantafyllou, et al. 2005):

tSNR =
SNR0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅SNR2
0

q

=
κ⋅Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅κ2⋅V2
p ;

ð3Þ

where SNR0 is the image SNR, V is the voxel volume, λ is a field and
scanner independent constant governing the relation between
temporal SNR and image SNR, and κ is a field strength and hardware
dependent proportionality constant between volume and image SNR.

When the repetition time TR is short, the longitudinal magneti-
zation does not fully recover resulting in a lower signal and therefore
lower SNR0(TR) relative to the maximally obtainable SNRmax

0 for
infinite TR. Using the Ernst angle as the excitation angle, SNR0(TR) is
related to SNRmax

0 according to Haacke et al. (1999):

SNR0 TRð Þ = SNRmax
0 ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e

−TR
T1

1 + e

−TR
T1

vuuuuuut

= SNRmax
0 ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanh
TR
2T1

s

:

If SNR0 is given for a specific TR = T̃R, it follows that SNR0(TR) for
any TR is

SNR0 TRð Þ = SNR0 T̃R
# $

⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanh
TR
2T1

tanh
T̃R
2T1

:

vuuuuuut
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Inserting this result into equation 3 we get:

tSNR TRð Þ =

SNR0ðT̃RÞ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh

TR
2T1

tanh
T̃R
2T1

vuuuuuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅SNR0ðT̃RÞ2
tanh TR

2T1

tanh
T̃R
2T1

vuuuuut

=

κT̃R ⋅V⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh

TR
2T1

tanh
T̃R
2T1

vuuuuuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + λ2⋅κ
T̃R
2⋅V2ðT̃RÞ

tanh
TR
2T1

tanh
T̃R
2T1

vuuuuuut

;

ð4Þ

where κT̃R is the constant κ estimated for data acquired using the
repetition time T̃R.
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Abstract 

Previous attempts at characterizing the spatial specificity of the blood oxygena-
tion level dependent functional MRI (BOLD fMRI) response by estimating its 
point-spread function (PSF) have conventionally relied on spatial representa-
tions of visual stimuli in area V1. Consequently, their estimates were con-
founded by the width and scatter of receptive fields of V1 neurons. Here, we 
circumvent these limits by instead using the inherent cortical spatial organiza-
tion of ocular dominance columns (ODCs) to determine the PSF for both Gra-
dient Echo (GE) and Spin Echo (SE) BOLD imaging at 7 Tesla. By applying 
Markov Chain Monte Carlo sampling on a probabilistic generative model of 
imaging ODCs, we quantified the PSFs that best predict the spatial structure 
and magnitude of differential ODCs’ responses. Prior distributions for the ODC 
model parameters were determined by analyzing published data of cytochrome 
oxidase patterns from post-mortem histology of human V1 and of neurophysio-
logical ocular dominance indices. The most probable PSF full-widths at half-
maximum were 0.82 mm (SE) and 1.02 mm (GE). Our results provide a quan-
titative basis for the spatial specificity of BOLD fMRI at ultra-high fields, which 
can be used for planning and interpretation of high-resolution differential 
fMRI of fine-scale cortical organizations. 

Introduction 

Functional magnetic resonance imaging (fMRI) of the human brain is increas-
ingly being used to investigate fine-scale structures such as cortical columns 
(Cheng	et	al.,	2001;	De	Martino	et	al.,	2015;	Goodyear	and	Menon,	2001;	Menon	
et	al.,	1997;	Shmuel	et	al.,	2010;	Yacoub	et	al.,	2008;	2007;	Zimmermann	et	al.,	
2011). To optimally plan high-resolution fMRI studies and to correctly inter-
pret their results it is necessary to know the inherent limits of the fMRI spatial 
specificity relative to the sites where changes in neuronal activity occur. 

The most commonly used fMRI approach relies on gradient echo (GE) 
blood oxygenation level dependent (BOLD) contrast (Bandettini	 et	 al.,	 1992;	
Kwong	et	al.,	1992;	Ogawa	et	al.,	1990;	1992). GE BOLD is sensitive to the intra- 
and extravascular effects of activation-induced changes in the deoxy-
hemoglobin content of blood. At standard magnetic field strengths (1.5 T, 3 T) 
the signal is dominated by contributions from larger blood vessels. At higher 
magnetic field strengths the strong intravascular component of these large 
blood vessels decreases, while the extravascular signal changes around capil-
laries and smaller vessels increase (Uludağ	et	al.,	2009;	Yacoub	et	al.,	2001). Ad-
ditional weighting towards the microvasculature can be achieved by using spin 
echo (SE) BOLD imaging, which suppresses extravascular signal contributions 
from larger blood vessels (Uludağ	et	al.,	2009;	Yacoub	et	al.,	2003). 

The first study to quantify the spatial specificity of the BOLD response (En-
gel	et	al.,	1997) used an elegant phase-encoding paradigm that induced travel-
ing waves of retinotopic neural activity in the primary visual cortex (V1). As-
suming a shift-invariant linear response, Engel et al. (1997) estimated the 
point-spread function (PSF), which represents the spatial response that would 
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be elicited by a small point stimulus. They found the full-width at half-
maximum (FWHM) of the GE BOLD PSF to be 3.5 mm at 1.5 T. Similar values 
(3.9 mm for GE BOLD and 3.4 mm for SE BOLD) have been reported at 3 T 
(Parkes	 et	 al.,	 2005) using a paradigm similar to that used in Engel et al.  
(1997). To estimate the GE BOLD PSF at 7 T, we previously measured the spa-
tiotemporal spread of the fMRI response in grey matter regions around the V1 
representation of edges of visual stimuli (Shmuel	et	 al.,	 2007). To reduce con-
tributions from macroscopic veins, we excluded voxels that showed vessel-like 
response features. The mean measured and estimated FWHMs were 2.34 ± 
0.20 mm and < 2 mm, respectively. The spatial specificity of SE BOLD fMRI at 
ultra-high magnetic fields has not yet been quantified. 

All previous attempts at characterizing the spatial specificity of the BOLD 
fMRI response (Engel et al., 1997; Parkes et al., 2005; Shmuel et al., 2007) re-
lied on an implicit assumption that neuronal responses to small visual stimuli  
are point-like. However, to estimate the spatial specificity of the BOLD re-
sponse, these studies have conventionally relied on spatial representations of 
visual stimuli in area V1. Unlike the implicit assumption of point-like respons-
es, the receptive fields of neurons in V1 have non-zero spatial extents (Hubel 
and Wiesel, 1968). In addition, electrode measurements in macaque V1, ori-
ented orthogonally relative to the surface of cortex have demonstrated sub-
stantial scatter in the center of receptive fields (Hubel and Wiesel, 1974). 
Therefore, the pattern of neural activity parallel to the cortical surface is a 
blurred representation of the visual stimulus. This implies that receptive field 
size and scatter pose a lower limit on any BOLD fMRI PSF width that is esti-
mated using spatial representations of visual stimuli in V1. Consequently, the 
previously computed estimates of the spatial specificity of the fMRI response 
were confounded by the width and scatter of receptive fields of V1 neurons. 
Such estimates are limited in that they solely measure the capacity of the 
BOLD response to resolve retinotopic representations; they do not measure its 
ability to resolve more fine-grained neural activity. Yet only this latter resolva-
bility matters for functional imaging at the spatial scale of cortical columns. 

Here, we estimate and compare the PSF widths of GE and SE BOLD imag-
ing at 7 T using a novel approach. We circumvent the limits posed by the reti-
notopic representation of visual stimuli by instead using the inherent cortical 
spatial organization of ocular dominance columns (ODCs). To this end, we fit a 
model of ODCs imaging (Chaimow et al., 2011) to ODCs responses acquired at 
7 T (Yacoub et al., 2007). We quantify the width of the PSF that best predicts 
the spatial structure and magnitude of differential ODC responses.  Since we 
do not have access to the underlying anatomical ODC patterns and neurophys-
iological responses, we use a probabilistic modeling approach. We constrain 
the model ODC parameters by estimating features of real ODC patterns taken 
from post-mortem cytochrome oxidase (CO) maps of human ODCs (Adams et 
al., 2007) and neurophysiological response distributions in primates (Berens et 
al., 2008; Hubel and Wiesel, 1968). We then fit our model by Markov Chain 
Monte Carlo (MCMC) sampling. Our results provide a quantitative basis for 
the spatial specificity of differential BOLD fMRI at ultra-high fields. 
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Methods 

Overview 
We developed a probabilistic generative model of imaging ODCs in order to 
estimate widths of GE and SE BOLD PSFs that would best explain our previ-
ously obtained fMRI data of differential ODC maps (Yacoub	et	al.,	2007). 

The measured fMRI maps consisted of voxel estimates of the difference in 
BOLD responses to left and right eye stimulation.  We modeled these responses 
as the sum of predictions from an ODC imaging model and measurement 
noise. The predictions from the ODC imaging model were completely deter-
mined by a set of parameters. Accounting for the effect of the measurement 
noise allowed us to first express the probability of observing the measured 
fMRI maps as a function of model parameters. In a second stage, we derived 
the posterior probability of the model parameters given the observed data and 
the prior probability of parameters. 

 
Fig. 1 Overview of Markov Chain Monte Carlo fitting. The model was fitted to the fMRI data using Mar-
kov Chain Monte Carlo (MCMC) sampling. For an arbitrary given set of parameters, the model generated 
a differential fMRI map (left). This map was compared to the measured fMRI map (right) and the likeli-
hood of parameters given the data was calculated. The MCMC algorithm uses this likelihood together 
with parameter priors to further traverse the parameter space. After sufficiently many iterations the re-
sulting parameter samples are distributed according to their joint posterior probability distribution. 

Model of imaging ODCs 
We implemented a model of imaging ODCs (Chaimow	et	al.,	2011;	see	Fig.	1	for	
an	overview;	see	Appendix	A	 in	the	Suppl.	Material	 for	 the	detailed	equations). 
The first component of the model, i.e. the modeling of realistic ODCs, followed 
(Rojer	and	Schwartz,	1990). It consisted of band-pass filtering of spatial white 
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noise using an anisotropic filter. The filtering was followed by applying a sig-
moidal point-wise non-linearity, which controlled the smoothness of transitions 
between left and right eye preference regions.  

The spatial BOLD response was modeled as a convolution of the ODCs pat-
tern with a Gaussian PSF. We modeled separate BOLD responses for the GE 
and SE maps. However, as these maps were obtained from the exact same re-
gion in area V1 in each subject, the model constituted one ODC map underly-
ing both the GE and SE responses. MRI k-space sampling was modeled by re-
stricting the spatial frequency space to its central part in accordance with the 
modeled field of view, sampling matrix and voxel size (Haacke	et	al.,	1999).  

All model parameters are listed in Table 1. Three parameters controlled 
general ODC properties: the main (peak) spatial frequency ρ, the degree of ir-
regularity δ and the branchiness ϵ.  The spatial white noise served as a high-
dimensional parameter determining the specific manifestation of the ODC pat-
tern. A parameter ω	controlled the smoothness of transitions between regions 
showing left and right eye preference. The PSFs of the BOLD responses were 
parameterized by amplitudes &'(  and &)(  and by their FWHM *+ℎ-'(  and 
*+ℎ-)( (the parameters of interest). 

Relative to our previously published model, we made 2 slight modifica-
tions. First, to simplify derivation of the gradient we subsequently used for im-
plementing the MCMC sampling, we modified the formulation of the band-
pass filtering kernel (see Appendix A). Second, due to consideration of step 
size determined by the MCMC algorithm, we defined and used a smoothness 
parameter ω instead of using its inverse, the sharpness parameter α which we 
used previously. 

Model implementation 
The model was implemented in MATLAB (The MathWorks Inc., Natick, MA, 
USA). All model computations were carried out on a Cartesian grid of 0.125 × 
0.125 mm2 resolution. Spatial filtering used for the ODC and BOLD PSF mod-
eling was carried out in the frequency domain using discrete Fourier trans-
forms. The discrete Fourier transform assumes signals to be periodic, thereby 
forcing opposite edges of the grid to be continuous. In order to minimize this 
effect on modeling, the simulated area was extended relative to the data by 
doubling the length of each dimension. 

Prior estimation 
Table 1 presents an overview of employed priors for all parameters. The spatial 
Gaussian white noise had an independent multivariate normal distribution 
with a standard deviation of 1 as its prior. Priors for the ODC model parame-
ters were estimated from anatomical and neurophysiological data as described 
in the following sections. 
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Table 1 Model Parameters. Free parameters are probabilistic parameters. We used MCMC to sample 
from their joint distribution. Fixed parameters were estimated directly from the data and were held con-
stant during MCMC sampling. 

Free  
parameters 

Description Prior MCMC starting value 

./,1 Spatial white noise to be 
filtered, determines 
specific ODC pattern 

Multivariate standard 
normal distribution 

Up-sampled differential 
fMRI map, normalized to 
have a standard deviation 
of 1 

     
2 Main spatial frequency of 

ODC 
Limited normal 
distribution, parameters 
estimated from 
anatomical data 

Set to mean of estimates 
from anatomical data 

3 Irregularity Normal distribution, 
parameters estimated 
from anatomical data 

Set to mean of estimates 
from anatomical data 

4 Branchiness Normal distribution, 
parameters estimated 
from anatomical data 

Set to mean of estimates 
from anatomical data 

5 Smoothness of 
transitions 

Uniform between 0.3 and 
2 based on 
neurophysiology data 

Set to mean of limits 

6 Orientation of ODC Flat 7/2 (corresponds to ODC 
bands parallel to medio-
lateral direction) 

    
:;<=>? GE point-spread-function 

width (full width at half 
maximum) 
 

Flat 2 mm 

:;<=@?	 SE point-spread-function 
width (full width at half 
maximum) 
 

Flat 2 mm 

Fixed 
parameters 

Description Estimation  

A>?	 GE response amplitude Twice the median across voxels of the average between 
GE responses to left and right eye stimulation 

A@?	 SE response amplitude Twice the median across voxels of the average between 
SE responses to left and right eye stimulation 

BCD>?	 GE measurement noise 
variance 

Mean across voxels of estimation variance of differential 
GE response  

BCD@?	 SE measurement noise 
variance 

Mean across voxels of estimation variance of differential 
SE response  

 

Estimation of priors from cytochrome oxidase data 
Four single hemisphere images of complete patterns of ODCs in the human 
brain taken from Adams et al. (2007) were reanalyzed. These images were 
originally obtained by postmortem staining for CO activity in human subjects 
who had lost one eye. The goal of this analysis was to find model parameters 
that gave rise to modeled ODC maps whose spatial power spectra most closely 
resemble those of real human ODCs (Fig. 2). 
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Fig. 2 Overview of cytochrome oxidase fitting. In order to constrain the parameters of the ODC model 
(main spatial frequency, irregularity and branchiness), cytochrome oxidase (CO) maps of human ODCs 
(Adams et al., 2007) were analyzed. Model parameters were optimized so that the spatial power spectra 
of binary ODC maps generated by the model (left) resembled those of the CO maps (right). 

Two rectangular regions from each image, which corresponded in cortical 
location and extent to our fMRI ODC maps, were selected. To this end, V1 
boundaries and the representation of the fovea were delineated. The eccen-
tricity for each point in V1 was computed from the cortical distance to the fo-
vea EFGHIJ as 0.75 + exp STUVWXY

Z[.\
]	(Horton	and	Hoyt,	1991). For every point in the 

map, the two locations on the upper and lower V1 boundary (representing the 
vertical meridians) with eccentricity equal to that of the considered point were 
identified. The angular distances (along points with the same eccentricity) 
from the point under consideration to each of those two points on the bounda-
ry were calculated. The horizontal meridian was defined as the set of all V1 
points for which those two distances were equal (green line in Fig. 3A).  

The two regions to be selected, corresponding to the upper and lower 
banks of the calcarine sulcus, were then defined using the following criteria. 
First, the spatial extent was set to 15.7 mm x 8 mm, so that the area was equal 
to the mean area of our fMRI regions of interest (ROI) and the aspect ratio was 
equal to the mean aspect ratio of our fMRI ROIs. Second, ROIs had to be 5 mm 
away from the horizontal meridian and centered within an eccentricity range 
of 3° to 10°, corresponding to the expected location of the flat regions of the 
calcarine sulcus (Cheng	et	al.,	2001). 

The pattern of the CO map was binarized, in order to obtain the pattern of 
absolute ocular dominance (i.e. left or right eye preference). Then, for each 
map, we fitted the parameters of the ODC part of the model such that the spa-
tial power spectra of the simulated binarized ODC maps were similar to those 
of the CO maps of ODCs (Fig. 3B, measured ODC; Fig. 3C, simulated ODC). 
For a model that consists of the filtering of spatial white noise only (i.e. with-
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out a sigmoidal point-wise non-linearity or binarization), the frequency spec-
trum of the output is expected to resemble the filter shape. Here, the spatial 
frequency spectra of the binarized CO maps were used to obtain first estimates 
of the ODC filter parameters. To that end, spectra were resampled to polar co-
ordinates and their radial and angular averages were computed. Model equa-
tions for the radial and angular filter components (see Appendix A) were fitted 
to these averages using the MATLAB Curve Fitting Toolbox, enabling the ex-
traction of parameter estimates (^, _, `, a). Random binary ODC patterns (400 
in each step) were simulated using these estimates as initial values. Their 
power spectra were averaged, and the sum of squared differences between the 
data spectrum and the average simulated spectrum was computed. An optimi-
zation algorithm in MATLAB (fminsearch;	Lagarias	et	al.,	1998) was used to find 
parameters that minimized this sum of squared differences. 

 
Fig. 3 Results of cytochrome oxidase ODC map analysis. A Cytochrome oxidase ODC maps from human 
V1 were imported from Adams et al. (2007). Regions of interest (ROIs) were selected to be comparable 
in size and location to our fMRI data. B The ODC pattern from the selected upper bank region (left) is 
shown next to its spatial power spectrum (right). C Model parameters were optimized to produce simu-
lated patterns (left) whose average spectrum (right) was comparable to the spectrum of the data in B. D 
The patterns from the upper and lower bank regions of all four cases are shown with color-coded sur-
rounds. E The estimated values of model parameters from all patterns are shown as vertical lines using 
the same colors as in D. Dashed lines indicate values from patterns that were classified as outliers in the 
distribution of spatial frequency, irregularity, or branchiness. The mean and standard deviation of the 
remaining values were used to define Gaussian distributions (black) to be used as priors for fitting the 
model to the fMRI data. 
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Three maps and their fitted parameters showed outlier features.  For exam-
ple, ‘case5R upper’ (Fig 3D, red surround) showed very thin bands in one re-
gion (upper left) immediately adjacent to a region of thicker bands (bottom 
right), resulting in outlier estimates of irregularity and branchiness (red lines 
in Fig. 3E, middle and bottom panels). Such abrupt changes may have resulted 
from the processing of anatomical specimens or from the presence of curved 
boundaries between locally flat regions. 

In order to avoid atypical parameters estimates, parameter values whose 
absolute deviation from the median exceeded 3.7 times the median absolute 
deviation (corresponding	 to	 2.5	 standard	 deviations	 of	 a	 normal	 distribution;	
Leys	et	al.,	2013) were marked as outliers. Maps in which at least one parame-
ter was marked as an outlier were excluded from further analysis. This proce-
dure resulted in the exclusion of three maps (cases 2R, 3R and 5R upper) from 
further analysis. 

For each parameter, model priors were defined as normal distributions with 
means and standard deviations equal to the sample means and standard devia-
tions of parameter values from the remaining maps. In order to further dis-
courage extreme parameter values, we set the prior for ^ outside two standard 
deviations from the mean to zero.  

Estimation of a prior for the smoothness parameter 5 
A prior for the smoothness parameter c was constructed on the basis of ocular 
dominance indices (ODIs) as reported in the neurophysiological literature. We 
assumed that ODI distributions in humans are similar to those in the macaque. 

ODIs are defined as def = 	 hiXUjkhlmnoj
hiXUjphlmnoj

 , where qrIFs and qtuvws denote the 

response values to stimuli presented to the left and right eye respectively (e.g.	
Berens	et	al.,	2008). ODIs were calculated from differential ODC maps generat-
ed by our model and fit to ODI distributions from the literature (Berens	et	al.,	
2008;	Hubel	and	Wiesel,	1968). c was allowed to vary while all other parame-
ters were fixed as the mean of their anatomical data estimates. The value of c 
that resulted in the smallest Kullback-Leibler divergence between the modeled 
and the target distribution was selected. 

In order to fit modeled ODI distributions to the seven-class classification of 
Hubel and Wiesel (1968), classes 1 and 7 were collapsed into an exclusively 
responding class (left or right eye). Classes 2, 3, 5 and 6 were collapsed into 
an intermediately responding class, with class 4 responding indifferently. Mod-
eled ODI distributions were also transformed into these three classes. The 
range of absolute ODIs that were assigned to the exclusively responding class 
and to the indifferently responding class were defined by a class width param-
eter. The values of c and of the width parameter that together resulted in the 
smallest Kullback-Leibler divergence between the modeled and the target dis-
tribution were selected. 

fMRI Data acquisition 
7 T BOLD fMRI data from Yacoub et al. (2007) were reanalyzed. The data 
were obtained from three subjects in six sessions each, using GE (three ses-
sions) and SE (three sessions) imaging. The target ROI of one subject was unu-
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sually and densely covered by large blood vessels. We therefore excluded the 
data from this subject and used the two other datasets. A single slice was im-
aged; it was selected such that it was parallel to and maximally overlapping 
with a flat gray matter region of the calcarine sulcus. The in-plane resolution 
was 0.5 × 0.5 mm2 and the slice thickness was 3 mm. Each run included a 
baseline epoch, in which a blank gray image was presented, and alternating 
epochs of left or right eye stimulation. Detailed descriptions of the methods 
used for data acquisition can be found in Yacoub et al. (2007). 

fMRI Data processing 

Data reconstruction 
The measured k-space data were preprocessed using dynamic off-resonance in 
k-space (DORK) to remove respiration-induced fluctuations in resonance fre-
quency (Pfeuffer	 et	 al.,	 2002). Subsequently, a Fourier transformation was ap-
plied in order to transform the data to the image space. Three datasets (subject 
2, SE)  were acquired using partial Fourier and were reconstructed using a 
homodyne reconstruction algorithm (Noll	et	al.,	1991). 

Motion correction 
Residual head motion was corrected using AFNI’s 3dvolreg (Cox	 and	 Jesman-
owicz,	 1999). This algorithm requires multiple slices; therefore, identical cop-
ies of the slice were concatenated from above and below. The additional slices 
were later discarded from the output of the algorithm. The reference volume 
in each run was set to the volume with the highest average correlation to all 
other volumes. Each run was motion-corrected using the two-passes option 
and Fourier interpolation. All volumes for which any voxel was displaced more 
than 1 mm relative to the reference volume were marked as motion outliers 
and were later excluded from the general linear model (GLM) analysis. All re-
sulting transformation matrices were saved. 

Between-run motion correction was carried out by first averaging all with-
in-run corrected volumes from each run. Next, the series created from concat-
enating these single-run averages was corrected in the same manner as de-
scribed above. Again, all transformation matrices were saved. 

Finally, the within-run corrected data was transformed by applying the 
saved between-run transformations. The resulting combination of two interpo-
lations (within- and between-runs) was created for intermediate use only. For 
our quantitative analysis of the PSF, only one interpolation was applied. This 
one interpolation accounted for all alignments and registrations of the data 
(see below). 

Outlier volume detection 
For every volume, the measured fMRI signal in each voxel was compared to 
the entire time-course of that voxel by computing the z-score of the measured 
fMRI signal relative to the voxel’s time series across all other volumes. Volumes 
that were already marked as motion outliers were not included in this calcula-
tion. The volume under consideration was marked as an outlier volume if the 
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average of z-scores across all voxels was larger than 2. Outlier volumes were 
later excluded from the GLM analysis. 

Between-days and between-modality registration 
ROIs for each session were imported from our previous analysis of the data 
(Yacoub	et	al.,	2007). For each modality (GE or SE), between-days registration 
was performed using mean intensity images averaged over all runs of a given 
day. First, the single-day ROIs were aligned according to their centers of mass. 
Next, each day’s mean intensity image was cropped such that all images con-
tained the same amount of space around their ROIs, the ROIs were in the same 
position, and all cropped images were of equal size. Weight masks were calcu-
lated for each day by assigning a weight of one to all voxels inside the ROI and 
zero to all voxels further away from the ROI than 25 mm. Voxels outside of the 
ROI but closer than 25 mm were assigned an intermediate weight that varied 
smoothly between one and zero according to the function 0.5 Scos S7 T{|}

~�	ÄÄ
] +

1], where EÇÉÑ is the shortest distance to the ROI. Out of the three days, the 
one whose mean intensity image had the highest average correlation to those 
of all other days (weighted by the mask) was selected as the reference day. 
Each day was registered to the reference day using FSL’s flirt 2D registration 
without large-scale search (Jenkinson	et	al.,	2002;	 Jenkinson	and	Smith,	2001), 
using the weight masks and normalized correlation as the cost function. All 
transformations were saved. 

Initial between-modality (GE and SE) registration was carried out using the 
registered GE and SE images averaged over all days. A procedure similar to 
that used for within-modality registration was employed, except that the corre-
lation ratio served as the cost function. For the data of subject 1, AFNI’s 
3dvolreg (using the same options as in motion correction) produced a better 
registration than FSL’s flirt based on visual inspection, and was therefore used 

All registration results were visually inspected. Residual misalignments 
found in one day of subject 1 and one day of subject 2 were manually correct-
ed. 

Data resampling 
In order to avoid smoothing of the data due to multiple interpolations, all 
transformation matrices (within-run motion correction, between-run motion 
correction, between-days within-modality registration and between-modalities 
registration) were combined. All unprocessed data was transformed using one 
single Fourier interpolation per volume using AFNI’s 3drotate (Cox	 and	 Jes-
manowicz,	1999). 

GLM analysis 
For each run, a GLM was fit to each single voxel time-course. The model con-
sisted of a constant predictor and the two stimulation paradigms (left and right 
eye stimulation) convolved with a standard hemodynamic response function. 
Volumes that were previously determined to be outliers due to extensive head 
motion or imaging artifacts were excluded from the fit. Relative responses 
were calculated by dividing the estimated stimulus response magnitudes by the 
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estimated constant baseline. Differential responses were calculated as the dif-
ference between left and right eye responses. Unspecific responses were calcu-
lated as the average between left and right eye responses. In addition, stand-
ard errors of all estimates were calculated. For visualization purposes only, es-
timated response maps as well as modeled response maps were interpolated to 
0.25 × 0.25 mm2 resolution by zero-padding in spatial frequency space and 
were band-pass filtered for eliminating cycles shorter than 1.25 mm and longer 
than 12 mm. 

Multi-run and multi-day averaging 
Standard errors were comparable between runs and days. Accordingly, single-
day responses were calculated by averaging the GLM estimates of the single-
run responses. Likewise, responses for each subject and imaging modality (GE 
or SE) were estimated by averaging single-day responses. 

Standard errors for these averaged responses were estimated as standard 
errors of the mean from the distribution of single-day responses. Averaged re-
sponse maps from all three days were used for further processing for subject 1. 
For subject 2, between-days correlation of a pair of SE sessions was significant-
ly lower than those obtained from all other pairs in our data. We therefore av-
eraged only the two most reproducible SE sessions (highest correlation of dif-
ferential responses) and, separately, the two most reproducible GE sessions in 
order to achieve equal processing between SE and GE. 

Optimization of between-modality registration using differential maps 
Between-modality registration was further optimized. The GE and SE differen-
tial maps were shifted relative to each other vertically and horizontally by mul-
tiples of a quarter voxel up to three voxels in each direction and the set of 
shifts that resulted in the highest correlation between differential GE and SE 
maps was saved. To avoid multiple interpolations, this shift was combined with 
all previously found transformations (i.e. motion correction and registration) 
into a single transformation and interpolation. All unprocessed data were 
transformed over again as described above, followed by GLM analysis, multi-
run and multi-day averaging. 

Quantities used for MCMC fitting 
Image artifacts, noise and blood vessels may result in some voxels with ex-
treme differential responses that would have a disproportionate effect on fit-
ting the model. For this reason, all voxels with a differential response showing 
absolute deviation from the median exceeding 3.7 times the median absolute 
deviation (corresponding	 to	 2.5	 standard	 deviations	 of	 a	 normal	 distribution;	
Leys	 et	 al.,	 2013) were excluded (percentage of excluded voxels in subject 1: 
5.0% GE and 4.1% SE, in subject 2: 2.8% GE and 2.3% SE). Note that alt-
hough this procedure may have removed some voxels with large vessel contri-
butions, it was not meant to systematically remove all voxels with such contri-
butions (see discussion). We then calculated the median unspecific response 
and the root mean square (RMS) of the differential response standard errors 
from the remaining voxels. We set the maximum response amplitudes &'( and 
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&)( to twice the median of the left/right averaged GE and SE responses, re-
spectively, as defined by the model. 

MCMC fitting 
The posterior probability of GE and SE PSF widths given the data and priors 
over parameters was estimated using MCMC sampling (Fig. 1). MCMC sam-
pling was implemented using a Hamiltonian Monte Carlo algorithm (Duane	et	
al.,	1987;	see	Neal,	2011	for	a	more	recent	review). 

The algorithm requires input in the form of a function that computes the 
negative log posterior probability (the potential energy of the model; see Ap-
pendix B in the Suppl. Material) and its gradient (see Appendix C in the Suppl. 
Material). The log posterior probability depends on model parameter values, 
their prior probabilities, the data and the uncertainty of the data. The data in 
this sense were the maps of measured differential GE and SE responses within 
the ROI that were not excluded as outliers. The uncertainty of the data was 
characterized by the RMS of differential response standard errors, calculated 
separately for GE and SE. The exact form of the log posterior probability and 
derivations of the formulae for efficient computation of its gradient are de-
scribed in the Appendix. 

Two parameters determine the dynamics of parameter space exploration. 
The first parameter, the number of leapfrog steps per iteration, was set to a 
value of 20. The second parameter, the step size, was initially set to 0.005 and 
was adjusted adaptively so that the acceptance probability stayed close to the 
theoretical optimum of 0.651 (Neal,	2011). In addition, the step size was var-
ied randomly within a range of ±20% to avoid periodicity in the trajectories 
(Neal,	2011). 

Initial values used for all model parameters can be found in Table 1. 
The MCMC algorithm was run for 512,000 iterations, of which every 256th 

sample was retained. The set of all retained samples is an approximation to the 
joint posterior probability distribution of all parameters given the data and the 
model, while taking prior distributions into account.  

See the attached video, that demonstrates the initial stages of the fitting. 

Analysis of MCMC sampling results 
The samples of PSF widths were binned into 0.04 mm wide intervals. We then 
identified the bin that contained the highest number of samples, which is the 
maximum a posteriori probability estimate obtained from the marginal distri-
bution for the PSF width. Highest marginal posterior density credible intervals 
at the 95% level were computed by selecting the narrowest intervals contain-
ing 95% of the PSF width samples. 

MCMC sampling diagnostics 
The quality of the MCMC sampling process was assessed by visual inspection 
of parameter sample traces, autocorrelation estimates of the samples traces 
and the Geweke diagnostic, which is a z-test for difference between sample 
means in the first 10% and last 50% of samples (Geweke,	1991).  
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Estimation of Ö~/Ö~∗ blurring or sharpening effect 
Imaging modulation transfer functions (MTF) were estimated from the last 
volume of each run in which the phase-encode gradients were switched off 
(Kemper	et	al.,	2015). This resulted in read-out lines that were expected to vary 
in amplitude only, according to the phase-encode direction imaging MTF (re-
flecting  Ö~/Ö~∗ decay as experienced by all normally acquired volumes). First, 
the peak position along the read-out direction was found from the average of 
the absolute magnitudes computed over all read-out lines. Next, the imaging 
MTF was estimated by combining the absolute magnitudes of all read-out lines 
at the peak position into a vector. 

We estimated the blurring or sharpening due to Ö~/Ö~∗ decay as a separate 
effect from the effect of finite and discrete MR sampling (for	more	details	 see	
Chaimow	and	Shmuel,	2016,	 in	preparation). To this end, the complex imaging 
PSF was computed by applying a discrete Fourier transform to the estimated 
imaging MTF.  

Convolution of the original pattern with the real component of the complex 
imaging PSF is an approximation to the full MRI acquisition (Chaimow	 and	
Shmuel,	2016,	in	preparation), including the last stage of taking the absolute of 
the complex values obtained at the end of the reconstruction.  

We computed the inverse discrete Fourier transform of the real component 
of the complex imaging PSF, resulting in its MTF. Two Gaussian functions with 
zero means were separately fitted to the MTF of the real component of the 
complex PSF and to its inverse. Then, we compared the goodness of fit (R2) 
obtained by the two fitted Gaussians. If the better fit was obtained by fitting a 
Gaussian to the MTF of the real component of the complex PSF, the effect of 
Ö~/Ö~

∗  could be described as Gaussian blurring. If the better fit was obtained 
by fitting a Gaussian to the inverse of the MTF of the real component, the ef-
fect of Ö~/Ö~∗  could be described as a sharpening that could reverse a specific 
Gaussian blurring. 

We therefore computed the FWHM of the Gaussian with the better good-
ness of fit (obtained by fitting to either the MTF of the real component or to its 
inverse).  

Note that in the case of sharpening, the computed FWHM characterizes the 
Gaussian ‘used’ for blurring which would be reversed by the sharpening effect 
of the Ö~/Ö~∗ decay. FWHM estimates for each modality were first averaged 
over all runs of each session (day) and then over all sessions of each subject. 

Inclusion of T2/T2* blurring in the model 
A version of our model that included the effect of Ö~/Ö~∗ decay was fitted to our 
data. Depending on whether the Ö~/Ö~∗ decay effect resulted in blurring or 
sharpening, the BOLD MTF (Appendix A, BOLD response) was changed to: 
áÖàâ,r(*+ℎ-, &) = & ∙ åk~ç

éèê|ëí
é ∙t(â,r) ∙ åk~ç^~∙è}îï

é ∙ré  (for blurring) or 
áÖàâ,r(*+ℎ-, &) = & ∙ 1/åk~ç

éèê|ëí
é ∙t(â,r) ∙ åk~ç^~∙è}îï

é ∙ré(for sharpening), where  
ñÑó' = *+ℎ-Ñó'/2ò2ôöõ2	  and *+ℎ-Ñó'  is the estimated FWHM of the 
Gaussian blurring kernel that models the effect of Ö~/Ö~∗ decay. We assumed 
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the second dimension (associated with index l) to be the phase-encode dimen-
sion. 

Results 

Our goal was to fit a probabilistic generative model to maps of ODCs obtained 
with GE- and SE-based BOLD fMRI (Fig. 1). We aimed to infer posterior prob-
ability distributions of model parameters, specifically the width of the GE and 
SE BOLD fMRI PSF. 

Parameter priors obtained from real human ODC 
The ODC imaging model (Chaimow	et	al.,	2011) consisted of simulating realis-
tic ODCs by the filtering of spatial white noise (Rojer	and	Schwartz,	1990) fol-
lowed by a spatial BOLD response and MRI k-space sampling.  

Before we fitted our model to fMRI data, we determined priors for the ODC 
parameters by incorporating statistical information obtained from real human 
ODC patterns (Fig. 2). To this end, we analyzed CO maps of ODCs from human 
V1 taken from Adams et al. (2007). 

It should be noted that CO labeling intensities are expected to provide a 
fairly accurate estimate of the preferred eye. However, there are multiple, po-
tentially non-linear transformations between neuronal activity, staining intensi-
ty and the final processed image. These make it unlikely that the CO intensities 
quantitatively reflect the relative ocular dominance. Therefore, we only used 
binarized versions of these maps, thresholded to represent the absolute prefer-
ence to either left or right eye stimulation). We eventually determined priors 
on ocular dominance from neurophysiological recordings (Berens	et	 al.,	 2008;	
Hubel	and	Wiesel,	1968). 

We first restricted the maps of the entire V1 to small regions (Fig. 3A) 
whose size and location were similar to those of our fMRI data (with origins in 
flat regions of the calcarine sulcus). Then, for each map, we fitted the parame-
ters of the ODC part of the model such that the spatial power spectra of the 
simulated binarized ODC maps were similar to those of the CO maps of ODCs 
(Fig. 3B, measured ODC; Fig. 3C, simulated ODC). Simulated maps generated 
using these parameters looked qualitatively similar to the true CO maps (Fig. 
3C). The set of all imported maps is shown in Figure 3D and the estimated pa-
rameters from all maps are shown color-coded in Figure 3E.  

For each parameter we defined Gaussian priors that fit the distribution of 
all remaining parameter estimates (black curves, Fig. 3E). In particular, the 
prior for the main pattern frequency ^ had a mean of 0.57 cycles/mm with a 
standard deviation of 0.1 cycles/mm, which corresponds to an average column 
width of 0.87 mm. 

Smoothness of ODC maps 
In order to construct a prior for the smoothness parameter c we analyzed dis-
tributions of ocular dominance indices (ODIs) as reported in the neurophysio-
logical literature. ODIs quantify the relative contributions of each eye to meas-
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ured responses, and their distribution is tightly linked to the smoothness pa-
rameter c. Small values of c result in sharp transitions between columns asso-
ciated with ODIs close to +1 or -1. Large values of c result in smooth transi-
tions, with few locations reaching absolute monocular responses and most 
ODIs being close to 0. 

We analyzed ODI distributions taken from Hubel and Wiesel (1968) and 
Berens et al. (2008) by fitting ODI distributions computed from our model as a 
function of smoothness c. We found a value of c = 1.5 to best explain ODI 
distributions corresponding to the data in Berens et al. (2008), whereas the 
data in Hubel and Wiesel (1968) were best fitted with c = 0.36. Both datasets 
came from macaque monkeys. Berens et al. (Berens	 et	 al.,	 2008) used multi-
unit activity, a measure whose ODIs are expected to be blurred relative to sin-
gle neuron responses and are therefore expected to match a higher c.  Data 
from Hubel and Wiesel (Hubel	 and	 Wiesel,	 1968) presented single-unit re-
sponses but were less quantitative. We therefore chose a uniform prior distri-
bution for c, limited by 0.3 from below and 2 from above, effectively reflect-
ing the range of uncertainty associated with c. 

GE and SE BOLD maps of ODC 
Having constructed a generative model with realistic priors, the next step was 
to process the fMRI data and to extract all quantities needed to fit the model. 
We reanalyzed fMRI data from two subjects (Yacoub	et	al.,	2007) using a gen-
eral linear model (GLM) to estimate responses to left and right eye stimulation 
(Fig. 4). The single-eye response maps were dominated by global unspecific 
responses and superimposed band-shaped modulations (Fig. 4A). 

We separated these two components by first calculating the voxel-wise dif-
ference between left and right eye responses, yielding the differential ODC 
maps (Fig. 4C). Here, the band-shaped organization is clearly visible. The 
range of differential contrasts as defined by their standard deviation was 1.8% 
(GE) and 1.5% (SE) for subject 1, and 1.0% (GE) and 1.0% (SE) for subject 2. 

In addition, we calculated voxel-wise averages of left and right eye re-
sponses (Fig. 4B). According to our model, which assumes antagonistic pat-
terns of neuronal responses, this average response is expected to be independ-
ent of the local ocular preference. Furthermore, it is expected to be equal to a 
spatially homogeneous response with half the amplitude of the highest possi-
ble ocular dominance (with no response to the non-preferred eye). 

We calculated the median of this left/right average response over all voxels. 
It was 3.0% (GE) and 1.9% (SE) for subject 1, and 3.7% (GE) and 2.0% (SE) 
for subject 2. In accordance with the model, we then set the amplitudes of the 
model PSFs to twice these values. 

Finally, we estimated the measurement noise level of the differential maps 
as the root mean square (RMS) of all standard errors estimated by the GLM 
(Fig. 4D). It was 0.9% (GE) and 0.9% (SE) for subject 1, and 0.6% (GE) and 
0.8% (SE) for subject 2. 
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Fig. 4 fMRI ODC data. Results from the GLM analysis of fMRI data from subject 1 for GE (left) and SE 
(right). A Responses to left and right eye stimulation relative to baseline. B The response maps to the left 
and right eyes from A were averaged. B shows the distribution of the average response. Its median (in 
green) was used to set the overall amplitude of the BOLD response model.  C The difference between left 
and right eye responses yields the differential ODC map. D The distribution of standard errors of all dif-
ferential responses. From this distribution we estimated the noise level used by the model. The color 
look-up-table applies to all response maps. 

Estimation of GE and SE point-spread widths 
We went on to estimate the probability distributions of GE and SE PSF widths 
given our data. Theoretically, this requires integrating the posterior probability 
distribution of model parameters over all other parameters (including the 
high-dimensional spatial noise parameter). However, exact integration over 
this high dimensional space is not feasible. We therefore used MCMC to sample 
from the posterior probability distribution. Every sample contains all the pa-
rameters necessary to simulate one anatomical ODC map and the resulting GE 
and SE fMRI differential maps. The algorithm draws parameter samples with a 
probability proportional to how likely these parameters are to have generated 
the measured data given all the priors. 
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Fig. 5 Results of point-spread width estimation. The probability distribution of PSF given the data was 
estimated using Markov Chain Monte Carlo Sampling. The model simulated GE and SE maps each with 
their own BOLD parameters and with a common underlying ODC map. Results are shown for both sub-
jects. The first row shows the measured differential ocular dominance map from the GE (left) and SE 
(right) experiments. The second row shows the modeled underlying ODC maps (left) and the modeled 
differential fMRI maps from the maximum a posteriori (MAP) sample. The bottom part of the figure 
shows the joint and marginal distributions of GE and SE point-spread full-widths at half-maximum 
(FWHM). The gray rectangles show the 95% credible intervals (highest posterior density interval). The 
scatter plots show that the vast majority of individual GE PSF samples were wider than their SE PSF 
counterparts. The MAP estimates (green bars) obtained from the marginal distributions of the FWHMs of 
the PSFs were 1.04 and 1.0 mm (GE), and 0.8 and 0.84 mm (SE) for subjects 1 and 2 respectively. 

Figure 5 (second row, common ODC) shows one of many possible ODC pat-
terns generated by our model. It was generated using the parameter sample 
with the highest posterior probability. Differential BOLD fMRI maps modeled 
as arising from this shared ODC pattern (Fig. 5 second row, model GE and 
model SE) resemble the data closely (Fig. 5 first row, data GE and data SE). 
The distribution of PSF widths from all samples (Fig. 5 bottom) is an estimate 
of the true probability distribution of PSF widths for that data (see the at-
tached video that demonstrates the initial iterations of the fitting procedure). 
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Figure 5 (bottom) and Table 2 present the results of PSF widths. For subject 
1, the most probable (maximum a posteriori estimate obtained from the mar-
ginal distribution of FWHMs) GE PSF width was 1.04 mm (FWHM), with 95% 
of the values falling between 0.85 mm and 1.21 mm. The most probable SE 
PSF width was 0.80 mm, with 95% of the values falling between 0.54 mm and 
1.03 mm. For subject 2, the most probable GE PSF width was 1.00 mm, with 
95% of the values falling between 0.84 mm and 1.31 mm. The most probable 
SE PSF width was 0.84 mm, with 95% of the values falling between 0.53 mm 
and 1.15 mm. 

Furthermore, the samples of GE and SE PSF widths were correlated. This 
means that ODC model parameters that resulted in a relatively higher GE PSF 
width also resulted in a relatively higher SE PSF width. Across all modeled un-
derlying anatomical ODC patterns, the GE PSF was almost always wider than 
the SE PSF. We calculated the resulting posterior distribution of differences be-
tween GE and SE PSF widths. The bottom part of Table 2 summarizes the es-
timated differences for the two subjects. For subject 1, the most probable dif-
ference was 0.24 mm, with 95% of the values falling between 0.14 mm and 
0.38 mm. The most probable difference obtained for subject 2 was 0.24 mm, 
with 95% of the values falling between 0.05 mm and 0.42 mm. 

 

Evaluation of model fit 
The validity of our results depends on how well the MCMC samples approxi-
mate the target distribution. The MCMC sampling distribution approaches the 
target distribution when the number of iterations goes to infinity (e.g.	see	Neal,	
1993). For sufficiently large number of iterations, MCMC effectively samples 
from the target distribution. 

While there cannot be proof that the target distribution has been reached, 
there are a number of indications that are considered reliable. The first is that 
the traces of samples of all parameters have settled into a stationary distribu-
tion, with no slow drifts over iterations. This can be seen in the single parame-
ter trace plots (Fig. 6, first column) and their autocorrelation plots (Fig. 6, sec-
ond column). In addition, the Geweke diagnostic (Geweke,	 1991) shows that 
for all single parameters the mean of the first 10% of the samples was not sig-
nificantly different from the last 50% of the samples (|z|<1.96). The Geweke 
diagnostics for the high-dimensional noise follow a standard normal distribu-
tion (Fig. 6, bottom, distribution of z-scores), as would be expected by chance 
under the hypothesis that the means are not different. Figure 6 also shows the 
dependences between PSF widths and ODC parameters (last two columns). As 
can be seen, higher levels of smoothness parameter (c) values and to a lesser 
extent lower levels of the main spatial frequency parameter (^) values made a 
narrower PSF more likely. 
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Fig. 6 Convergence diagnostics of Markov Chain Monte Carlo sampling. Markov Chain Monte Carlo 
needs to run for a sufficient number of iterations in order to yield samples from the modeled probability 
distribution. Indications for convergence are: (1) stationarity of the parameter sampling distributions, 
and (2) sample autocorrelations decrease rapidly with increasing lag, relative to the total number of 
samples. This figure examines convergence for subject 1. The upper part of the figure (A) shows diagnos-
tics for the standard model parameters. The bottom part (B) shows diagnostics for the white noise values 
that act as parameters to determine the ODC pattern. The first column (A and B) shows traces of the 
sampled parameters. For the noise values (B), one exemplary trace is shown from the center of the map. 
The second column (A and B) shows sample autocorrelations as a function of lag. The horizontal blue 
lines (A) indicate the 95%-confidence bounds around 0 for a white noise process. Consecutive samples 
(lag=1) show low autocorrelation. However, samples of lag 2 (and higher) show autocorrelation esti-
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mates that are comparable to those obtained from uncorrelated white noise. In B, the autocorrelation 
from the noise samples are summarized by the histogram of lag-2 autocorrelations from all coordinates 
together. Here, 95%-confidence bounds for a white noise process are indicated by vertical blue lines. The 
third column (A and B) presents the Geweke convergence (stationarity) diagnostic, which is a z-test (z-
scores shown in green) for testing whether the means of the first 10% and last 50% of samples are differ-
ent. In A, 2 histograms per each parameter show how similar their respective distributions are. In B, the 
z-scores from the noise samples are shown as a histogram together with a blue plot of the standard nor-
mal probability density representing the null-hypothesis of z=0.  The last two columns (A) show the 
sample covariation between each parameter (vertical axis) and the GE and SE point-spread function 
FWHM (horizontal axis). 

Discussion 

Possible confounds: our estimates are upper bounds of BOLD fMRI spa-
tial specificity 
The PSF widths that we estimated (1.02 mm for GE BOLD, 0.82 mm for SE 
BOLD) reflect the realistically achievable spatial specificity of BOLD signals at 
ultra-high field strength (7T). However, they are only upper bounds for the 
true BOLD PSF widths. Subjects’ head motion, data interpolation and intra-
acquisition Ö~/Ö~∗ decay can all introduce additional blurring (but see section 
below on the effect of Ö~/Ö~∗ decay), causing the estimated PSF to be wider 
than the true PSF. 

In order to minimize head motion, data was acquired from trained subjects 
using a bite bar. Before each scan, the position of the region of interest (ROI) 
was checked and the slices repositioned if necessary. We corrected the data for 
residual head motion and discarded any problematic volumes. We aligned data 
from multiple days and checked the alignment carefully. In order to further op-
timize between-modality registrations, we also took the differential fMRI re-
sponse patterns into account, making use of the fact that they emerged from 
the same underlying neuronal ODC pattern.  

Motion correction and between-day registration required spatial interpola-
tion of the data. We minimized any blurring effects by applying all spatial 
transformations combined using one single Fourier interpolation (Cox and 
Jesmanowicz, 1999). 

All high spatial resolution BOLD fMRI experiments will be influenced by 
these effects to a similar degree as ours, making our reported PSF widths good 
estimates for the practically relevant compound effect. 

Possible confounds: the contribution of the imaging PSF to the total 
BOLD fMRI PSF 
In addition to the effects of the hemodynamic and metabolic responses on the 
spatial specificity of fMRI, the MRI acquisition process influences the effective 
resolution of the acquired images. Specifically, the sampling of k-space by 
means of temporal gradient encoding defines the spatial resolution. However, 
the effective spatial resolution along the phase encoding direction in EPI acqui-
sitions can be subject to blurring or sharpening, because of Ö~/Ö~∗ decay while 
the k-space is being sampled. This can potentially contribute to the overall 
measured spread of the BOLD fMRI signal. 
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In order to minimize this effect, our data were acquired using a reduced 
field-of-view (in SE) and multiple segments. These measures limited the total 
read-out duration per segment (25.6 ms for GE and 24 ms for SE) to approxi-
mately the Ö~∗ of the tissue (Uludağ	 et	 al.,	 2009) and are expected to result in 
only minor blurring or sharpening (Haacke	et	al.,	1999)). 

We estimated the blurring or sharpening and their contributions to the total 
BOLD PSF. In general, MRI data acquisition using EPI has two distinct effects 
on the effective spatial resolution. The first is the effect of the finite and dis-
crete MR sampling with no decay. However, in the current study MR sampling 
was part of the model and therefore has already been accounted for. The sec-
ond effect is the already mentioned Ö~/Ö~∗ decay blurring or sharpening. This 
effect is limited to the phase encode direction (vertical direction in all present-
ed maps). In order to characterize it, we estimated the imaging modulation 
transfer functions (MTF) along the phase encoding direction from a reference 
volume obtained in each run, in which the phase-encode gradients were 
switched off (Kemper	et	al.,	2015).  

Using a model of Gaussian convolution and MRI sampling (Chaimow	 and	
Shmuel,	2016,	 in	preparation) we obtained Gaussian functions that can model 
the separate effect of Ö~/Ö~∗	 decay. We then used MCMC to fit a separate ver-
sion of our model to our data, where we applied the decay effect to the simu-
lated ODC patterns by modulating the values acquired in the simulated k-
space. The results presented in Table 2 show that the effect of the signal decay 
on the total BOLD PSF was small. For GE, while accounting for the signal de-
cay, we obtained PSFs wider than the effective PSF obtained directly from the 
BOLD fMRI response. This indicates that signal decay in the GE fMRI used for 
obtaining our data has a sharpening effect. In contrast, the signal decay in the 
SE fMRI used for obtaining our data has a blurring effect. These results 
demonstrate that the physiological BOLD response measured with GE fMRI 
(that theoretically does not include signal decay) is less spatially specific than 
the same physiological BOLD response measured with SE fMRI (with no signal 
decay). This difference in spatial specificity of the GE and SE BOLD responses 
(with no signal decay) is even slightly larger than the corresponding effective 
difference obtained from the overall measured fMRI responses with signal de-
cay. 

What do our estimated point-spread function widths describe? 
The BOLD PSF describes the spatial specificity of the BOLD fMRI signal by 
characterizing the spatial response that would be elicited by a small point 
stimulus. Specifically, our BOLD PSF width measures the spread of the BOLD 
fMRI response (I) elicited by a small spot of neuronal activity, (II) along the 
cortical manifold, (III) using a differential response analysis, (IV) assuming 
that in a differential analysis paradigm the average spread can be described by 
a Gaussian function, and (V) considering a relatively long time scale.  

(I) BOLD PSF relative to the local neuronal activity 
To the best of our knowledge, our PSF estimates are the first to quantify the 
BOLD spread in human subjects relative to local neuronal activity. We previ-
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ously estimated the FWHM of the 7 T GE BOLD PSF to be smaller than 2 mm 
by measuring the spread of the BOLD fMRI response around the V1 represen-
tation of edges of visual stimuli (Shmuel	et	al.,	2007). We expect that our previ-
ous estimates as well as others’ (Engel et al., 1997; Parkes et al., 2005) includ-
ed contributions from non-zero extent of receptive fields and the scatter of re-
ceptive field position of neurons in V1. 

Hubel and Wiesel (1974) reported that in the macaque “… a 2 mm × 2 
mm block of cortex contains the machinery needed to analyze a region of visu-
al field roughly equal to the local field size plus scatter””. 

These observations suggest that visual stimuli will result in neuronal activi-
ty that is blurred on the surface of human V1. All PSF widths that have been 
estimated using spatial representations of visual stimuli included this neuronal 
spread by nature of their experimental design. In the current study, we instead 
used a spatial structure of neuronal responses that is inherent to the cortex—
ODC patterns. This allowed us to estimate a PSF that does not contain contri-
butions from the spatial spread of responses to visual stimuli. 

There are a number of measures of neuronal activity that a BOLD PSF 
could potentially relate to, notably single-unit activity (SUA), multi-unit activi-
ty (MUA) and local field potentials (LFP). Under specific circumstances, these 
measures can show very different activity. Under most conditions, however, 
they are highly correlated. This is likely to be true when mapping a cortical co-
lumnar organization. The main difference is that the spatial extent (that influ-
ences the smoothness of the spatial response pattern) of these signals increases 
from SUA to MUA to LFP. We estimated a smoothness prior using ODI distribu-
tions of SUA and MUA.  Consequently, our PSF is based on these signals. The 
BOLD PSF from LFP would be narrower than our estimate because of the wid-
er cortical spread of LFP compared to MUA activity (Xing et al., 2009). 

(II) Spatial BOLD response along the cortical manifold 
It has been demonstrated (Polimeni et al., 2010) that the PSF consists of dif-
ferent radial and tangential components relative to the cortical surface. The 
radial component describes the spread across cortical layers while the tangen-
tial component describes the spread parallel to the cortical surface. Here we 
investigated the tangential PSF, averaged over all layers. This is the component 
that is most relevant for imaging the representation of cortical columns paral-
lel to the cortical surface. Accordingly, the location and orientations of voxels, 
the ROI, and the voxel size were all optimized to sample gray matter tangen-
tially and to obtain an average from all layers. 

It should be noted that there are some differences in cerebrovascular or-
ganization with respect to radial and angular direction (Duvernoy et al., 
1981). The largest blood vessels are the pial surface veins that extend in vari-
ous orientations along the tangential plane. Somewhat smaller are cortical-
penetrating veins that are organized radially, traversing the different cortical 
layers. The smallest vessels, the capillaries, form a fine mesh that locally ap-
pears to be isotropic. However, their density varies with cortical layers (Weber 
et al., 2008). For these reasons, we cannot directly apply our PSF to the imag-
ing of cortical layers. In addition, the distinctiveness and finite extent of layers 
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appear to make a PSF convolution model ill-suited for fMRI of cortical layers. 
However, some recent results (De	 Martino	 et	 al.,	 2015;	 Fracasso	 et	 al.,	 2016;	
Muckli	et	al.,	2015;	Olman	et	al.,	2012) suggest it is possible to differentially re-
solve layer-specific signals on the scale of 1 mm or less. 

(III-IV) On modeling the average differential BOLD response as a Gaussian PSF 
We assumed the average (over space) PSF to be a Gaussian function. However, 
the shape of the spread in specific cortical locations may be more complex and 
location-dependent (Kriegeskorte	 et	 al.,	 2010;	 Polimeni	 et	 al.,	 2010). Also, its 
width as well as the magnitude of the response may vary due to local varia-
tions in vascular geometry. In fact, the relatively wide distribution of average 
responses in our data (Fig. 4, distribution of l/r averg. resp.) supports this lat-
ter intuition. Therefore, a convolutional model with a single Gaussian function 
can only be an approximating simplification. Nevertheless, we believe that 
such a simplifying approach provides a useful approximation for planning and 
interpretation of high-resolution fMRI studies and for quantitative modeling. 

As part of our pre-processing before fitting the model to the data, we re-
moved 1.5 - 5.0 % of voxels that had extreme differential values (see methods 
section for precise criterion for exclusion). Part of these voxels were located in 
areas that were previously shown to contain blood vessels (Shmuel	 et	 al.,	
2010). However, for our current analysis we did not explicitly and systemati-
cally remove voxels that were affected by larger blood vessels. Our reasoning 
was that a consistent removal of all voxels suspected to be influenced by larger 
blood vessels would have reduced contiguous areas of ODCs, which would 
have made the model fitting more difficult.  

We expect the influence of geometric variations in local vasculature to be 
higher for veins and venules than for capillaries because of their respective di-
ameters and densities. Consequently, the GE BOLD signal, which is more sensi-
tive to larger pial surface veins will be more affected by these local variations. 
As a result, GE BOLD imaging does not only suffer from a slightly wider PSF 
than SE BOLD, but it is also subject to local distortions when larger blood ves-
sels are present. 

However, although draining veins may show responses with a preference to 
a subset of features encoded in a columnar organization (Shmuel et al., 2010), 
differential analysis reduces contributions from macroscopic vessels because of 
their tendency to drain blood from a region larger than that of a small number 
of columns.  Taken together, a Gaussian PSF model by itself is likely not a good 
model for single-condition imaging when influenced by large blood vessels 
(e.g. in GE BOLD imaging). In contrast, we expect that a Gaussian PSF is a 
good model in a differential analysis paradigm, which reduces contributions 
from macroscopic vessels. The BOLD PSFs we report here reflect the spatial 
specificity that can be achieved in a differential paradigm. They do not reflect 
the spatial specificity expected from single-condition imaging that involves con-
tributions from macroscopic vessels, such as single-condition GE fMRI and to a 
lesser extent, single-condition SE fMRI. 
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(V) Spatial specificity as a function of stimulus duration 
It has been shown that the early phase of the positive BOLD response (up until 
~4 s after stimulus onset) is spatially more specific than the later phase 
(Goodyear and Menon, 2001; Shmuel et al., 2007). On the other hand, stimu-
lation paradigms that use very brief stimulation durations suffer from a highly 
reduced contrast-to-noise ratio, because the response does not develop to its 
highest potential amplitude.  

We found previously that after 4 s the spatial BOLD response remained sta-
ble and that the entire spatiotemporal response could be well approximated by 
the first spatial principle component (Shmuel et al., 2007). Aquino et al. 
(2012) modeled the BOLD response as a travelling wave evolving in time and 
found that deconvolution of neural dynamics using such a model resulted in 
physiologically more plausible spatiotemporal patterns than when using a 
model separable in space and time (Aquino et al., 2014). The spatial profile 
alone, however, was very similar for both models. 

Taken together, long stimulation paradigms are an efficient way of high-
resolution imaging and their spatial PSF can be well described by a single 
time-independent component. The stimulation periods for our data were 48 s 
long, thereby making our PSF most applicable to long stimulation paradigms. 

Spatial specificity of the BOLD response 

Constraints on the spatial specificity of BOLD 
The positive BOLD signal depends on decreases in deoxyhemoglobin content in 
the capillaries which then propagate downstream to draining venules and 
veins. These decreases are caused by elevated cerebral blood flow (CBF) and 
only smaller fractional increases in the oxygen consumption rate, following in-
creases in neuronal activity. CBF is regulated at a sub-millimeter scale: (Duong 
et al., 2001). Similarly, Vazquez et al. (2014) reported a spread of cerebral 
blood volume (CBV) of 103 – 175 µm (FWHM) in mice using optical imaging. 
Although this measure is not directly comparable to the CBF spread in a differ-
ent species (human subjects), it demonstrates that hemodynamic signals can 
show very high spatial specificity. The CBF response is the ultimate lower limit 
for the spatial specificity of any BOLD-based technique. 

The deoxyhemoglobin content changes in the draining venules and veins 
are ultimately diluted downstream, because the draining veins pool blood not 
only from active but also from non-active regions. For an activated area of 100 
mm2, Turner et al. (2002) estimated the maximal extent of undiluted oxygena-
tion changes along a vein to be 4.2 mm. For these reasons, we can expect the 
PSF width of any BOLD-based imaging technique to fall in this range; that is, 
less than 1 mm (Duong et al., 2001) to approximately 4.2 mm (Turner, 2002). 
The values will be determined by how much weighting towards the microvas-
culature can be achieved and on the actual presence of larger draining veins in 
the region of interest. 

PSF dependence on field strength  
At standard magnetic fields, the width of the BOLD PSF has been estimated to 
be 3.5 mm for 1.5 T GE BOLD (Engel	 et	 al.,	 1997), 3.9 mm for 3 T GE BOLD 
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and 3.4 mm for 3 T SE BOLD (Parkes	 et	 al.,	 2005). These estimates of PSF 
widths were confounded by the above described receptive field and scatter ef-
fects. We can make a rough estimate of what the non-confounded PSF widths 
at lower fields would be. We assume that on average the receptive field effect 
can be modeled as another convolution with a Gaussian. It follows that the 
square of the confounded PSF width is equal to the sum of squares of the re-
ceptive field effect width and the non-confounded PSF width. For the receptive 
field effect we get an FWHM of 2.12 mm when using 2.35 mm as the 7 T GE 
BOLD confounded PSF width (Shmuel et al., 2007) and 1.02 mm as the corre-
sponding non-confounded PSF width (results from our current study). This in 
turn results in non-confounded estimates of 2.8 mm (1.5 T GE BOLD), 3.3 mm 
(3 T GE BOLD) and 2.7 mm (3 T SE BOLD). 

These PSF widths are considerably larger than the estimates from the cur-
rent study (1.02 mm for 7T GE BOLD, 0.82 mm for 7T SE BOLD). The reason 
for this is that the BOLD signal (both GE and SE BOLD) at lower field strengths 
is dominated by intravascular signals from draining veins (Jochimsen	 et	 al.,	
2004;	Uludağ	et	al.,	2009). At higher field strengths, the contributions from in-
travascular signals are reduced due to a shortening of the venous blood Ö~. In 
parallel, the relative contributions of extravascular signals around small vessels 
increase (Duong	et	al.,	2003;	Uludağ	et	al.,	2009;	Yacoub	et	al.,	2003;	2001). 

All PSF widths from field strengths of up to 3 T appear to fall close to the 
wider end of possible PSF widths. In contrast, PSF widths using SE and GE at 7 
T appear close to their theoretical minimum. 

ûD
∗   and ûD based imaging methods: GE, SE and GRASE 

We found the SE BOLD PSF to be narrower than the GE BOLD PSF. This is ex-
pected because the refocusing pulse in SE imaging suppresses the extravascu-
lar signal around larger blood vessels while leaving the signal around the mi-
crovasculature intact. As a result, compared to GE BOLD fMRI, SE BOLD sig-
nals obtained at 7T have relatively larger contributions from the spatially more 
specific microvasculature, whereas at lower field strength the signal of either 
SE or GE BOLD fMRI is dominated by intravascular contributions of large 
blood vessels. 

However, the suppression of extravascular signal around larger blood ves-
sels by SE at high fields is not perfect. Only the k-space data that is sampled at 
the exact echo time will result in absolute suppression (pure Ö~ weighting as 
compared to Ö~∗ weighting). The extent to which sampled k-space data is af-
fected by Ö~∗ weighting increases with increasing total read-out time. Conse-
quently longer total read-out times in SE result in decreased spatial specificity 

(Goense and Logothetis, 2006) and are expected to have a wider point-spread 
function (though still narrower than GE). 

Other Ö~ based functional imaging methods such as GRASE (Oshio and 
Feinberg, 1991) and 3D-GRASE (Feinberg et al., 2008) are expected to have 
similar spatial specificity as SE. Whether their PSFs are slightly wider or nar-
rower will mainly depend on the Ö~∗ weighting component associated with such 
methods (i.e. echo train lengths of gradient recalled echoes employed in be-
tween successive 180° pulses), in addition to their Ö~ component. In fact, Kem-
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per et al. (2015) have reported that 3D-GRASE had a smaller bias towards pial 
surface veins owing to the smaller Ö~∗ contribution when a reduced field of 
view is employed in zoomed 3D-GRASE compared to the longer in-plane echo-
train of 2D-SE EPI.	

Although we found a wider PSF for GE BOLD than for SE BOLD fMRI, the 
difference was relatively small (1.02 mm for GE BOLD, 0.82 mm for SE 
BOLD). We believe that this is due to the fact that the influence of larger blood 
vessels can be reduced by using a differential imaging paradigm, even when 
using 7T GE BOLD fMRI. Consequently, both GE and SE BOLD imaging tech-
niques seem capable of resolving cortical columns when applying differential 
imaging analysis. 

However, GE maps are more susceptible to confounds introduced in voxels 
containing blood vessels which may not be fully suppressed in differential im-
aging. Therefore, obtaining results of high spatial specificity using GE depends 
on the region of interest and on methods to mask out blood vessels.   

SE is less susceptible to large-vessel confounds, that may not be suppressed 
by differential imaging. The response amplitude of SE is lower than that of GE.  
However, for imaging of highly granular structures such as ODC’s at such high 
resolutions, the differential contrast is similar for GE and SE fMRI. Overall, we 
believe that SE is the method of choice for mapping finer structures, especially 
when relying on single-condition analysis. However, which data acquisition 
method is optimal depends on the goal of the study and the spatial scale of the 
neuronal architecture under investigation. 

The application of probabilistic models of cortical columns and MR im-
aging 
We have extended our quantitative model for imaging ODCs to a probabilistic 
generative model and used it to infer the PSF widths by means of MCMC sam-
pling. 

A critical component to the successful application of MCMC to our model is 
the Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987), which 
makes use of the gradient of the model posterior probability. Importantly, we 
were able to derive an efficient way to compute this gradient (Appendices C 
and D). HMC has the advantage of very efficiently exploring the parameter 
space. However, for high-dimensional problems such as ours, every step may 
take a long time because the gradient components for all variables need to be 
computed. Because of the specific form of the computations in our model 
(convolutions and a point-wise non-linearity), it was possible to compute the 
gradient efficiently as a combination of convolutions and point-wise non-
linearities as well. In principle, such efficient computation should be possible 
for a wide range of similar models, making HMC a powerful method for fitting 
such models. 

We believe that the novel approach we introduce to the field of imaging 
cortical columns, of fitting a model of imaging columns to corresponding 
measured data, will be useful beyond our current study. For example, when 
imaging an unknown columnar structure, questions about its organization 
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(e.g. isotropy, spatial frequency, irregularity) can be addressed via inference on 
model parameters. 

Conclusion 
We have quantified the BOLD PSF in human subjects relative to neuronal activ-
ity, avoiding the confounding effects of scatter and size of visual receptive 
fields which were not eliminated in previous estimations (Engel et al., 1997; 
Parkes et al., 2005; Shmuel et al., 2007). As a result, our BOLD PSF estimates 
characterize the spatial specificity when employing imaging of fine scale corti-
cal organizations such as cortical columns. Previous studies have shown that 
BOLD fMRI at 4 T and 7 T is capable of resolving cortical columns on the sub-
millimeter scale when differential analysis is employed (Cheng et al., 2001; 
Menon and Goodyear, 1999; Yacoub et al., 2008; 2007; Zimmermann et al., 
2011). Our results provide a quantitative basis for this resolvability and facili-
tate planning and interpretation of high-resolution fMRI studies of fine scale 
cortical organizations. 
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  Appendix A. Model of imaging ocular dominance columns

Preliminaries

Simulations before MRI sampling were carried out on a grid of size N
sim
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sim

2
. Simulations of

MRI data were of size N
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2
. We use i, j and k, l as indices of 2-dimensional image and spatial

frequency space, respectively. Furthermore, r(k, l) is the absolute spatial frequency and �(k, l) the

orientation that the point with indices k, l represents. The two-dimensional discrete Fourier transform

and its inverse (D.3 and D.4) are denoted as dft2 and idft2.

Overview over model computations

The ocular dominance columns (ODCs) imaging model can be described as a function
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fixed parameters �GE and �SE (see Table 1) as input and generates differential fMRI maps of ODC
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(A.1): The ODC pattern (odci, j) was modeled by filtering two-dimensional Gaussian white noise

(ni, j) using a non-isotropic filter (FODC

k,l
) and followed by (A.2) a point-wise sigmoidal non-linearity s

that controlled the smoothness of transitions between left and right eye preferrence columns. (A.3 and

A.4): The BOLD response was modeled as a convolution with a Gaussian point-spread function. It was

implemented as multiplication in spatial frequency space with its Fourier transform the modulation

transfer function (MTFk,l). (A.5 and A.6): MRI sampling was simulated by restricting the spatial

frequency space representation to its central part (indices given by index functions I
MRI

1
and I

MRI

2
) in

accordance with the voxel size. The last factor corrects for the reduction in scale caused by applying

idft2 to the reduced grid size.

We can combine operations A.3 and A.5, as well as A.4 and A.6:
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  ODC filter

An unnormalized ODC filter F̃
ODC

k,l
was defined in spatial frequency space as the product of radial

and angular components:
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.

The radial component F̃
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is the sum of two Gaussian functions centered on +⇢ and �⇢, where ⇢

is the main spatial frequency of the pattern.
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The angular component is the sum of two von Mises distribution functions centered on +✓ and �✓ ,

where ✓ is the orientation of the pattern:

F̃
ODCang

k,l
= F̃

ODC
1

ang

k,l
+ F̃

ODC
2

ang

k,l
,

F̃
ODC

1

ang

k,l
= e

cos(�(k,l)�✓ )
✏2 ,

F̃
ODC

2

ang

k,l
= e

cos (�(k,l)�(✓+⇡))
✏2 = e

� cos (�(k,l)�✓ )
✏2 .

In order for the filter output to have the same variance as the input (independent of filter parameter

values) we normalized the filter:

F
ODC

k,l
=

F̃
ODC

k,l

C
ODC

,

where

C
ODC =

vuut
P

N
sim

1
⇥N

sim

2

k,l=1
(F̃ODC

k,l
)2

N
sim

1
N

sim

2

.

Sigmoidal non-linearity

The point-wise sigmoidal non-linearity s(x ,!) was defined as:

s(x ,!) = 2

Å
s̃

Å
x

!

ã
� 0.5

ã
,

with the standard sigmoidal function defined as:

s̃(x) =
1

1+ e
�x

.

BOLD response

The BOLD response modulation transfer function was defined as

MTFk,l(fwhm,�) = � · e�2⇡2�2

BOLD
·r(k,l)2

,

with:

�BOLD =
fwhm

2

p
2 log2

⇡ fwhm

2.35
.

It is the Fourier transform of a Gaussian point-spread function with a full-width at half-maximum of

fwhm. It is scaled such that a spatially extended neuronal response of 1 results in a BOLD response of

amplitude � .
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  MRI sampling

MRI sampling was simulated by restricting the spatial frequency representation according to the

following index functions:

I
MRI

1
(k) =

(
k if k  N

MRI

1

2

k� N
MRI

1
+ N

sim

1
if k >

N
MRI

1

2

,

I
MRI

2
(l) =

(
l if l  N

MRI

2

2

l � N
MRI

2
+ N

sim

2
if l >

N
MRI

2

2

.

Appendix B. Posterior probability and potential energy

Posterior probability

Let D =
n
(data

GE

i, j
), (data

SE

i, j
)
o

be the data of differential fMRI maps imaged using GE and SE BOLD

fMRI, respectively. The likelihood - the probability to observe the data D given a specific set of model

parameter values q is:

P[D|q] = P

h
(data

GE

i, j
) = fGE(q) + (⌫GE

i, j
), (data

SE

i, j
) = fSE(q) + (⌫SE

i, j
)|q
i

,

where (⌫GE

i, j
) and (⌫SE

i, j
) are patterns of measurement noise.

We assume the measurement noise to be independent between voxels and imaging modalities and

to be distributed normally with (estimated) variances �̂2

GE
and �̂2

SE
. Furthermore we define (dGE

i, j
) =

(data
GE

i, j
)� (mri

GE

i, j
) and (dSE

i, j
) = (data

SE

i, j
)� (mri

SE

i, j
) to be the patterns of deviations of the data from the

model prediction. The likelihood can then be expressed as:

P[D|q] = 1

�
2⇡�̂GE�̂SE

�NMRI

1
N

MRI

2

N
MRI

1
⇥N

MRI

2Y

i, j=1

e
�
Å

d
GE

i, j

ã
2

2�̂2

GE

�
Å

d
SE

i, j

ã
2

2�̂2

SE .

From this result we can calculate the posterior probability of parameters q given the data D:

P[q|D] = P[D|q]P[q]
P[D]

= A · P[q] ·
N

MRI

1
⇥N

MRI

2Y

i, j=1

e
�
Å

d
GE

i, j

ã
2

2�̂2

GE

�
Å

d
SE

i, j

ã
2

2�̂2

SE , (B.1)

where A = 1

P[D]·(2⇡�̂GE�̂SE)N
MRI

1
N

MRI

2

is a constant factor that is independent of q and P[q] is the prior

probability over parameters.
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Prior probability

The prior probability over all parameters q was defined as:

P[q] =

8
<
:

if ! < 0

0 or fwhm
GE
< 0

or fwhm
SE
< 0

P[(ni, j)] · P[⇢] · P[�] · P[✏] · P[!] otherwise

,

with individual parameter priors were defined as:

P[(ni, j)]/ e
�
PNsim

1
⇥N

sim

2

i, j=1
n

2

i, j

2 ,

P[⇢]/

8
<
:

0 if |⇢�µ⇢|> 2�⇢

e
�(⇢�µ⇢)

2

2�2
⇢ otherwise

,

P[�]/

8
<
:

0 if � < 0

e
� (��µ�)

2

2�2

� otherwise

,

P[✏]/
(

0 if ✏< 0

e
� (✏�µ✏)

2

2�2
✏ otherwise

,

P[!]/

8
<
:

0 if ! <!min

0 if ! >!max

1 otherwise

,

where µ⇢,µ�,µ✏ and �⇢,��,�✏ are the means and standard deviations of the ODC priors that were

estimated from cytochrome oxidase data and!min and!max are lower and upper limits for! that were

set based on results from the neurophysiological literature.

Potential energy

The potential energy of a state of parameter values q is its negative log-posterior probability plus

an arbitrary constant C:

E(q) = � log P[q|D] + C .

We apply B.1 and express the energy as the sum of three parts:

= EGE(q) + ESE(q) + E(q)prior,

with:

EGE(q) =
N

MRI

1
⇥N

MRI

2X

i, j=1

⇣
d

GE

i, j

⌘2

2�̂2

GE

,

ESE(q) =
N

MRI

1
⇥N

MRI

2X

i, j=1

⇣
d

SE

i, j

⌘2

2�̂2

SE
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and

Eprior(q) =

8
>>>>>>>>><
>>>>>>>>>:

if |⇢�µ⇢|> 2�⇢
or � < 0

or ✏< 0

1 or ! >!min

or ! >!max

or fwhm
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< 0

or fwhm
SE
< 0

PNsim
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sim
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n

2

i, j

2
+ (

⇢�µ⇢)2
2�2

⇢

+ (
��µ�)2

2�2

�

+ (
✏�µ✏)2

2�2

✏

otherwise

.

Appendix C. Potential energy gradient

We start by deriving derivatives for functions used by the model.

Derivatives of the ODC filter

The derivatives of the unnormalized radial and angular filter component parts with respect to their

prarameters are:
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+
rad
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,
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1
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k,l
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We combine these derivatives to form derivatives of the full radial and angular components:

@ F̃
ODCrad

k,l

@ ⇢
=
@ F̃

ODC
+
rad

k,l

@ ⇢
+
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ODC
�
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,

and in turn to form the derivatives of the full unnormalized filter:
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=
@ F̃

ODCrad

k,l

@ ⇢
· F̃ODCang

k,l
,

@ F̃
ODC

k,l

@ �
=
@ F̃

ODCrad

k,l

@ �
· F̃ODCang

k,l
,

@ F̃
ODC

k,l

@ ✓
= F̃

ODCrad

k,l
·
@ F̃

ODCang

k,l

@ ✓
,

@ F̃
ODC

k,l

@ ✏
= F̃

ODCrad

k,l
·
@ F̃

ODCang

k,l

@ ✏
.

The derivatives of the normalization constant are:
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resulting in the following derivatives of the complete normalized filter:
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Derivatives of the sigmoidal non-linearity

The derivative of the standard sigmoidal function s̃(x) is:

s̃
0(x) = s̃(x)(1� s̃(x)).

Using this result we get the following derivatives for our sigmoidal non-linearity s(x):

@ s(x)
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=
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�2x
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Derivative of the BOLD modulation transfer function

The derivative of the BOLD modulation transfer function is:

@MTFk,l(fwhm,�)
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=
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The derivative of the combined BOLD-MRI filter is:
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Potential energy gradient components

The energy gradient is composed of the following derivatives:

@ E(q)
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The gradient is not defind for |⇢ � µ⇢| > 2�⇢ or � < 0 or ✏ < 0 or ! < !min or ! > !max or

fwhm
GE
< 0 or fwhm

SE
< 0 (regions were Eprior(q) =1).

Energy gradient with respect to noise variables

The derivatives of the GE energy component are:
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For both sums we apply D.8 (see D.2 for the definition of the zero-padding operation zp
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Similarily for the SE energy component we get:
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The contribution of the prior energy component is:

@ Eprior(q)
@ ni, j

= ni, j.

Energy gradient with respect to ODC filter parameters

The derivatives of the GE energy component are:
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The last two factors together can be regarded as a pattern indexed by i
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The derivatives of EGE(q) with respect to the remaining ODC filter parameters �, ✏ and ✓ differ only
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Similarily for the SE energy components we get:
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The contributions of the prior energy components are:
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Energy gradient with respect to the smoothness parameter

The derivatives of the GE component are:
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Similarily for the SE components we get:
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Energy gradient with respect to BOLD PSF width

The derivatives of the GE component are:
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Similarily for the SE components we get:
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Appendix D. Efficient computation of some expressions consisting of derivatives of filtering op-
erations

Let us assume we have a pattern (xi, j) of size N
in

1
⇥ N

in

2
(the input), whose discrete Fourier trans-

form is (Xk,l). We filter (or equivalently: convolve) that pattern using a linear filter (Fk,l) defined in

frequency space and of size N
out

1
⇥ N

out

2
. The filtering is carried out as:

Yk,l = Fk,l · XI1(k),I2(l), (D.1)

where (Yk,l) is the discrete Fourier transform of the filtered, N
out

1
⇥N

out

2
sized pattern (ym,n) (the output).

I1 and I2 are index functions that allow to assign a specific subset of elements of (Xk,l) to (Yk,l) (e.g.

when restricting the spatial frequency space representation in order to simulate MRI sampling). Note

that for N
out

1
= N

in

1
, N

out

2
= N

in

2
, I1(k) = k and I2(l) = l this formalism describes a normal filtering

operation in which the size and structure of the spatial frequency space is not altered.

Our goal here is to derive alternate formulations for some derivative expressions that result in a

more efficient computation of gradients for models that contain such filtering operations.

Definitions

We define a zero-padding operation zp
N

in

1
,N

in

2

I1,I2

that allows us to up-sample patterns with size equal to

the output pattern to match the size of the input pattern:
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N

in

1
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ó

, (D.2)

where (Ȳk,l) is of size N
in

1
⇥ N

in

2
such that:

Ȳk,l =
⇢

Yk
0
,l
0 if there exist (k0, l

0) with I1(k0) = k and I2(l 0) = l

0 otherwise
.

We use the following definitions of the two-dimensional discrete Fourier transform (Xk,l) = dft2

î
(xi, j)
ó

and its inverse (xi, j) = idft2

î
(Xk,l)
ó

, where (xi, j) and (Xk,l) are of size N1⇥ N2:
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with partial derivatives given as:
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Weighted sums of derivatives with respect to input

The first expression of interest is the weighted sum (weights given as (gi, j)) of the derivatives of an

arbitrary output element yi, j with respect to all input elements xi
0
, j
0 . We derive a formula that allows

to compute this expressions for all output elements yi, j simultaneously using one dft2 and one idft2

operation.
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Because of D.1, the second to last term is equal to Fk,l , if (k0, l
0) = (I1(k), I2(l)) and 0 otherwise:
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A related expression is the weighted sum of the derivatives of all output elements yi
0
, j
0 with respect

to an arbitrary but specific input element xi, j. Again, we derive a formula that allows to compute this

expressions for all input elements xi, j simultaneously using one dft2 and one idft2 operation.
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Derivative with respect to a filter parameter

Let us assume that the filter representation (Fk,l) depends on some parameter q. We derive a

formula that allows to calculate the partial derivatives of all output elements ym,n with respect to q

simultaneously using one dft2 and one idft2 operation.
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Supplementary Material 

 
Sup. Fig. 1 fMRI ODC data. Results from the GLM analysis of fMRI data from subject 2 for GE (left) and 
SE (right). A Responses to left and right eye stimulation relative to baseline. B The response maps to the 
left and right eyes from A were averaged. B shows the distribution of the average response. Its median 
(in green) was used to set the overall amplitude of the BOLD response model.  C The difference between 
left and right eye responses yields the differential ODC map. D The distribution of standard errors of all 
differential responses. From this distribution we estimated the noise level used by the model. The color 
look-up-table applies to all response maps. 
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Sup. Fig. 2 Convergence diagnostics of Markov Chain Monte Carlo sampling. Markov Chain Monte Carlo 
needs to run for a sufficient number of iterations in order to yield samples from the modeled probability 
distribution. Indications for convergence are: (1) stationarity of the parameter sampling distributions, 
and (2) sample autocorrelations decrease rapidly with increasing lag, relative to the total number of 
samples. This figure examines convergence for subject 2. The upper part of the figure (A) shows diagnos-
tics for the standard model parameters. The bottom part (B) shows diagnostics for the white noise values 
that act as parameters to determine the ODC pattern. The first column (A and B) shows traces of the 
sampled parameters. For the noise values (B), one exemplary trace is shown from the center of the map. 
The second column (A and B) shows sample autocorrelations as a function of lag. The horizontal blue 
lines (A) indicate the 95%-confidence bounds around 0 for a white noise process. Consecutive samples 
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(lag=1) show low autocorrelation. However, samples of lag 2 (and higher) show autocorrelation esti-
mates that are comparable to those obtained from uncorrelated white noise. In B, the autocorrelation 
from the noise samples are summarized by the histogram of lag-2 autocorrelations from all coordinates 
together. Here, 95%-confidence bounds for a white noise process are indicated by vertical blue lines. The 
third column (A and B) presents the Geweke convergence (stationarity) diagnostic, which is a z-test (z-
scores shown in green) for testing whether the means of the first 10% and last 50% of samples are differ-
ent. In A, 2 histograms per each parameter show how similar their respective distributions are. In B, the 
z-scores from the noise samples are shown as a histogram together with a blue plot of the standard nor-
mal probability density representing the null-hypothesis of z=0.  The last two columns (A) show the 
sample covariation between each parameter (vertical axis) and the GE and SE point-spread function 
FWHM (horizontal axis). 
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Abstract 

The effects of k-space sampling and signal decay on the effective spatial resolu-
tion of MRI and functional MRI (fMRI) are commonly assessed by means of 
the magnitude point-spread function (PSF), defined as the absolute values 
(magnitudes) of the complex MR imaging PSF. It is commonly assumed that 
this magnitude PSF signifies blurring, which can be quantified by its full-width 
at half-maximum (FWHM). Here we show that the magnitude PSF fails to ac-
curately represent the true effects of k-space sampling and signal decay.  

Firstly, a substantial part of the width of the magnitude PSF is due to MRI 
sampling per se. This part is independent of any signal decay and its effect de-
pends on the spatial frequency composition of the imaged object. Therefore, it 
cannot always be expected to introduce blurring. Secondly, MRI reconstruction 
is typically followed by taking the absolute values (magnitude image) of the 
reconstructed complex image. This introduces a non-linear stage into the pro-
cess of image formation. The complex imaging PSF does not fully describe this 
process, since it does not reflect the stage of taking the magnitude image. Its 
corresponding magnitude PSF fails to correctly describe this process, since con-
volving the original pattern with the magnitude PSF is different from the true 
process of taking the absolute following a convolution with the complex imag-
ing PSF. Lastly, signal decay can have not only a blurring, but also a high-pass 
filtering effect. This cannot be reflected by the strictly positive width of the 
magnitude PSF.  

As an alternative, we propose to model the imaging process by decompos-
ing it into a signal decay-independent MR sampling part and an approximation 
of the signal decay effect. We approximate the latter as a convolution with a 
Gaussian PSF or, if the effect is that of high-pass filtering, as reversing the ef-
fect of a convolution with a Gaussian PSF. We show that for typical high-
resolution fMRI at 7 Tesla, signal decay in Spin-Echo has a moderate blurring 
effect (FWHM = 0.89 voxels, corresponds to 0.44 mm for 0.5 mm wide 
voxels). In contrast, Gradient-Echo acts as a moderate high-pass filter that can 
be interpreted as reversing a Gaussian blurring with FWHM = 0.59 voxels 
(0.30 mm for 0.5 mm wide voxels). Our improved approximations and find-
ings hold not only for Gradient-Echo and Spin-Echo fMRI but also for GRASE 
and VASO fMRI. Our findings support the correct planning, interpretation, and 
modeling of high-resolution fMRI. 

Introduction 

The spatial specificity of functional MRI (fMRI) based on the Blood Oxygena-
tion Level Dependent (BOLD) signal depends on the spatial properties of the 
hemodynamic response. Specifically, it depends on the relative contributions of 
the micro-vascular and macro-vascular components of the hemodynamic re-
sponse to the fMRI signal. In addition to the effects of the hemodynamic re-
sponse on the spatial specificity of fMRI, the MRI acquisition process influences 
the effective resolution of the acquired images. Specifically, the sampling of k-
space by means of temporal gradient encoding defines the spatial resolution. 



 108 

However, the effective spatial resolution can be compromised in the presence 
of !" and/or !"∗ decay, which potentially contribute to the overall measured 
spread of the BOLD fMRI signal. 

The BOLD point-spread function (PSF) is a measure used to approximate 
the spatial spread of the BOLD response to a localized increase in neuronal ac-
tivity. A convolution of the pattern of neuronal activity with a single BOLD PSF 
kernel is not a precise model of the spatial specificity of the BOLD response, 
because of the variability in the vascular components as a function of space 
(Polimeni et al., 2010). However, it provides a useful measure, based on the 
average BOLD PSF across space, for comparing the spatial specificity between 
different fMRI contrasts and techniques. 

The full-width at half-maximum (FWHM) of the gradient echo (GE) BOLD 
PSF at 1.5 T was found to be 3.5 mm (Engel	et	al.,	1997). Similar values of 3.9 
mm for GE BOLD and 3.4 mm for Spin-Echo (SE) BOLD have been reported at 
3 T (Parkes	et	al.,	2005). We previously estimated the FWHM of the GE BOLD 
PSF to be below 2 mm at 7 T (Shmuel	 et	 al.,	 2007). Narrower BOLD PSFs at 
higher field strength are thought to result from reduced intravascular contribu-
tions from larger blood vessels and increases in extravascular signal changes 
around capillaries and smaller vessels (Yacoub	et	al.,	2001). Additional relative 
weighting towards the microvasculature, and thus further increases in spatial 
specificity, can be achieved by using SE BOLD imaging, which suppresses ex-
travascular signal contributions from larger blood vessels (Uludağ	et	al.,	2009;	
Yacoub	et	al.,	2003). 

The use of high field strengths and developments in pulse sequences that 
lead to decreases in the BOLD fMRI PSF allow investigation into the function 
of ever finer structures such as cortical columns (Cheng	et	al.,	2001;	Goodyear	
and	 Menon,	 2001;	 Menon	 et	 al.,	 1997;	 Nasr	 et	 al.,	 2016;	 Shmuel	 et	 al.,	 2010;	
Yacoub	et	al.,	2008;	2007;	Zimmermann	et	al.,	2011;	). Consequently, in order to 
optimize such experiments and to understand their inherent limitations, it be-
comes important to assess the contribution of the MRI sampling process and of 
!"/!"∗ decay to the overall BOLD fMRI PSF. 

The MR imaging process can be described by means of a complex valued 
MR imaging PSF (Haacke	et	al.,	1999). The magnitude PSF (formed by the ab-
solute values (magnitudes) of the complex MR imaging PSF) and the corre-
sponding FWHM of the magnitude PSF, have been used to assess the effective 
spatial resolution and to quantify the blurring that the MR sampling process 
introduces (Constable	 and	 Gore,	 1992;	 Farzaneh	 et	 al.,	 1990;	 Haacke,	 1987;	
Kemper	et	al.,	2015;	Oshio	and	Singh,	1989;	Qin,	2012). 

Here, we simulate !"/!"∗ decay and MR imaging of realistic columnar pat-
terns to show that the FWHM of the magnitude PSF is neither a meaningful 
nor an accurate measure for quantifying the effect of MR sampling on the ef-
fective spatial resolution, especially in the context of functional MRI. As an al-
ternative, we propose to decompose the modeling of the imaging process into 
two components: one component accounts for MR sampling, independent of 
the signal decay; a second component, formulated as a convolution with a 
Gaussian kernel, approximates the blurring effect due to the !"/!"∗ decay.  
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Methods 

Discrete representations of simulated spaces 
All simulations were implemented in MATLAB (The MathWorks Inc., Natick, 
MA, USA). Spatial dimensions were considered relative to an arbitrary voxel 
width. A field-of-view (FOV) of 32 voxels was simulated, represented by 256 
equally spaced points (resolution 8 times finer than the voxel width). The spa-
tial frequency space (k-space) was simulated on a corresponding grid of 256 
equally spaced points representing a spatial frequency range between -128  
and +127 cycles per 32 voxels. Spatial frequencies sampled by MRI (see be-
low) are represented by the central part of this simulated k-space, covering the 
spatial frequency range between -16 and +15 cycles per 32 voxels. 

Modeling of signal decay 
GE signal decay $%&(() and SE signal decay $*&(()	were modeled according to 
(Haacke	et	al.,	1999):  
$%&(() = 	 -.//12

∗	
 

$*&(() = 	3
-.//12∗ 	0 < ( < !&/2

-.//12-.(17./)/128	 !&/2 < ( < !&
-.//12-.(/.17)/128 ( > !&

, 

 
where !& represents the echo time. Relaxation time constants for gray matter 
at 7T were used (see	Uludağ	et	al.,	2009	for	a	review	of	relaxation	times). !" was 
set to 50 ms. !"∗	of gray matter at 7T was 27.8 ms. In order to account for addi-
tional macroscopic inhomogeneities, a volumetric !"∗ value of 17 ms was used 
(Kemper	et	al.,	2015). 

Calculation of Modulation Transfer Functions 
If not stated otherwise, a total read-out time of 27.8 ms (equal to !"∗	)  for the 
full k-space acquisition using 32 lines (phase-encode steps) was assumed. For 
partial Fourier acquisition, the total read-out time was shortened, so that it 
was  proportional to the reduction in k-space coverage, resulting in a total 
read-out time of 20.85 ms for the acquisition of 24 lines (3/4 partial Fourier). 

For GE, the echo time !& was set to the true !"∗	 of 27.8 ms. The SE echo 
time was set to 55 ms (Yacoub et al., 2003). The modulation transfer functions 
(MTFs) of MR imaging are sums of Dirac delta functions (rect-function-
windowed Dirac comb function), where each Dirac delta function is modulated 
by a signal decay factor (Appendix A). Discrete representations of MTFs were 
computed by first calculating the sampling time of each k-space line relative to 
excitation and then setting the line’s MTF value to the signal decay value for 
this time, or to zero if it fell outside the range of sampled lines. 

Calculation of point-spread functions 
PSFs were calculated by taking an inverse discrete Fourier transform of the 
discrete representation of the corresponding MTF. 
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Simulation of responses of cortical columns 
MR imaging simulations were applied to simulated realistic ocular dominance 
column (ODC) patterns and to simulated general isotropic columnar patterns.  

ODC response patterns were simulated by anisotropic filtering of Gaussian 
white noise (Rojer	 and	 Schwartz,	 1990). Detailed modeling equations can be 
found in (Chaimow	 et	 al.,	 2011). We modified the mathematical form of the 
band-pass filtering kernel relative to our previously published model, express-
ing it as a product of radial and angular components. The non-normalized fil-
ter as a function of absolute spatial frequency : and orientation ; is given as 

<=>?@(:, ;) = B-.
(CDE)2

2F2 + -.
HCD(DE)I2

2F2 J ⋅ L-
MNOPDQ

R2 + -
MNOPD(QST)

R2 U. 

Unless stated otherwise, the main spatial frequency parameter V was set to 
0.5 cycles/mm, corresponding to an average column width of 1 mm (Yacoub	et	
al.,	2007). Parameters W and X controlled the degree of irregularities orthogonal 
and parallel to the main axis of elongation of the ODC bands, respectively. We 
specified those parameters by defining  relative irregularity parameters as 
WYZ[ =

\
]
  and XYZ[ =

^
]
 , that determined the level of irregularities independent 

of the chosen main spatial frequency. Unless stated otherwise, relative irregu-
larity parameters WYZ[ and XYZ[ were set to 0.5 and 1 respectively. The orienta-
tion parameter _ was set to `/2, so that the main axis of elongation of the 
ODC bands was orthogonal to the phase-encode direction. 

For 1D modeling (along the phase-encode direction), the 2D model was re-
duced by only considering the radial component of the filter (first factor), set-
ting the angular component (second factor) to 1. This 1D model can be re-
garded as a general one dimensional columnar model, valid not only for aniso-
tropic organizations such as ODC, but also for isotropic columnar patterns.  

The sharpness parameter a  was set to 1.4, resulting in a mid-level of 
sharpness. The default maximum response amplitude was set to 5%. Single 
condition columnar response patterns were added to a background signal in-
tensity of 1. For the definition of the sharpness parameter and the response 
amplitude, see (Chaimow	et	al.,	2011). 

Simulation of MR imaging 
MR imaging was modeled by multiplying the k-space representation of a pat-
tern with the MTF and applying an inverse discrete Fourier transformation. 
This was followed by taking the magnitude of the resulting complex values. 
The size of the MTF was identical to that of the pattern k-space representation. 
However, the MTF was zero for k-space components not sampled by MRI imag-
ing. Therefore the result of the discrete Fourier transform was a high-
resolution representation of the voxel-size dependent MR sampled signal. It is 
equivalent to an interpolation using zero-filling in k-space. This high-resolution 
representation was then down-sampled to correspond to the actual voxel size, 
resulting in single voxel signals in accordance with the MR imaging equation 
(Appendix A). 

Different MTFs introduce differences in the overall amplitude scaling of re-
sulting images. To allow the comparison of the image patterns obtained by 
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considering different MTFs, we normalized the magnitude images in the last 
stage of the simulation. To this end, we divided each of the magnitude images 
by a constant equal to the result of simulating the entire MRI sampling process 
with the specific MTF applied to a constant pattern of value 1. Note that 1 is 
also the value of the homogeneous background onto which we superimposed 
the simulated ODC pattern with the maximal amplitude of 5%. 

Simulation of Partial Fourier 
Partial Fourier imaging and reconstruction was simulated by setting the first or 
last ¼ of the MTF components within the full acquisition sampling range to 
either zero (zero-filling reconstruction) or to their conjugate symmetric coun-
terparts (conjugate symmetry reconstruction). The most negative k-value of 
the full acquisition sampling range has no positive k-space counterpart due to 
the slight asymmetric sampling of an even number of k-space lines. Therefore, 
in early omission partial Fourier and conjugate symmetry reconstruction, the 
most negative k-value was set to zero. 

Implementation of approximating MRI models 
Convolutions between simulated patterns and various kernel functions were 
implemented as multiplication of their respective discrete Fourier transforms 
or MTF representations, followed by inverse discrete Fourier transform back 
into image space. For Gaussian blurring, Gaussian kernels were computed as  
-.b2/"c2 where d = <efg/2.355.  

Convolutions followed by MR sampling were modeled by first setting the 
MTF outside the range of the sampled lines to zero. Then, this modified MTF 
was multiplied with the k-space representation of the pattern, and an inverse 
discrete Fourier transformation was applied. Lastly, the magnitudes of the re-
sulting complex values were computed. This high-resolution representation 
was then down-sampled according to the voxel size, resulting in single voxel 
signals according to the MR imaging equation (Appendix A). 

Contrast range 
The contrast range of each of 1000 simulated individual response patterns, su-
perimposed on a background signal intensity level of 1, was computed as the 
standard deviation (SD) of all responses while taking into account the theoret-
ical mean (1 + l/2, where l is the maximum response level) used for simulat-
ing the original pattern. All individual contrast range estimates were averaged 
resulting in the average contrast range. 

Frequency spectra 
Spatial frequency spectra were computed by taking the absolute value of the 
discrete Fourier transform separately for each of 1,000 individual response pat-
terns. Average spatial frequency spectra were computed by averaging all indi-
vidual spectra. 
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Evaluation of a linear approximation of the MR imaging process 
We approximated the MR imaging process linearly as a convolution with the 
real component of the complex imaging PSF (see Appendix B). This linear ap-
proximation of the MR imaging process was evaluated by simulating 1000 dif-
ferent cortical columnar response patterns for each combination of a main spa-
tial frequency (8 values from 1 cycle per Field of View (FOV) to 1 cycle per 2 
voxels), a relative irregularity parameter (10 values from 0.1 to 1), and a 
range of maximum response amplitudes (1% - 10% in steps of 1% and 10% - 
100% in steps of 10%). The complete MR imaging of each of these patterns 
was simulated. In addition, for each of these patterns we computed the linear 
approximation of the MR imaging process. The results of the linear approxima-
tions of the MR imaging process were compared to the complete MR imaging 
simulations by computing the root-mean-squared-errors (RMSE) relative to the 
standard deviation of the simulated patterns of the complete MR imaging pro-
cess. 

In addition, for a response amplitude of 5%, the same patterns were also 
convolved with the magnitude PSF. The results of convolving with the magni-
tude PSF were compared to the complete MR imaging simulations by compu-
ting the root-mean-squared-errors (RMSE) relative to the standard deviation of 
the simulated patterns of the complete MR imaging process. 

Definition and fitting of a Gaussian point-spread function model for sig-
nal decay 
The MTF corresponding to the real component of the complex imaging PSF 
(g!<mYZn[)	was calculated by transforming the real component of the complex 
imaging PSF back into the spatial frequency domain. The inverse MTF of this 
real component (g!<mYZn[

Do) was calculated as g!<mYZn[
Do = 1/g!<mYZn[ for all 

k-space lines within the sampling range (and zero outside the sampling range). 
Gaussian functions of the form p ⋅ -."q2c2m2were fitted to (g!<mYZn[) and 

(g!<mYZn[
Do) within the range of –(k-1) to (k-1). The amplitude p was con-

strained to be equal to the center component g!<rYZn[ or g!<rYZn[
Do. This re-

sulted in Gaussian PSFs of the form st<(u) = -.b2/"c2,		whose FWHM = d ⋅
2.355. To fit the Gaussian functions, we used the MATLAB function ‘fit’ from 
the Curve Fitting Toolbox (The MathWorks Inc., Natick, MA, USA). The Gauss-
ian fit (either to the real component of the complex imaging PSF or to its in-
verse) with the higher R2 was considered for further characterizing the effects 
of signal decay. 

Evaluation of the Gaussian point-spread function model of signal decay 
The Gaussian PSF model of signal decay was evaluated by simulating 1000 dif-
ferent cortical columnar response patterns with a main spatial frequency of 1 
cycle per 4 voxels and a relative irregularity of 0.5. The complete MR imaging 
of these patterns was simulated for different total read-out durations and par-
tial Fourier acquisition schemes (including full k-space acquisition).  

In addition, for each of these patterns and acquisition parameters (different 
total read-out durations and partial Fourier acquisition schemes), we comput-
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ed the convolution of the pattern with a Gaussian PSF model for the signal de-
cay (see definition and fitting described in the previous section). This was fol-
lowed by MR sampling with no decay. The results of these approximations of 
the MR imaging process were compared to the complete MR imaging simula-
tions by computing the root-mean-squared-errors (RMSE) relative to the 
standard deviation of the simulated patterns of the complete MR imaging pro-
cess. 

Estimation of a pattern specific Gaussian point-spread function model of 
signal decay 
One thousand different cortical columnar response patterns with a main spa-
tial frequency of 1 cycle per 4 voxels and a relative irregularity of 0.5 were 
simulated. MR imaging of these patterns was simulated for different total-read 
out durations and partial Fourier acquisition schemes (including full k-space 
acquisition). For each pattern, we computed convolutions with PSFs corre-
sponding to Gaussian MTFs and inverse of Gaussian MTFs, while considering 
the FWHM as a free parameter. This was followed by MR sampling with no de-
cay. Using MATLAB’s fminsearch (The MathWorks Inc., Natick, MA, USA), the 
FWHM (and the choice of Gaussian MTF or inverse of Gaussian MTF) was op-
timized such that the mean-squared-error between the approximation and the 
full MR imaging simulation was minimized. 

Results 

The MR imaging point-spread function 
We first summarize how the MRI acquisition process of a pattern can be de-
scribed using PSFs. Appendix A provides detailed equations. The theory fol-
lows Haacke et al. (1999). 

MRI with no signal decay 
Echo-planar imaging (EPI) samples the two-dimensional k-space representa-
tion of the pattern by sequentially sampling individual lines along the first di-
mension (read-out direction), each separated by a step in the phase-encode 
direction. This results in a grid of sampled k-space points from which the orig-
inal image is reconstructed using an inverse discrete Fourier transform. Since 
the dimensions in the Fourier transform are separable, we can focus on one 
dimension: the phase-encode dimension. 

Assuming no signal decay takes place, we can formulate the MRI sampling 
process as an inverse Fourier transform of the product between the k-space 
representation of the pattern and a rect-function-windowed Dirac comb func-
tion (Figure 1, no decay, MTF). This function describes the effect of a linear 
system as multiplication in spatial frequency space and is commonly termed a 
modulation transfer function (MTF). Typically an even number of points, v =
2w is sampled, resulting in a slightly asymmetric coverage of k-space over the 
region [−w∆{, (w − 1)∆{], where ∆{ is the step size in the k-space. 
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Fig. 1 MR complex imaging PSF and its absolute values. This figure demonstrates how MR imaging can 
be described using a PSF. The three columns illustrate the scenarios of no signal decay, signal decay in 
GE imaging, and signal decay in SE imaging, respectively. The first row shows the modulation transfer 
function (MTF) of the imaging process. In the case of no decay, the MTF is a Dirac comb function that 
corresponds to sampled k-space data points that are sampled in time from the lowest to the highest k-
value. In GE imaging, this comb function is modulated by the T"∗ signal decay (red line). In SE a refocus-
ing pulse results in a decay curve with a peak at the echo time. The second row shows the corresponding 
complex PSFs defined as the Fourier transform of the MTF. These functions show the complex signal one 
would obtain along the phase encoding direction from an infinitesimally small point-like structure. One 
can model the complex signal obtained by MRI along the phase-encoding direction as a convolution of 
the original pattern with the complex PSF. In contrast, in the general case one cannot model the magni-
tude of the signal obtained along the phase-encoding direction as the result of a convolution process. The 
third row shows the absolute (magnitude) values of the complex imaging PSF. Its FWHM (black arrows) 
has been previously used as a common measure to describe the spatial specificity of the MR imaging pro-
cess. For relaxation time constants measured at 7 Tesla and a total readout duration of 27.8 ms, the 
FWHM of the magnitude PSF is 1.20 voxels for no decay, 1.34 voxels for GE, and 1.32 voxels for SE. 

Multiplying the k-space data with an MTF is equivalent to convolving the 
image space data with the MTF’s Fourier transform, which is the imaging 
point-spread function (PSF) (Figure 1, no decay, complex PSF). On its own, the 
PSF describes the image one would obtain from an infinitesimally small point-
like structure.  

The non-zero imaginary component of the no-decay PSF is a result of the 
above mentioned asymmetry in the MTF. MTF asymmetries are also caused by 
signal decay as described below. MTF asymmetries and other phase-influencing 
artifacts result in reconstructed images that are generally complex valued with 
non-zero phase. Commonly, the absolute values (magnitudes) of the complex 
image are considered for further analysis. Likewise, the spatial resolution of 
MRI and fMRI is often characterized by measuring the full-width at half-
maximum of the magnitude PSF, obtained by taking the absolute values (mag-
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nitudes) of the complex PSF (Figure 1, no decay, magnitude PSF). Here, with-
out any signal decay effects the FWHM is 1.20 voxels. 

However, neither the complex PSF nor the magnitude PSF can describe the 
spatial resolution of the MRI process correctly under all circumstances. The 
magnitude PSF in itself is not the PSF of the imaging process, because convolu-
tion with the absolute values of the complex PSF is not equivalent to taking the 
absolute values after convolution with the complex PSF (which is the common 
practice in MRI reconstruction). In contrast, the complex PSF does describe the 
imaging process (excluding the operation of taking the absolute values of the 
complex image). However, given its complex nature, how to use the complex 
PSF for quantifying the effective spatial resolution of the absolute values image 
is not obvious. 

Signal decay in Gradient-Echo and Spin-Echo functional MRI 
So far, we have not considered the change in signal strength with time follow-
ing excitation. In GE imaging, the signal decays with a time constant of !"∗ 
(Figure 1, GE, MTF), which subsumes tissue dependent spin-spin relaxation 
(time constant !") and additional dephasing due to magnetic field inhomoge-
neities (time constant !"~). In SE imaging, the signal similarly decays with time 
constant !"∗. At half the echo time, however, a refocusing pulse causes reversal 
of the accumulated !"~ decay, while !" decay continues. After the echo time is 
reached, the signal returns to a decay with time constant !"∗ (Figure 1, SE, 
MTF).  

During the decay, the k-space is sampled for the total acquisition time from 
the smallest (most negative) k-space value to the highest k-space value, such 
that the center of k-space (k=0) is sampled at the echo time. Note that this 
common sampling order, also called linear ordering, is not the only one possi-
ble. For example, in centric ordering, the sampling trajectory starts at the cen-
ter of k-space and alternates between increasingly positive and decreasingly 
negative k-space coordinates. Here, we only consider linear ordering. For each 
k-space step in the phase-encode direction, an entire line along the read-out 
direction is acquired while the signal decays only minimally. Consequently, the 
effect of signal decay on the read-out direction can be neglected. However, in 
the phase-encode direction, the signal decay modulates the sampled data, 
causing different weighting of different spatial frequency components. The 
MTFs of GE and SE along the phase-encoding direction reflect this weighting 
(Figure 1, GE and SE, MTF). Therefore, the complex PSFs of GE and SE MRI 
differ from the complex PSF of the imaging process with no signal decay (Fig-
ure 1, GE and SE, complex PSF). The time constants used in our simulations 
reflect imaging at 7 Tesla; unless specifically mentioned otherwise, we consid-
ered a total readout duration of 27.8  ms (equal to !"∗ of gray matter). The 
FWHM of the magnitude PSFs were 1.34 voxels for GE and 1.32 voxels for SE, 
both larger than the FWHM of the magnitude PSF with no decay (1.20 voxels). 
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The Effect of the MRI process on the effective spatial resolution for imag-
ing cortical columns 
In the previous section we have discussed why the magnitude PSF does not 
correctly describe the MR imaging process. Does it follow then, that the FWHM 
of the magnitude PSF fails to accurately describe the effective spatial resolu-
tion of fMRI? 

To address this question specifically in the context of imaging cortical col-
umns, we simulated fMRI sampling of BOLD responses of patterns of ocular 
dominance columns (Chaimow	et	al.,	2011;	Rojer	and	Schwartz,	1990).  

Figure 2 (simulated pattern, 2D pattern) shows a 2D modeled pattern and 
an excerpt from a 1D pattern (simulated pattern, 1D pattern excerpt). The 1D 
pattern follows the horizontal direction of the 2D pattern, here considered as 
the phase-encode direction. 

These 2D and 1D modeled patterns represent a BOLD pattern, consisting of 
a spatially constant baseline signal of 1 and a superimposed ODC pattern-
dependent BOLD response. The BOLD response can vary between 0% and 5% 
relative to the baseline value. We did not model the spatial spread of the BOLD 
response (meaning we assumed no spread) in order to not distract from the 
effects of the imaging process. 

The main spatial frequency of the simulated ODC BOLD pattern was 0.5 
cycles/mm (Yacoub	 et	 al.,	 2007), reflected as the maximum in the spatial fre-
quency spectrum (Figure 2, simulated pattern, average spatial frequency spec-
trum, vertical blue lines). The irregularity of the pattern is reflected in a distri-
bution of additional spatial frequency contributions around the two maxima. 

In order to quantify the functional contrast of true or imaged responses, we 
defined the contrast range as the standard deviation around the average re-
sponse (the average response is defined as one half of the maximum response 
relative to the background intensity, namely 1.025). The contrast range aver-
aged over 1,000 simulated one-dimensional patterns, was 1.30% (relative to 
the baseline of 1). 

MRI with no signal decay 
First we analyzed the effect of MR imaging with no signal decay. We simulated 
MRI sampling of the simulated original pattern (Figure 2, Simulated pattern) 
using a voxel width of 0.5 mm. Figure 2 (No decay, 2D pattern) shows the cor-
responding imaged two-dimensional pattern. Figure 2 (No decay, 1D pattern 
excerpt) shows the values of the imaged and interpolated one-dimensional 
pattern (red). The MR imaged pattern is shown as a high-resolution represen-
tation, which is equivalent to an interpolation using zero-filling in k-space. 
This was done in order to facilitate visual comparison to the original pattern 
(the alternative presentation format would consist of a discrete function due to 
voxelization). The imaged pattern was very similar to the original pattern 
(blue). The average contrast range computed over 1,000 imaged patterns de-
creased only slightly from 1.30% (average SD of 1,000 original patterns) to 
1.29% (average SD of 1,000 no-decay MRI patterns).  

In addition, we compared the average frequency spectrum of the imaged 
patterns to the average spectrum computed over the original patterns (Figure 
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2, no decay, average spatial frequency spectrum). Within the sampled k-space 
range (spatial frequencies below 1 cycle/mm), the two spectra were identical. 
Outside of this range, the average spectrum of the imaged patterns was zero.  

Note, however, that the FWHM of the magnitude PSF corresponding to MRI 
with no signal decay was 1.20 voxels (= 0.6 mm in our specific simulation). 
This result could be wrongly interpreted to imply that MR image formation, 
ignoring decay, is comparable to blurring with a kernel (e.g. a Gaussian) of the 
same width. 

Figure 2 (no decay, 1D pattern excerpt, orange curve) shows that in con-
trast to actual MRI sampling, such blurring would have resulted in a reduced 
amplitude (contrast range = 0.95%) and a shift in the spatial frequency spec-
trum to 0.4375 cycles/mm (Figure 2, no decay, average spatial frequency spec-
trum, orange lines). Using the magnitude PSF as a convolution kernel in itself 
(although, in fact, it is not a convolution kernel of the MRI process) resulted in 
an even larger reduction in contrast (0.45%, Figure 2, no decay, 1D pattern 
excerpt, green) and a shift of the spatial frequency distribution towards lower 
frequencies (maximum at 0.3750 cycles/mm, Figure 2, no decay, average spa-
tial frequency spectrum, green). 

MR imaging in the presence of signal decay: Gradient-Echo imaging 
Next, we analyzed the effect of signal decay. Figure 2 (GE, 2D pattern) shows 
the GE imaged two-dimensional pattern. There is no noticeable blur relative to 
the no-decay image. In fact, the interpolated one-dimensional imaged pattern 
(Figure 2, GE, 1D pattern excerpt, red) showed a higher amplitude compared 
to the original pattern (blue). The average contrast range increased from 
1.30 % (original) to 1.41% (GE).   

This increase in contrast did not result in a noticeable difference in the 
peak spatial frequency, which remained at 0.5 cycles/mm (Figure 2, GE, aver-
age spatial frequency spectrum; the resolution we employed in our simulated 
k-space was 0.0625 cycles/mm). However, relative to the average spectrum of 
the original patterns, the amplitude at the peak spatial frequency increased, 
while the amplitudes at spatial frequencies close to 0 cycles/mm remained 
constant. This shows that GE imaging had the effect of a moderate high-pass 
filter. Similar to our conclusion for the imaging with no signal decay, this result 
could not be expected by simply considering the positive FWHM of the magni-
tude PSF, which was 1.34 voxels (= 0.67 mm in our specific simulation). 

A convolution with a Gaussian of the same width resulted in contrast re-
duction (Figure 2, GE, 1D pattern excerpt, orange). The average contrast range 
dropped from 1.30% to 0.89%. Also, the peak in the spatial frequency spec-
trum shifted to a lower frequency of 0.375 cycles/mm. Convolution of the orig-
inal pattern with the magnitude PSF resulted in a larger reduction in contrast 
(average contrast range 0.33% ) and a shift of the peak spatial frequency to-
wards lower frequencies (0.375 cycles/mm). 
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Fig. 2 The effect of imaging PSF on MRI of a columnar pattern. We simulated and analyzed columnar 
ocular dominance patterns (first column) and their MR imaging with no signal decay (second column), 
GE imaging (third column) and SE imaging (fourth column). The first row shows the simulated original 
2D pattern and the resulting MR images using a voxel size of 0.5 mm. The second row shows an extract 
from a 1D simulated pattern (blue) and its no-decay, GE, and SE imaged counterparts (red). The 1D im-
aged patterns (which could be presented as non-continuous functions due to voxelization) were interpo-
lated using zero-filling in k-space in order to facilitate comparison. The no-decay imaged pattern was 
very similar to the original pattern. The GE and SE imaged patterns showed slight increases and decreas-
es, respectively, in contrast. In addition, we simulated convolutions (in orange) of the original pattern 
with Gaussian PSFs of the same widths as those computed from the magnitude PSFs (black arrows in Fig. 
1) and convolutions with the magnitude PSF itself (in green). They all show lower contrast than that in 
the corresponding MR simulations. The third row shows spatial frequency spectra averaged from 1,000 
simulated 1D patterns. The spatial frequency showing the maximal amplitude in each spectrum is 
marked with a vertical line with corresponding color. In cases where segments of the spectra obtained 
from the original pattern and the pattern obtained by MRI sampling were identical, we present alternat-
ing dashed red (for MRI sampling) and blue (for the original pattern) curves.  Similarly, we present al-
ternating dashed blue and red vertical lines in cases for which the frequencies showing the maximal am-
plitude were identical across the original pattern and MRI sampling. Imaging with no decay did not 
change the frequency spectrum within the sampled range (up to 1 cycle/mm). For GE, no change in the 
frequency showing the maximal amplitude was detected at the resolution we applied. SE imaging result-
ed in a slightly lower spatial frequency showing the maximal amplitude. In contrast, all spectra obtained 
by the Gaussian convolution (orange) and by the magnitude PSF convolution (green) showed lower spa-
tial frequencies associated with the maximal amplitudes. 

MR imaging in the presence of signal decay: Spin-Echo imaging 
Figure 2 (SE, 2D pattern) shows the SE imaged two-dimensional pattern. 

The SE image is slightly blurred relative to the image obtained with no signal 
decay. Similarly, the interpolated one-dimensional pattern excerpt (Figure 2, 
SE, 1D pattern excerpt, red) shows a lower amplitude compared to the original 
pattern (blue). The average contrast range decreased from 1.30% (original) to 
1.01% (SE) and the peak spatial frequency shifted to a lower frequency of 
0.4375 cycles/mm (Figure 2, SE, average spatial frequency spectrum). 
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The reduction in contrast and peak spatial frequency suggests that SE imag-
ing had a blurring effect on the original pattern, which could be consistent 
with the spatial extent of its magnitude PSF (FWHM of 0.66 mm). However, 
convolution with a Gaussian of the same width resulted in even larger contrast 
reductions (Figure 2, SE, 1D pattern excerpt, orange). The average contrast 
range decreased further to 0.90% and the peak in the spatial frequency spec-
trum shifted to 0.375 cycles/mm. True also for SE, convolution with the mag-
nitude PSF reduced the contrast (0.52%) more than the MRI simulation and 
the convolution with a Gaussian kernel (of the same width as the width of the 
magnitude PSF) did. The peak spatial frequency remained at 0.4375 relative to 
the SE MR simulation. 

An alternative approach to quantifying the effect of MR imaging on the 
effective spatial resolution 

Convolution with the real component of the complex imaging PSF linearly ap-
proximates the complete MRI process 
We have shown that neither the linear process of convolution with the complex 
PSF (without taking the absolute) nor the linear process of convolution with 
the magnitude PSF can faithfully describe the entire non-linear MR imaging 
and reconstruction process. To characterize the complete MRI process using a 
PSF, we propose an alternative, optimal, linear approximation.  

The best linear approximation of a function around a point ur is the deriva-
tive of the function at ur. For a function of a single variable $(u), the deriva-
tive	$′(u) represents a tangent line which can be interpreted as a linear ap-
proximation to $(u)  by mapping small deviations ur + Äu  onto $(ur) + Äu ⋅
$~(ur) ≈ $(ur + Äu). 

In the case of the MR imaging and reconstruction process, the function un-
der consideration is not a function of a single variable but a functional, which 
maps a pattern onto a set of imaged voxel values. The derivative of this func-
tional is a linear transformation that itself depends on a baseline pattern (the 
point at which the derivative is evaluated) in the same manner that a tangent 
depends on the point (ur) at which it is defined. Similar to a tangent line, this 
linear transformation maps a pattern with small deviations from the baseline 
pattern onto a set of voxel values approximating the true imaged pattern.  

In Appendix B, we computed this derivative for a spatially constant base-
line pattern. This derivative is a linear transformation that approximates the 
complete MR process for other patterns, with small response deviations rela-
tive to this spatially constant baseline pattern. In appendix B we show that this 
linear approximation is identical to a convolution with the real component of 
the complex imaging PSF (presented in the middle row of Figure 1, in purple). 
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Fig. 3 Evaluation of the linear approximation of the complete MRI process. The upper row shows the 
dependence of the linear approximation for GE imaging (left) and SE imaging (right) as a function of 
maximum response amplitude. Cortical columnar response patterns for a wide range of spatial frequency 
parameters, irregularity parameters, and maximum response amplitudes were simulated (1,000 for each 
parameter combination; results from 100 patterns were used for visualization). MR imaging of these pat-
terns was simulated. In addition, a linear approximation of the MR imaging process consisting of a con-
volution of the pattern with the real component of the complex imaging PSF was computed. The results 
of the linear approximations were compared to the complete MR imaging simulations by means of the 
root-mean-squared-errors (RMSE) relative to the standard deviation of the images obtained by the com-
plete MRI process. The gray curves show the distribution of relative RMSEs from all simulated patterns; 
the red curve presents their 95 percentile. The blue curves show results from realistic columnar parame-
ters (intermediate irregularity and spatial frequency). All curves show increased errors with increasing 
response amplitude. For the default, realistic response amplitude level of 5% (indicated by a vertical 
black line), most relative errors were well below 1%. The middle row of panels presents a magnified 
view of the errors for such realistic response amplitudes. The bottom part of the figure compares the dis-
tribution of relative RMSEs obtained by the linear approximation with those obtained by a convolution 
with the magnitude PSF. The default, realistic response amplitude level of 5% was used for this compari-
son. The convolution with the magnitude PSF resulted in substantially higher errors. 

Next, we evaluated how well this convolution approximates the true MR 
imaging and reconstruction process. In particular, because the linear approxi-
mation is expected to be valid for small deviations around the spatially con-
stant baseline pattern, we quantified the dependence of the quality of the ap-
proximation on the response amplitude. To this end, we simulated a wide 
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range of columnar patterns with different response amplitudes. We then com-
pared the results obtained by simulating the full MRI process for each of these 
patterns to those obtained by a convolution of the pattern with the real com-
ponent of the complex imaging PSF (Fig. 3). Note that as expected, for large 
amplitude deviations from the spatially constant baseline pattern, the linear 
approximation can result in relatively large errors (e.g. 95th percentile of the 
RMSE were 6.13% and 0.68% for 100% response amplitude imaged with GE 
and SE fMRI, respectively; Figure 3, upper row). However, the root-mean-
squared error for realistic response amplitudes was small. For example, for the 
maximal response amplitude of 5% imaged with GE fMRI, the 95th percentile 
was 0.43% of the standard deviation of the pattern obtained by the full MRI 
simulation (Figure 3, middle row). For SE imaging, the relative RMSE was 
even lower; for the maximal response amplitude of 5% imaged with SE fMRI it 
was 0.05% f (Figure 3, middle row). In contrast, convolution of the same re-
sponse patterns (with response amplitude of 5%) with the magnitude PSF re-
sulted in median relative root-mean-squared errors of 78% (GE) and 48% (SE) 
(Figure 3, bottom row). 

Quantifying the effect of signal decay by fitting a two-component model consisting 
of convolution with a Gaussian PSF followed by MR sampling with no decay 
In itself, the real component of the complex imaging PSF, in particular its 
width, is not suited to characterize the effective spatial resolution of the MR 
imaging process. The reason is that it represents not only signal decay, but also 
the MR sampling process. As we have shown, the latter is pattern-dependent 
and irrelevant if the voxels are sufficiently small to sample the spatial frequen-
cy spectrum, such that the imaged pattern is similar to the original pattern. 
Furthermore, it is not possible to easily discriminate the blurring characteris-
tics of SE from the high-pass filtering characteristics of GE on the basis of the 
real component of the complex imaging PSFs. 

However, instead of considering the real components of the complex imag-
ing PSFs, we can consider their spatial frequency representations. Figure 4 
(second row) shows the MTF of the real component of the complex imaging 
PSF for GE and SE (blue). The MTF of the real component is equal to the aver-
age of the positive and negative components of the original imaging MTF (pre-
sented in Figure 4, first row), assigned in a mirror-symmetric manner around 
the center (k=0) of the k-space. 

The MTF of the real component of the complex imaging PSF can be regard-
ed as the product of two factors representing two different processes. The first 
factor is the rect-function-windowed Dirac comb function that describes the 
MRI sampling with no signal decay. The second factor is a modulation of the 
sampled signal due to signal decay. In order to model this second factor we can 
choose a function that fits the modulation within the sampled k-space range. 
The Fourier transform of this function will be a convolution kernel in the im-
age space, which describes the effect of signal decay. It does not describe the 
effect of MRI sampling with no signal decay, which is qualitatively different 
and depends on the imaged pattern. 
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Fig. 4 Fitting of a two-component model consisting of convolution with a Gaussian PSF that accounts for 
signal decay followed by MR sampling with no decay. This figure shows the fitting of a Gaussian convolu-
tion and MRI sampling model for GE imaging (first column) and SE imaging (second column). Gaussian 
functions (second row, red) were fitted to the MTF of the real component of the SE image PSF (second 
row, right side column, in blue) and to the scaled inverse MTF of the real component of the GE image 
(second row, left side column, in orange). Outside the sampled k-space range, the continuation of the 
Gaussian fit is shown as a dashed red line. The Fourier transforms of these functions are Gaussian PSFs 
(bottom row, in green). For SE, this PSF describes the blurring due to the signal decay. For GE, it de-
scribes a hypothetical blurring that would be reversed by the high-pass filter properties of the T"∗ decay 
effect. Their respective FWHM (black arrows) are 0.59 voxels (GE) and 0.89 voxels (SE). 

We can then apply MRI sampling with no signal decay. The image we get from 
the convolution that accounts for the signal decay and the MRI sampling is ei-
ther identical to the complete MRI process (depending on the function fitted to 
the k-space representation in its sampled range) or approximates it. 

For SE imaging, we chose a Gaussian function and fitted it to the signal de-
cay-dependent modulation of the MTF of the real component of the complex 
imaging PSF (= the second factor; Figure 4 second row, SE, red; See discus-
sion for justification of modeling the second factor as a Gaussian function). An 
inverse Fourier transformation of this fitted Gaussian results in a Gaussian PSF 
in the image space, allowing for the interpretation of the signal decay effect as 
Gaussian blurring. The FWHM of this Gaussian PSF was 0.89 voxels (for a total 
read duration of 27.8 ms at 7T). 
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Fig. 5 Fitting of the two-component model for GE partial Fourier acquisition. This figure shows the fitting 
of a two-component model for partial Fourier acquisition using GE imaging. Omission of the first ¼ (col-
umns 1 and 2) and last ¼ (columns 3 and 4) of phase-encode steps were simulated. Furthermore, a re-
construction that exploits conjugate symmetry (columns 1 and 3) was compared to a zero-filling recon-
struction (columns 2 and 4). The first row shows the imaging MTF resulting from measurement compo-
nents (dark blue) and reconstruction components (light blue). Gaussian functions (second row, in red) 
were fitted to the MTF of the real component of the imaging PSF (early-omission partial Fourier, columns 
1 and 2, and late-omission partial Fourier using zero-filling reconstruction, column 4, in blue) and to the 
inverse MTF (here scaled for clarity of presentation) of the real component of the imaging PSF (late-
omission partial Fourier using conjugate symmetry reconstruction, column 3, in orange). Outside the 
sampled k-space range, the continuation of the Gaussian fit is presented as a dashed red line. The Fourier 
transforms of these functions are Gaussian PSFs (bottom row, in green). For early-omission partial Fouri-
er (columns 1 and 2) and late-omission partial Fourier using zero-filling reconstruction (column 4), these 
PSFs describe the blurring due to the signal decay. For late-omission partial Fourier using conjugate 
symmetry reconstruction (column 3), the PSF describes a hypothetical blurring that would be reversed by 
the high-pass filter properties of the T"∗ decay effect.  

For GE imaging, a Gaussian function is not a good fit, since the MTF of the 
real component of the complex imaging PSF shows increasing amplitudes with 
increasing spatial frequency (Figure 4, second row, GE, blue), consistent with 
its high-pass filtering properties we have shown above (Figure 2). However, 
instead of this MTF, we can consider its inverse (1 divided by the MTF; Figure 
4, second row, GE, orange). The inverse MTF describes the process that would 
be reversed by a convolution with the real component of the complex PSF. We 
fitted a Gaussian to the signal decay-dependent modulation of this inverse 
MTF (which resulted in a higher R2, than the Gaussian fit to the non-inverted 
MTF) and calculated its corresponding Gaussian PSF in the image space. This 
allows for interpreting GE imaging as reversing (deconvolving) a Gaussian 
blur. The FWHM of this Gaussian was 0.59 voxels (for a total read duration of 
27.8 ms at 7T). 
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Fig. 6 Fitting of the two-component model for SE partial Fourier acquisition. This figure shows the fitting 
of a two-component model for partial Fourier acquisition using SE imaging. Omission of the first ¼ (col-
umns 1 and 2) and last ¼ (columns 3 and 4) of phase encode steps were considered. Furthermore, a 
reconstruction that exploited conjugate symmetry (columns 1 and 3) was compared to a zero-filling re-
construction (columns 2 and 4). The first row shows the imaging MTF resulting from measurement com-
ponents (dark blue) and reconstruction components (light blue). Gaussian functions (second row, in red) 
were fitted to the MTF of the real component of the imaging PSF for all columns 1-4. Outside the sam-
pled k-space range, the continuation of the Gaussian fit is presented as a dashed red line. The Fourier 
transforms of these functions are Gaussian PSFs (bottom row, in green) that have a blurring effect. These 
PSFs describe the blurring due to the signal decay. 

Partial Fourier acquisition 
In addition to the standard EPI acquisition described so far, one can shorten 
the total read-out duration by only acquiring parts of the conjugate symmetric 
k-space. This is known as partial Fourier acquisition.  
In order to study how signal decay affects partial Fourier acquisition, we simu-
lated MTFs resulting from partial Fourier imaging in which either the first ¼ or 
last ¼ of the phase-encode steps were omitted (the total read out duration was 
shortened accordingly from 27.8 ms to 20.85 ms). We then applied the same 
modeling methodology described above for the full k-space acquisitions (Fig-
ures 5 and 6 for GE and SE, respectively). In addition, we compared a recon-
struction that exploited the conjugate symmetry (Figures 5 and 6, columns 1 
and 3) to a reconstruction with simple zero-filling (Figures 5 and 6, columns 2 
and 4). 
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Fig. 7 FWHMs of Gaussian PSFs that model the effect of signal-decay as a function of total read-out dura-
tion. This figure shows the results of fitting our two component model that accounts for MR sampling 
and signal decay for different GE (left) and SE (right) imaging scenarios and for different total read-out 
durations. The FWHM of the fitted Gaussian PSFs are presented as a function of total-read out duration. 
For Partial Fourier acquisition, the total-read out duration axis is labeled at the top. Partial Fourier acqui-
sition total-read out durations were shortened according to the fraction of omitted k-space (1/4) relative 
to the corresponding full k-space total read-out duration (bottom axis). The vertical black line represents 
a total-read out duration of 27.8 ms (20.85 ms for partial Fourier). Negative FWHM values indicate that 
the Gaussian PSFs resulted from the inverse of the MTF of the real component of the complex imaging 
PSF. Such negative values represent a hypothetical blurring that is reversed by the high-pass filter prop-
erties of the T"∗ decay effect. 

For GE, partial Fourier with early omission resulted in blurring (Figure 5 
columns 1 and 2) as opposed to the high-pass filtering observed in full k-space 
acquisition (Figure 4). The blurring was more substantial in zero-filling recon-
struction (FWHM = 1.38 voxels) than in conjugate symmetry reconstruction 
(FWHM = 1.00 voxels).  

Partial Fourier with late omission using conjugate symmetry reconstruction 
resulted in high-pass filtering (Figure 5, column 3). This high-pass filtering ef-
fect (reverse kernel FWHM = 1.10 voxels) increased relative to that of full k-
space acquisition (reverse kernel FWHM = 0.59 voxels). Partial Fourier with 
late omission using zero filling reconstruction (Figure 5, column 4) resulted in 
moderate low-pass filtering (FWHM = 0.30 voxels). 

For SE, partial Fourier with early omission (Figure 6, columns 1 and 2) re-
sulted in increased blurring relative to that shown by the full k-space acquisi-
tion (FWHM = 0.89 voxels). The blurring was more substantial in zero-filling 
reconstruction (FWHM = 1.55 voxels) than in conjugate symmetry reconstruc-
tion (FWHM = 1.10 voxels). Partial Fourier with late omission also resulted in 
blurring (Figure 6, columns 3 and 4). Here, conjugate symmetry and zero-
filling reconstructions resulted in decreased (FWHM = 0.66 voxels) and in-
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creased (FWHM = 1.38 voxels) blurring, respectively, relative to the blurring 
obtained from the full k-space acquisition (FWHM = 0.89 voxels). 

All results so far were based on an assumed total readout duration of 27.8 
ms. In order to extend our results and to study the dependence of signal decay 
blurring on the total read out duration, we repeated the simulation of signal 
decay-dependent MTFs and the fitting of our model of Gaussian convolution 
and MRI sampling for a range of total readout durations (Figure 7). 

For almost all imaging scenarios, including GE and SE imaging, the type of 
decay-dependent effect (blurring or high-pass filtering) was independent of 
total readout duration. However, the effect’s strength increased with increasing 
total readout duration. The only exception was the zero-filling reconstruction 
of GE partial Fourier imaging that omits the late acquisitions. Here, short total 
readout durations resulted in blurring while longer total readout durations re-
sulted in high-pass filtering.  

Evaluation of modeling the complete MR process as a convolution with a Gaussian 
PSF that accounts for signal decay followed by MR sampling with no decay 
Lastly, we evaluated how well our simplifying model approximated a complete 
MRI acquisition model (Figure 8). We compared complete simulations of fMRI 
of columnar patterns including signal decay to simulations that used our 
Gaussian PSF model of signal decay followed by MR sampling with no decay. 
We then quantified their deviations by calculating the root-mean-squared er-
rors relative to the standard deviation of the patterns obtained by the simula-
tion of the complete MRI process. The relative errors differed for different im-
aging methods and total readout durations. For full k-space acquisition (Figure 
8, upper row), the median error (red curve) obtained for a total readout dura-
tion of 27.8 ms was 3.91% and 8.39% using GE and SE fMRI, respectively.   

The relative errors obtained for the majority of partial Fourier acquisition 
schemes were substantially higher. For conjugate symmetry reconstruction 
(Figure 8, middle row), the median error computed for GE fMRI and a total 
readout duration of 20.85 ms (that corresponds to 27.8 ms for full k-space ac-
quisition) was 17.55% and 11.6% for omissions of the early and late part of 
the k-space, respectively. The corresponding errors for SE fMRI were 5.79% 
and 9.51%. 

For zero filling reconstruction (Figure 8, bottom row), the median error 
computed for GE fMRI and a total readout duration of 20.85 ms was 31.15% 
and 14.19% for omissions of the early and late part of the k-space, respectively. 
The corresponding errors for SE fMRI were 18.14% and 16.37%. 

Our Gaussian PSF model of signal decay approximates the signal decay ef-
fect in MR imaging as a pattern-independent linear process. As we have just 
demonstrated, the differences between the results of this approximation and 
the true imaging process are low for full k-space acquisitions, but are higher 
for partial Fourier acquisitions. In order to obtain an even better approxima-
tion, we can define an alternative approximation. Given a specific pattern, we 
can determine a Gaussian PSF (or its inverse process) that accounts for signal 
decay, such that convolution with this specific Gaussian followed by MR sam-
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pling with no decay results in the best Gaussian-based approximation of the 
complete MR imaging process. 

 
Fig. 8 Evaluation of modeling the complete MR process as a convolution with a Gaussian PSF that ac-
counts for signal decay followed by MR sampling with no decay. 1,000 cortical columnar response pat-
terns (with intermediate irregularity and spatial frequency) were simulated (results from 100 patterns 
were used for visualization). For GE (left) and SE (right) full k-space acquisition (top) and partial Fourier 
acquisition (bottom), convolution with the fitted Gaussian PSF (or its inverse model, see text) followed 
by MR sampling with no decay was compared to the complete MR imaging process. To this end, the root-
mean-squared-errors (RMSE) relative to the standard deviation of the complete MR images were calcu-
lated. The gray curves show the distribution of relative RMSEs from all simulated patterns as a function 
of total read-out duration. The vertical black line represents a total-read out duration of 27.8 ms (20.85 
ms for partial Fourier). The medians of RMSEs are shown in red. For Partial Fourier acquisition, the to-
tal-read out duration axis is labeled at the top. Partial Fourier acquisition total-read out durations were 
shortened according to the fraction of omitted k-space (1/4) relative to the corresponding full k-space 
total read-out duration (bottom axis). RMSEs were generally low for full k-space acquisition but became 
higher for the majority of partial Fourier acquisition schemes. 
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Fig. 9 Estimation of pattern specific Gaussian PSFs that model the effect of signal-decay.  1,000 cortical 
columnar response patterns (with intermediate irregularity and spatial frequency) were simulated (re-
sults from 100 patterns were used for visualization). We present results from GE (left) and SE (right) full 
k-space acquisition (top) and partial Fourier acquisition (bottom). For each pattern, complete MR imag-
ing was simulated and compared to the result of convolution of the pattern with Gaussians (or their in-
verse models, see text) followed by MR sampling with no decay. For each pattern, the pattern specific 
Gaussian that resulted in the smallest mean squared error relative to the complete MR imaging simula-
tion were determined. The blue curves show the distribution of FWHMs of these Gaussians as a function 
of total read-out duration. The vertical black line represents a total-read out duration of 27.8 ms (20.85 
ms for partial Fourier). The medians of FWHMs are shown in red. For Partial Fourier acquisition, the 
total read-out duration axis is labeled at the top. Partial Fourier acquisition total read-out durations were 
shortened according to the fraction of omitted k-space (1/4) relative to the corresponding full k-space 
total read-out duration (bottom axis). The FWHMs of our pattern independent Gaussian PSF model are 
presented in dashed orange for comparison. 
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Figure 9 presents the resulting Gaussian PSF FWHMs (blue, median in red) as 
a function of total read-out duration for full k-space acquisitions (upper row) 
and for different partial Fourier acquisition schemes (middle and bottom 
rows). In addition, we present the previously estimated pattern-independent 
Gaussian PSF FWHMs (dashed orange curves). Note that the patterns used for 
this evaluation were the results of different columnar patterns, but they all 
shared the same statistical properties (main pattern frequency = 1 cycle per 4 
voxels, relative irregularity = 0.5). 

The pattern-dependent PSF widths (blue curves) for the full k-space acqui-
sitions did not vary much across patterns (they were relatively independent of 
the specific pattern). They corresponded reasonably well to those obtained 
from our pattern-independent model (dashed orange curve). For the majority 
of partial Fourier acquisition schemes, the variability of pattern-specific PSF 
widths was somewhat higher. In addition, the differences between the median 
over simulated patterns and the pattern independent model were on average 
higher than those obtained for the full k-space acquisitions. This suggests that 
using a pattern-independent, single PSF width does not fully characterize the 
effective spatial resolution under partial Fourier acquisitions. We note, howev-
er, that for both full k-space and partial Fourier acquisitions, the estimations 
obtained from our proposed pattern-independent model (in dashed orange 
curves) matched those obtained from the pattern-dependent simulations rea-
sonably well.    

Discussion 

The Imaging PSF and effective spatial resolution 
The PSF of an imaging system is defined as the image obtained from an infini-
tesimally small point-like object. If the imaging system is linear and shift invar-
iant, its response to an arbitrary object can be described as a convolution with 
the imaging PSF as the convolution kernel. This latter property is what makes 
the PSF useful in describing the spatial characteristics of an imaging system. 

The effect of a system with an imaging PSF with its maximum at zero and 
whose strictly positive values do not increase with increasing distance from ze-
ro can be intuitively understood as spatial spreading or blurring. Such systems 
produce smoothed image versions of any object or pattern. The smoothing can 
be quantified by measures of the imaging PSF width (such as the FWHM). 
However, other PSF shapes may characterize certain systems, resulting in more 
complex effects that require careful evaluation and may not be intuitive. 

Note that the width of the PSF is not the only possible measure of effective 
spatial resolution. Another measure that has been proposed is the area under 
the PSF divided by the value of the PSF at the origin (Haacke	et	al.,	1999). In 
the case of MR imaging without signal decay, it is identical to the actual voxel 
width. 
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The magnitude PSF is not a good measure for the effective spatial reso-
lution of MRI and fMRI 
We have shown that the FWHM of the magnitude PSF is not a good measure 
for the effect of  !" and !"∗  signal decay on spatial resolution. There are three 
reasons as to why this is the case. 

The larger part of the FWHM of the magnitude PSF is due to MR sampling and 
not due to signal decay 
The magnitude PSF of MR imaging, even with no signal decay, has a FWHM of 
1.2 voxels compared to 1.4 voxels and 1.3 voxels (examples given for total 
readout of 30 ms at 7T) for GE and SE decay, respectively. However this MR 
sampling effect with no signal decay cannot be regarded as a simple spread of 
signal. In fact, it acts as a hard low-pass filter that discards all spatial frequen-
cy components higher than the voxel size-dependent highest sampled spatial 
frequency, and leaves all other spatial frequency components unchanged. For a 
pattern dominated by the latter spatial frequency components, MR sampling 
with no signal decay has virtually no blurring effect. For a pattern with spatial 
frequencies limited to those sampled by the MRI process, MR sampling with no 
signal decay has no blurring effect at all. Thus, the FWHM of the magnitude 
PSF is a pattern-independent measure, whereas the effective resolution of MRI 
sampling with no signal decay does depend on the imaged pattern. 

The MR imaging process is non-linear 
The last step of the reconstruction in an MR imaging process typically involves 
taking the absolute values (magnitude image) of the complex image values. 
The complex image values are the results of a process that can be described as 
a convolution of the original pattern with the complex imaging PSF. Taking the 
absolute values of the complex image values makes the MRI process non-
linear. In general, the result of convolving a pattern with a complex kernel, 
then taking the magnitude image, is not equal to convolving the same pattern 
with the magnitude values of the complex kernel. This general statement ap-
plies in the specific case of MRI: the image obtained by the MRI process is dif-
ferent from that obtained by convolving the original pattern with the magni-
tude PSF.  

To illustrate the effect of the non-linearity of the MRI process, we will de-
scribe two scenarios involving the imaging of a point-like structure. While the 
FWHM of the magnitude PSF can describe the effective spatial resolution of 
imaging an infinitesimally small point-like structure with no background, it 
cannot describe the MRI sampling of any arbitrary structure. For example, MRI 
of a pattern composed of a similar infinitesimally small point-like structure su-
perimposed on a spatially constant baseline with an amplitude higher than the 
amplitude of the magnitude PSF would include negative side lobes relative to 
the baseline. Thus, the magnitude PSF fails to correctly describe the MRI pro-
cess. 

Note that even convolving the original pattern with the complex imaging 
PSF does not fully describe the MRI process, since it does not reflect the opera-
tion of taking the magnitude image. Therefore, even the complex imaging PSF 
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on its own does not completely reflect the typical MRI sampling and recon-
struction process. 

Signal decay may cause blurring or high-pass filtering with identical FWHM of 
the magnitude PSF 
Signal decay does not always blur the pattern; it can also cause high-pass fil-
tering. This is the case for the GE simulations we have conducted. Whether 
signal decay results in blurring or high-pass filtering depends on the shape of 
the decay curve and on the ordering of k-space acquisitions. Specific decay 
curves and ordering of k-space acquisitions may result in imaging PSFs that are 
different, but share the same FWHM. Indeed, the magnitude PSFs that are as-
sociated with imaging processes that result in blurring or high-pass filtering 
can be different but may have identical widths. This clearly limits the interpre-
tation based on the magnitude PSF’s width measure. 

What does the magnitude PSF describe? 
In the 3 previous sub-sections, we have shown that the magnitude PSF is not a 
good measure for characterizing the effective spatial resolution of the MRI 
process. The magnitude PSF carries less information relative to the complex 
imaging PSF. Simply relying on the FWHM of the magnitude PSF further re-
duces the available information. The magnitude PSF cannot differentiate be-
tween reduced effective spatial resolution due to the MRI sampling per se or 
due to signal decay. The effect of MRI sampling with no signal decay depends 
on the original pattern, whereas the FWHM of the magnitude PSF does not. 
While the magnitude PSF does describe the magnitude MR image of a small 
point-like structure with no background signal, it is not a convolution kernel of 
the MR imaging process. The FWHM of the magnitude PSF does not differenti-
ate between blurring and high-pass filtering effects.  

What, then, does the magnitude PSF describe, and can it be used for any 
characterization of the MRI process? The magnitude PSF has some general 
value in that it describes the absolute level of influence that neighboring posi-
tions in the original pattern have on each other’s value in the image. The prob-
lem is that it fails to characterize the nature of this influence (e.g. blurring or 
high-pass filtering), which depends on the signs of the components, the phase 
and the overall shape of the underlying complex PSF. 

Applicability of our simplified model 

Approximation of fMRI as a convolution with the real component of the complex 
imaging PSF 
We have shown that the MR imaging process can be approximated by a convo-
lution with the real component of the complex imaging PSF. This approxima-
tion works well if the original pattern constitutes a low amplitude spatially 
varying pattern superimposed on a constant, spatially homogeneous back-
ground of a higher amplitude. For response amplitudes of 5%, we found the 
typical RMSE relative to the standard deviation of the pattern imaged by the 
complete MRI process to be well below 1%.  This scenario holds for fMRI, 
where gray matter has a relatively uniform baseline intensity and the focus is 



 132 

on superimposed signal changes of approximately 1%-5%. In contrast, this ap-
proximation may not be as appropriate for structural MRI where the low signal 
background, as well as objects of varying size and intensity, are of interest. 

Separation of MRI sampling and signal decay 
The separation of MR sampling and signal decay makes it possible to consider 
their respective effects separately. MR sampling with no decay does not auto-
matically result in a blurred image. If the voxel width is sufficiently small for 
sampling the larger part of the original spatial frequencies, the MRI sampling 
will have no blurring effect.  

For example, the spatial frequency content of the BOLD response of cortical 
columns is limited due to the smoothness of the neuronal columnar organiza-
tions and the spreads of the neurophysiological and hemodynamic responses. 
Therefore, the blurring effect of fMRI sampling with adequately small voxels 
can be neglected. The condition is that the voxels are sufficiently small, such 
that they can capture the main (peak) frequency of a columnar organization 
and the frequencies showing elevated power around it. 

When untangled from MR sampling, signal decay can be described as a 
blurring process which we model as Gaussian blurring. This is a simplifying 
model, with precision that varies with the actual imaging MTF. However, the 
deviations of this simplifying model relative to the complete fMRI process are 
small for typical signal changes (fMRI response) and noise levels in fMRI.  

Importantly, it results in a simple and intuitive characterization of the blur-
ring associated with signal decay that makes it possible to compare it to previ-
ously reported FWHMs of PSFs associated with the entire BOLD fMRI process 
(BOLD PSF) (Chaimow	et	al.,	2016;	Engel	et	al.,	1997;	Parkes	et	al.,	2005;	Shmuel	
et	 al.,	 2007). It further makes it possible to decompose the PSF of fMRI into 
two components: one caused by k-space sampling and signal decay, and the 
other caused by a physiological fMRI contrast-dependent spread. 

Our proposed model applies to both isotropic and anisotropic cortical columns 
We have used the example of ocular dominance columns (ODC) in order to 
show the limitations of using the magnitude PSF for characterizing the effec-
tive spatial resolution of fMRI (Figure 2). However, our characterization of the 
MR imaging process as Gaussian blurring followed by MR sampling with no 
signal decay does not depend on this specific example. In particular because 
we only considered the phase-encode dimension, we were able to use one di-
mensional columnar patterns. These one dimensional patterns can be regarded 
as general models of columnar patterns, characterized by a main pattern fre-
quency and a level of irregularity. 

Applicability of our proposed model to other fMRI and MRI methods 
In addition to GE and SE BOLD fMRI, other methods such as 3D GRASE (Fein-
berg	et	al.,	2008), VASO (Lu	et	al.,	2003) and ASL (Detre	et	al.,	1992) have been 
used for high resolution imaging (Duong	 et	 al.,	 2001;	Huber	 et	 al.,	 2015;	 Zim-
mermann	 et	 al.,	 2011). Do our findings generalize and account for MRI sam-
pling and signal decay in these methods? Our analysis of the imaging PSF de-
pends on two conditions. The first is the shape of signal decay during linear 
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sampling of k-space. This condition holds when using different echo times or 
preparatory pulses that only affect the absolute magnitude of the magnetiza-
tion to which the modeled !"∗ or !"/!"∗ decay is applied. Our derivations are 
valid for such scenarios. The second is the validity of a linear approximation of 
the response pattern, which holds if the response is composed of a small am-
plitude response pattern relative to a larger amplitude spatially homogenous 
baseline.  

In 3D GRASE, multiple refocusing pulses and subsequent EPI acquisitions 
(partitions) follow a single excitation pulse. Each partition represents a step in 
3D k-space in the direction orthogonal to what is commonly considered the 
slice planes. The signal decay within each partition is proportional to that of a 
single SE EPI acquisition (Fig. 1, first row, SE). Across partitions, the amplitude 
changes according to !"	decay. 

Consequently, the entire 3D k-space modulation due to signal decay can be 
separated into a product of decay between and within partitions. Furthermore, 
the separability of dimensions in the Fourier transform implies that these re-
spective components determine the spatial filtering due to signal decay across 
slices (between partition decay) and within slices (within partition decay). 

As a result, our SE findings are valid for the effective in-plane resolution of 
3D GRASE acquisitions. In order to approximate the effective in-plane spatial 
resolution of 3D GRASE, one needs to consider the total readout for a single 
partition and refer to the SE results in Figure 7. However, the effective spatial 
resolution across slices is determined by a decay similar to GE acquisition, but 
with a time constant of !" instead of	!"∗, and with a total read-out duration 
that covers the acquisition of all partitions. 

VASO, a method that indirectly measures changes in cerebral blood volume, 
applies an inversion recovery pulse prior to a normal GE or SE EPI sequence. 
The effect of the inversion recovery pulse is that all signals from blood are 
nulled when the excitation pulse occurs. This, in addition to the often used 
very short echo time, results in a change of scaling but not in a change of the 
shape of !"∗ decay (for GE) or !"/!"∗ decay (for SE). In addition, VASO signal 
changes are small, on the order of -1% (Lu	and	van	Zijl,	2012). Together, these 
features allow us to apply our results directly to VASO imaging. Therefore, 
Figure 7 provides the effective spatial resolution of VASO acquired by means of 
GE or SE imaging. 

For cerebral blood flow imaging, e.g. using ASL, the situation is different. If 
EPI acquisition is used, the signal decay follows our analysis, therefore comply-
ing with the first condition as described above. However, cerebral blood flow 
changes are on the order of 20%-60% which does not follow the second condi-
tion, making our linear approximation much less accurate.  

How does the effective spatial resolution influence functional imaging? 

Signal amplitude reductions 
In the current study, we focus on signal decay-dependent modulation of ampli-
tudes of spatial frequency components relative to each other. However, signal 
decay also causes overall amplitude decreases that bring about a reduced sig-
nal to thermal noise ratio (SNR). Such amplitude decreases depend on total 
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read-out duration. In addition, read-out duration per read-out line determines 
receiver bandwidth, with higher bandwidth (shorter read-out duration) result-
ing in increased noise. Both factors need to be considered in order to find an 
optimal total read-out duration that maximizes SNR (Qin,	2012), all within the 
constraints (and potential effects) of matrix size, field of view, echo time, and 
gradient strength. 

SNR associated with a spatial frequency 
SNR and effective spatial resolution can be considered together by evaluating 
the SNR at a spatial frequency. For detecting or decoding stimulus-specific re-
sponses, SNR needs to be high for at least part of the spatial frequencies that 
contribute to stimulus-specific responses, independent of whether the overall 
image is blurred. However, if one aims to obtain a precise reconstruction of the 
response pattern, then both high SNR and an image with an undistorted fre-
quency spectrum are necessary.  

In this context, it is of interest to discuss the difference between partial 
Fourier reconstructions employing conjugate symmetry and simple zero-filling. 
It may appear that the conjugate symmetry reconstruction is always superior 
to zero-filling due to its reduced blurring effect. Indeed, this is the case if the 
aim is to image a pattern precisely. However, the situation is different if we 
consider the SNR at each spatial frequency. Compared to conjugate symmetry 
reconstruction, zero-filling reduces the amplitude of high spatial frequencies, 
as the contribution of their omitted components is set to zero. However, the 
noise at these spatial frequencies is reduced proportionally. Therefore, the spa-
tial frequency-specific SNR is equal between conjugate symmetry and zero fill-
ing reconstructions of partial Fourier acquisition. The spatial frequency specific 
SNR obtained by full k-space acquisition is higher than those obtained by both 
conjugate symmetry and zero-filling reconstructions of data obtained by partial 
Fourier acquisition. This is because full k-space acquisition benefits from aver-
aging of independent noise across the negative and positive k-space parts. The 
result is an expected increase of spatial frequency-specific SNR by a factor of 
√2 compared to partial Fourier acquisitions, independent of the employed re-
construction method. 

Significance of signal decay blurring relative to the overall BOLD point 
spread function 
The absolute width of the PSF due to signal decay is proportional to voxel 
width. At ultra-high magnetic field, the in-plane voxel width used for high-
resolution fMRI can be as small as 0.5 mm. In Table 1, we compare the FWHM 
of the resulting PSF due to signal decay to the overall BOLD fMRI PSF as esti-
mated in (Chaimow	 et	 al.,	 2016). Furthermore, we estimated the BOLD PSF 
while accounting for the effect of signal decay. We considered that consecutive 
Gaussian convolutions result in a Gaussian convolution with a total width 
equal to the square root of the sum of squares of individual convolution 
widths. The results show that the contribution of fMRI signal decay to the 
overall BOLD fMRI PSF is relatively small. This is especially true, considering 
that signal decay blurring acts only on the phase-encode direction. 
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Table 1 Comparison of decay dependent imaging PSF and BOLD PSF. This table compares the FWHM of 
the PSF due to signal decay (fMRI signal decay PSF, as estimated in the current study) to that of the 
overall BOLD fMRI PSF as estimated in (Chaimow et al., 2016). A voxel width of 0.5 mm is assumed. The 
bottom row shows the FWHM of the BOLD PSF when accounting for the contribution of fMRI signal de-
cay. These numbers show that the contribution of fMRI signal decay is relatively small. Note that for GE, 
accounting for the PSF due to signal decay widens the PSF function, due to the high-pas filtering effect of 
the signal decay in GE BOLD fMRI. 

 GE SE 
Overall BOLD fMRI PSF  
(Chaimow et al., 2016) 
 

1.02 mm 0.82 mm 

fMRI signal decay PSF -0.30 mm  
(high pass filter) 

0.44 mm 

BOLD PSF,  
accounting for fMRI signal decay 

0.98 mm 0.69 mm 

 

Conclusion 

We have demonstrated that the FWHM of the absolute values of the complex 
imaging PSF (magnitude PSF) is a poor and potentially misleading measure for 
the effect of signal decay on the effective spatial resolution. Instead, we pro-
pose to first linearly approximate the typically non-linear process of MR sam-
pling and reconstruction and then to separately consider the effects of two 
components of the imaging process. The first component is the MR sampling 
with no signal decay, which acts as a hard low-pass filter. It discards all spatial 
frequencies higher than the voxel size-dependent maximal sampled spatial fre-
quency and leaves all other frequencies untouched. The second component 
depends on the signal decay. We have shown that the effect of this second 
component can be approximated by either Gaussian blurring or high-pass fil-
tering that reverses the effect of a Gaussian blurring. For typical SE parameters 
at 7 Tesla, we found that the Gaussian blurring attributed to signal decay has a 
PSF FWHM of 0.89 voxels (0.44 mm for 0.5 mm wide voxels). In contrast, GE 
at 7 Tesla has a high-pass filter effect, reversing a Gaussian blurring with a PSF 
FWHM of 0.59 voxels (0.30 mm for 0.5 mm wide voxels). We conclude that 
signal decay in SE fMRI with full k-space acquisition at 7 Tesla has a more 
moderate blurring effect compared to the effect implied by the commonly used 
FWHM of the magnitude PSF. We further conclude that signal decay in GE 
fMRI at 7 Tesla (and also at other field strengths, not shown) has a high-pass 
filtering effect, opposite to what can be expected from describing the effect of 
signal decay on GE fMRI by the FWHM of the corresponding magnitude PSF. 
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  Appendix A. Modeling and simulating MR imaging

This section provides detailed equations of the MR imaging model as used in our simulations. The
theory follows Haacke et al. (1999).

We consider the phase-encode dimension only and analyze it separately from the read-out dimen-
sion. This is justified because of the separability of the Fourier transform. Let y(x) be a spatial pattern
and s(k) = F ⇥y(x)⇤ its k-space representation obtained by Fourier transform. Furthermore, let L be
the field-of-view and N = 2n the matrix size with voxel width �x = L/N .

MR sampling with no signal decay
MRI samples k-space in steps of �k = 1/L from �n�k to (n� 1)�k. The reconstructed imaged

pattern (yMRI
q ), where q 2 [�n, ..., n�1], is obtained by taking the absolute values of an inverse discrete

Fourier transform, such that

yMRI
q =

������x�k
n�1X

p=�n

s(p�k)e ⇡pq/n

����� . (A.1)

Defining MTF(k) =�x�k
Pn�1

p=�n�(k� p�k), A.1 can be rewritten as:

yMRI
q =

�����

Z 1

�1
MTF(k)s(k)e 2⇡kq�xdk

�����=
��F�1 [MTF(k)s(k)] (q�x)

�� . (A.2)

This shows that MTF(k) is the modulation-transfer function of the linear part of the MRI process (up
to taking absolute values). As such it has an associated point-spread function psf(x) =F�1 [MTF(k)],
allowing us to express A.2 as a convolution:

yMRI
q =
���y ⇤ psf
�
(q�x)
�� . (A.3)

MR sampling in the presence of signal decay
Let t(k) be the time that an individual k-space point k is being acquired and let f (k) = f (t(k)) be

the relative signal decay amplitude at that time. Such an acquisition in the presence of signal decay
results in an effective k-space representation f (k)s(k), changing A.1 to

yMRI
q =

������x�k
n�1X

p=�n

f (p�k)s(p�k)e ⇡pq/n

����� . (A.4)

In this situation the MR imaging equations A.2 and A.3 still apply, if we absorb f (k) into the
modulation-transfer function, now defined as MTF(k) =�x�k f (k)

Pn�1
p=�n�(k� p�k).

Appendix B. Linear approximation of the MR imaging process

Let r : [�L/2, L/2]! R be a spatial pattern of relative responses of BOLD contrast and let

y[r](x) =
⇢

1+ r(x) if x 2 [�L/2, L/2]
0 otherwise ,

be the associated pattern of absolute BOLD signal.
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First we compute the result of convolving such a signal pattern with a point-spread function defined
according to Appendix A.

�
y[r] ⇤ ps f

�
(x) =

Z 1

�1
y[r](x 0)psf(x � x 0)dx 0

=
Z L/2

�L/2

�
1+ r(x 0)

�
psf(x � x 0)dx 0

=
Z L/2

�L/2

psf(x � x 0)dx 0+
Z L/2

�L/2

r(x 0)psf(x � x 0)dx 0

=
Z L/2

�L/2

Z 1

�1
MTF(k)e 2⇡k(x�x 0)dkdx 0+

Z L/2

�L/2

r(x 0)psf(x � x 0)dx 0

=
Z L/2

�L/2

Z 1

�1
�x�k f (k)
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We define an operator MRI that models the MRI acquisition process by mapping the spatial pattern
r(x) onto a measured MRI pattern (MRI[r]q)�nqn�1 according to A.3, such that

MRI[r]q =
��(y[r] ⇤ psf)(q�x)

��

=
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where psfRe(x) = Re
�
psf(x)

�
and psf Im(x) = Im

�
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�
.

We also note that
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In order to linearly approximate the MR imaging process, we compute MRI0[0][r]q, the functional
derivative of MRI[r]q with respect to r, evaluated at r0 = 0 (representing no response, only baseline).
This functional derivative is a linear operator that maps a response pattern r(x) onto an MRI response
pattern (MRI0[0][r]q)�nqn�1, resulting in a linear approximation of the true MRI measurement ac-
cording to MRI[r]q ⇡MRI[0]q +MRI0[0][r]q.

We calculate MRI0[0][r]q from B.2 using the chain rule and the fact that
R L/2

�L/2
r(x 0)psfRe(x� x 0)dx

is already a linear operator on r:
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Finally, using B.3 and B.4 the linear approximation of MRI[r]q is

MRI[r]q ⇡MRI[0]q +MRI0[0][r]q

=
Z L/2

�L/2

psfRe(x � x 0)dx +
Z L/2

�L/2

r(x 0)psfRe(x � x 0)dx 0

= y[r] ⇤ psfRe. (B.5)
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Abstract 

The capacity of functional MRI (fMRI) to resolve cortical columnar organiza-
tions depends on several factors, e.g. the spatial scale of the columnar pattern, 
the point-spread of the fMRI response, the voxel size, and the SNR considering 
thermal and physiological noise. How these factors combine, and what is the 
voxel size that optimizes fMRI of cortical columns remain unknown.  

Here we combine current knowledge into a quantitative model of fMRI of 
patterns of cortical columns. We compare different approaches for imaging 
patterns of cortical columns, including univariate and multivariate based de-
tection, multi-voxel pattern analysis (MVPA) based decoding, and reconstruc-
tion of the pattern of cortical columns. We present the dependence of their per-
formance on the parameters of the imaged pattern and the data acquisition, 
and predict voxel sizes that optimize fMRI under various scenarios.  

To this end, we modeled differential imaging of realistic patterns of cortical 
columns with different spatial scales and degrees of irregularity. We quantified 
the capacity to detect and decode stimulus-specific responses by analyzing the 
distribution of voxel-wise differential responses relative to noise. We quantified 
the accuracy with which the spatial pattern of cortical columns can be recon-
structed as the correlation between the underlying columnar pattern and the 
imaged pattern. 

For regular patterns, optimal voxel widths for detection, decoding and re-
construction were close to half the main cycle length of the organization. Op-
timal voxel widths for irregular patterns were less dependent on the main cy-
cle length, and differed between univariate detection, multivariate detection 
and decoding, and reconstruction. We compared the effects of different factors 
of Gradient Echo fMRI at 3 Tesla (T), Gradient Echo fMRI at 7T and Spin-Echo 
fMRI at 7T, and found that for all measures (detection, decoding, and recon-
struction), the width of the fMRI point-spread has the most significant effect. 
In contrast, different response amplitudes and noise characteristics played a 
comparatively minor role. We recommend specific voxel widths for optimal 
univariate detection, for multivariate detection and decoding, and for recon-
struction under these three data-acquisition scenarios. Our study supports the 
planning, optimization, and interpretation of fMRI of cortical columns and the 
decoding of information conveyed by these columns. 

Introduction 

With the advent of high-field functional MRI (fMRI), it has become possible to 
image organizations of cortical columns (Cheng	et	al.,	2001;	Goodyear	and	Men-
on,	2001;	Nasr	et	al.,	2016;	Shmuel	et	al.,	2010;	Yacoub	et	al.,	2008;	2007;	Zim-
mermann	et	 al.,	 2011). However, fMRI of cortical columns is still challenging. 
The ability to resolve the true underlying columnar organization depends on 
several factors, such as the spatial scale of the columnar pattern, the point-
spread of the measured blood oxygenation level-dependent (BOLD) response, 
the voxel size and the signal-to-noise ratio (SNR). How the combination of 
these factors influences our capacity to image cortical columns is unclear. As a 
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result, which voxel size optimizes imaging of cortical columns remains unre-
solved.  

Anatomical studies in humans (Adams	et	al.,	2007;	Horton	et	al.,	1990) and 
invasive optical imaging studies in animals (Bonhoeffer	 and	 Grinvald,	 1991;	
Shmuel	 and	Grinvald,	 2000;	 1996) revealed characteristic organizations of co-
lumnar patterns. The structure and development of such organizations were 
modeled (Erwin	et	 al.,	 1995;	Niebur	and	Wörgötter,	1994;	Rojer	 and	Schwartz,	
1990). In addition, we have good knowledge of the spatial and temporal char-
acteristics of the BOLD response. The BOLD response to prolonged stimuli can 
be approximated as a convolution of a hemodynamic response function with 
stimulus-induced neuronal activity (Boynton	 et	 al.,	 1996;	 Logothetis	 et	 al.,	
2001). The BOLD point-spread function (Chaimow	 et	 al.,	 2016;	 Engel	 et	 al.,	
1997;	Parkes	et	al.,	2005;	Shmuel	et	al.,	2007) is a measure of the spatial spread 
of the BOLD response to a localized neuronal activation. The spread and the 
amplitude of the response depend on the relative contributions of the micro- 
and macro-vasculature to the total signal (Uludağ	et	al.,	2009). These contribu-
tions depend on the magnetic field strength of the MR scanner and on the 
fMRI contrast. Lastly, models of noise in MRI (Krueger	 and	 Glover,	 2001;	 Tri-
antafyllou	et	al.,	2005) explain how SNR and temporal SNR depend on the field 
strength and the voxel volume. All the aforementioned factors contribute to 
and interact in fMRI of cortical columns.  

In a review article, Formisano et al. (2012) discussed these factors and their 
potential relevance to pattern information fMRI applied to responses at the 
resolution scale of cortical columns. In their Figure 2 they show in a schematic 
way how pattern information may depend on voxel size and field strength. 
They pose a number of “…important questions [that] remain unanswered”, 
such as what spatial resolution maximizes pattern information at 3T and 7T, 
whether 7T is better than 3T for revealing pattern information and whether 
the optimal field strength for pattern information depends on the resolution. 

To answer these and similar questions, we combine currently available 
knowledge in a quantitative model of functional imaging of cortical columns. 
We quantify the dependence of measures associated with imaging cortical col-
umns on properties of the columnar pattern, the BOLD point-spread function, 
the voxel size, and the field strength-specific noise characteristics. To this end, 
we build on our previous study (Chaimow	et	al.,	2011), where we developed a 
model of imaging ocular dominance columns in order to investigate the basis 
of multivariate-pattern decoding analysis of cortical columns at 3T.  

In the current study, we model generic isotropic columnar patterns of vary-
ing spatial scale and degree of irregularity. We demonstrate how contrast-to-
noise ratio (CNR) can be determined from the spatial frequency spectrum of 
the columnar pattern, the BOLD point-spread function, the voxel width, and 
noise. We consider physiological noise correlations and explore a variety of 
noise and BOLD point-spread parameters including those typical for 3T GE, 7T 
GE, and 7T SE imaging. We examine different aspects of imaging cortical col-
umns by quantifying the capacity to detect responses and decode the stimulus, 
and the accuracy with which we can reconstruct the spatial pattern of the col-
umns. In addition, we demonstrate how response detection, decoding, and im-
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aging the pattern of cortical columns depend on parameters of the columnar 
pattern and the imaging process. Lastly, we determine optimal voxel widths for 
various patterns of columns imaged using 3T GE, 7T GE, and 7T SE fMRI. 

 
Fig. 1 (previous page) Model overview. In stage 1, columnar maps representing neuronal responses to 
two orthogonal stimulation conditions were generated by spatial filtering of white noise. In stage 2, the 
neuronal response was convolved with a BOLD-fMRI point-spread function. In stage 3, this BOLD re-
sponse map was further transformed into a voxel pattern by simulating k-space sampling. All voxels in 
this pattern create the distribution of differential responses. This distribution is characterized by its 
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standard deviation, which reflects the range of contrasts in the set of imaged voxels (contrast range). In 
stage 4, realistic fMRI noise amplitudes were computed as a function of voxel size. The contrast range 
was divided by the noise level resulting in contrast to noise ratio (CNR). CNR (and the number of voxels) 
determine our likelihood to detect information about the stimulus. In order to evaluate our capacity to 
reconstruct a pattern of cortical columns, we added noise to the voxelized image, then computed the 
correlation between the outcome (voxelized map + noise) and the real pattern (bottom right). 

Methods 

Modeling fMRI of a columnar organization 
We build on a model that we previously developed to study the mechanisms 
underlying fMRI-based decoding of information conveyed in cortical columns 
(Chaimow	et	al.,	2011). Here, the purpose of the model was to analyze the dis-
tribution of voxel-wise differential responses relative to noise in order to opti-
mize data acquisition parameters for detection of differential responses, for 
decoding and for pattern correlation. 

Details of the underlying model have been described previously. All math-
ematical details and derivations with modifications and extensions to the mod-
el (as described below) are presented in the Appendix. Table 1 lists all parame-
ters and their values. Here we briefly describe the structure of the model, and 
the different stages it involves. 

The model (Figure 1) consisted of a stage for creating a columnar pattern, 
a neuronal response stage, a spatiotemporal BOLD response stage and an MRI 
sampling stage. In addition, noise was modeled according to Triantafyllou et 
al. (2005), while taking into account estimation of differential responses ob-
tained from multiple measurements in time (Appendix C). The model followed 
Chaimow et al. (2011), differing only in the following aspects. 

Isotropic patterns of cortical columns 
In Chaimow et al. (2011) we simulated ocular dominance maps. Except for the 
occasional appearance of linear zones in other cortical maps (Shmuel	and	Grin-
vald,	2000), the anisotropic pattern of ocular dominance columns is unique.  In 
order to study generic columnar patterns, we modeled isotropic patterns by 
spatial filtering of Gaussian white noise (Rojer	 and	 Schwartz,	 1990) using an 
isotropic band-pass filter. The filter was parameterized by the main pattern 
frequency !, which determined the width of the columns, and by an irregulari-
ty parameter δ (Fig. 2). The irregularity parameter controlled the distribution 
width of contributing spatial frequency components. The inverse of the main 
pattern frequency is the pattern’s main cycle length, which is twice as long as 
the width of a typical column (defined as the local set of neurons that respond 
preferentially to the same stimulation condition in differential analysis of re-
sponses to two orthogonal stimuli). 
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Fig. 2 Parameterization of patterns of cortical columns. Patterns of cortical columns were modeled as 
spatially band-pass filtered white noise. The filter was parameterized by a main spatial frequency (ρ) that 
controlled the typical diameter of columns, and by the relative width of the band-pass (δ/ρ) controlling 
their irregularity. This figure illustrates the effects of the two parameters on the modeled pattern. It 
shows different patterns resulting from combinations of ρ ∈ {0.25, 0.5, 1.0}  and δ/ρ ∈
{0, 0.25, 0.5, 0.75, 1.0}. 

BOLD point-spread function widths and response amplitudes 
BOLD point-spread function widths of 2.8 mm, 1.02 mm and 0.82 mm full-
width-at-half maximum (FWHM) (Chaimow	 et	 al.,	 2016) and BOLD response 
amplitudes of 5%, 6% and 4% were used for gradient echo (GE) BOLD imag-
ing at 3T, GE imaging at 7T and spin echo (SE) BOLD imaging at 7T, respec-
tively (see Discussion for rational of parameter choices). When not specified 
otherwise, parameters of GE fMRI at 7T were implemented. 

Noise model 
Voxel volume dependent noise was modeled by extending a model from Tri-
antafyllou et al. (2005). We fitted the model to the voxel volume dependent 
measurements of time-course signal-to-noise ratio (tSNR) that Triantafyllou et 
al. (2005) reported for 3T and 7T using a repetition time (TR) of 5.4 s (their 
Figure 5). The fitting was done using a non-linear least squares algorithm 
(Trust-Region, MATLAB, The MathWorks Inc., Natick, MA, USA). It yielded es-
timated parameter values of κ = 6.657 at 3T, κ = 9.9632 at 7T (κ is a field-
dependent constant governing the relationship between voxel volume and im-
age SNR), λ = 0.0129 at 3T and λ = 0.0113 at 7T (λ is a mostly field-
independent constant determining the asymptotic level of physiological noise). 
In order to model noise using different TRs, we implemented a modification of 
the tSNR equation (Chaimow	et	al.,	2011). Gray matter longitudinal relaxation 
constants (T1), necessary for converting between different TRs, were taken 
from Wright et al. (2008) (1.607 s at 3T, 1.939 s at 7T). For all simulations, we 
used a TR of 2 s. 
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Table 1 List of parameters. This table shows a list of all parameters employed by the model together with 
their assigned values. 

Parameter Description Value 
/ side length of simulation grid 24 mm 
0 number of grid points per dimension 512 
! main pattern spatial frequency 1/1.6 mm (default) 
1/! relative degree of irregularity 0.5 (default) 
fwhm678

9:;< point-spread function FWHM, GE at 3T 2.8 mm 
fwhm678

=:;< point-spread function FWHM, GE at 7T 1.02 mm (default) 
fwhm678

=:>< point-spread function FWHM, SE at 7T 0.82 mm 
?9:;<	 amplitude of point-spread function, GE at 3T 5% 
?=:;<	 amplitude of point-spread function, GE at 7T 6% (default) 
?=:><	 amplitude of point-spread function, SE at 7T 4% 
TR	 repetition time 2 s 
0B	 number of measurements (sum of the two condi-

tions) 
1000 (default) 

C	 voxel width no specific value 
D7EFGH	 slice thickness 2.5 mm 
I9:	 image SNR relative to voxel volume at 3T 6.6567 
I=:	 image SNR relative to voxel volume at 7T 9.9632 
J9:	 asymptotic level of physiological noise at 3T 0.0129 
J=:	 asymptotic level of physiological noise at 7T 0.0113 
KL9B	 longitudinal relaxation time constant of gray matter 

at 3T 
1.607 s 

KL=B	 longitudinal relaxation time constant of gray matter 
at 7T 

1.939 s 

M	 time constant of temporal correlations of physiolog-
ical noise 

15 s 

NOHPHGP
QFR  minimal detection probability 80% 
S maximal type I error rate 5% 
Tmin	 minimal pattern correlation 0.7071 = √0.5 
 

tSNR was also adapted to estimate the signal-to-noise ratio of a differential 
response obtained from multiple measurements (Appendix C). Temporal corre-
lations were taken into account while considering thermal and physiological 
noise components separately. Thermal noise was assumed to be independent 
over time. Physiological noise correlations were modeled using an autoregres-
sive model (Purdon	 and	Weisskoff,	 1998). The adapted noise model was then 
used to compute differential multi-measurement SNR. Data for each condition 
was assumed to consist of 500 measurements. 

Derived quantities 

Contrast range and contrast to noise ratio 
We use the term contrast range to characterize the expected differential re-
sponses distributed over voxels. We defined contrast range as the standard de-
viation of the distribution of differential responses obtained from all voxels. 

Contrast range was multiplied with expected differential multi-
measurement SNR, resulting in contrast to noise ratio (CNR). 

In our model, contrast range completely specifies the expected distribution 
of differential responses, which is a normal distribution with zero mean. The 
reason is that modeled differential fMRI responses are the result of multiple 
linear transformations of Gaussian white noise, which were used for creating 
the columnar pattern. Similarly, the expected distribution of differential con-
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trasts relative to noise is a normal distribution with zero mean and standard 
deviation defined by contrast to noise ratio. 

Detection probability 
The differential response of a voxel relative to noise determines the probability 
of univariate detection of this response using the time-course of that voxel 
(Appendix D). 

Percentiles of the distribution of detection probabilities across voxels were 
computed by transforming percentiles of the CNR dependent distribution of 
differential responses relative to noise. Average detection probability across 
voxels was computed by numerical integration over the CNR dependent distri-
bution of differential responses relative to noise. 

Together with the number of voxels, CNR also determines the probability of 
multivariate detection of a condition-specific response from the time-courses of 
a number of voxels (Appendix D). Unless stated otherwise, detection probabili-
ties were computed analytically using formulas derived in Appendix D. Mini-
mally required detection probability was set to 0.8. 

Simulation of multivariate decoding 
Multivariate detection and decoding was simulated as a function of differential 
multi-measurement CNR (assuming 500 volumes for each condition) and 
number of voxels. Single condition response trials of 10 volumes were as-
sumed.  

Each trial’s response was modeled as the sum of a condition specific re-
sponse pattern and noise. The response pattern for condition one was a ran-
dom vector. It was drawn once for each simulation consisting of 100 response 
trials. The vector’s components followed independent normal distributions 
with zero means and standard deviations equal to one half of the differential 
multi-measurement CNR. The response pattern for condition two was the neg-
ative of the response pattern for condition one. This is not a restriction because 
it can be achieved for any data set by mean-centering the data. The noise was 
a random vector, drawn for each response trial. Its components followed inde-
pendent normal distributions with zero means and standard deviations equal 
to one half of the square root of the number of response trials. This assignment 
of response and noise amplitudes ensured that the CNR that can be obtained 
from the difference between the average of all condition one and the average 
of all condition two responses was equal to the specified multi-measurement 
differential CNR. 

As part of a leave-one-out procedure, all simulated responses except for 
one were averaged according to their condition. The left out test trial’s re-
sponse was projected onto the difference between the separately averaged re-
sponses of condition one and condition two. This classification was counted as 
successful if the projection was positive and the test trial was associated with 
condition one or if it was negative and the test trial was associated with condi-
tion two. This procedure was repeated such that each trial served as the test 
trial once and the overall rate of successful classification was computed. 

The entire simulation was repeated 100,000 times, resulting in a distribu-
tion of successful classification rates. In addition, the same simulation was run 
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100,000 times, with the difference that the response pattern was always set to 
zero. These latter simulations served to provide a distribution of successful 
classification rates under the null-hypothesis of no condition specific response. 

Finally, the probability of statistically significant decoding was computed as 
the fraction of the distribution of successful classification rates that was higher 
than the 95 percentile of successful classification rates under the null hypothe-
sis. 

Simulation of multivariate detection 
Multivariate detection was simulated within the same simulations as described 
for simulation of decoding. All simulated responses were averaged according 
to their conditions. The differential response was calculated as the differences 
of these averages. For each simulation, the vector-norm of this response was 
calculated resulting in a distribution of response vector-norms. The same dis-
tribution was calculated with response patterns set to zero, resulting in a dis-
tribution of response vector-norms under the null-hypothesis of no condition 
specific response. 

The probability of detection was computed as the fraction of the distribu-
tion of response vector-norms that were higher than the 95 percentile of vec-
tor-norms under the null hypothesis.  

Pattern correlation 
Pattern correlation describes how similar the imaged pattern is to the real pat-
tern. It was computed as the correlation coefficient between the modeled real 
columnar pattern and the corresponding imaged pattern including noise. We 
added noise to each simulated voxel response by drawing a random number 
from a normal distribution with standard deviation equal to the voxel size de-
pendent noise level (using single-voxel multi-measurement SNR). Before com-
puting the correlation coefficient, the voxel pattern with the added noise was 
interpolated to match the resolution of the modeled real pattern by zero pad-
ding in the spatial frequency domain.  

Minimally required pattern correlation was set to √0.5, so that the coeffi-
cient of determination (TX) was at least 0.5. 

Model Implementation 
The model was implemented using numerical simulations in MATLAB (The 
MathWorks Inc., Natick, MA, USA) on a grid of 512 × 512 evenly spaced 
points, representing a field of view of 24 × 24 mm2.  For each simulation, the 
contrast range estimates were averaged over 32 individual simulations in order 
to increase the accuracy of the results. 

Estimation of optimal voxel size 
Simulating k-space sampling required restricting the spatial frequency repre-
sentation to a voxel size dependent subset of frequencies. Due to the discrete 
nature of the simulation grid, only certain voxel sizes could be simulated. In 
order to estimate the optimal voxel size, 40 different voxel sizes were tested. 
The voxel sizes were spaced less than 0.03 mm apart for voxels of up to 0.6 
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mm in width, less than 0.09 mm apart for voxels of up to 1 mm in width and 
less than 0.3 mm apart for voxels of up to 2 mm in width. The three largest 
tested voxels were 2.4 mm, 3 mm and 4 mm wide. 

Linear functions were fitted to the estimated optimal voxel sizes as a func-
tion of the main cycle length of the columnar organization using MATLAB Sta-
tistics Toolbox (fitlm; The MathWorks Inc., Natick, MA, USA). For the fitting, 
we considered only the range in which detection probability was higher than 
0.8 and pattern correlation was higher than 0.7071. 

Results 

Modeling functional MRI of a columnar organization 
In order to evaluate how well a cortical columnar pattern can be imaged using 
fMRI and to analyze the contributions of different mechanisms, we adapted a 
model of imaging cortical columns (Chaimow	et	al.,	2011). More specifically, we 
modeled the differential responses obtained under two opposing stimulation 
conditions in a set of voxels. We assumed these voxels to be part of a single 2.5 
mm thick slice, parallel to and overlapping with a flat region of cortical gray 
matter. 

Figure 1 illustrates the model and presents one instance of its numerical 
realization.  The model made it possible to vary the spatial frequency and the 
regularity of the columnar pattern (see also Figure 2), the response amplitude, 
the width of point-spread function of the BOLD response and the voxel size of 
the MR measurement. In Figure 1 we used a point-spread function with a full-
width-at-half-maximum (FWHM) of 1.5 mm, a voxel width of 1 mm, an aver-
age columnar pattern cycle length of 1.6 mm (typical	for	orientation	columns	in	
human	V1,	Yacoub	et	 al.,	 2008) and a moderate degree of irregularity. The re-
sults of both the BOLD response stage and the subsequent voxel sampling 
showed condition-specific patterns. Nonetheless, these patterns show some 
loss of fine-scale detail compared to the original columnar patterns. In addi-
tion, following the BOLD response and voxel sampling stages, the functional 
contrasts are relatively small. 

Measures of the quality of imaging a pattern of cortical columns 
We quantified how well a columnar pattern could be imaged using two differ-
ent approaches.  

The first approach was to quantify the successful detection of differences 
between responses to two stimulus conditions. In practice, this detection could 
be carried out as an explicit statistical test or, alternatively, by means of 
demonstrating successful decoding of the stimulus condition from the data us-
ing a classification algorithm. To this end, we estimated the standard deviation 
of the distribution of differential responses as it reflects the dispersion of con-
dition-specific contrasts (e.g., contrast between responses to stimuli with or-
thogonal orientation) in a set of imaged voxels (Figure 1, bottom left). The 
larger this standard deviation, the larger the contrast values that exist in the 
distribution. Throughout the rest of the manuscript, the standard deviation of 
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the distribution of differential functional contrast will be referred to as the con-
trast range. 

The second approach was to quantify the capacity to reconstruct the pattern 
of cortical columns. We measured this capacity by calculating the similarity 
(correlation coefficient) between the underlying columnar pattern and the im-
aged pattern with added noise (pattern correlation; Figure 1, bottom right). 

Measures influenced by voxel size 
We analyzed how measures related to detection, decoding and pattern recon-
struction depend on voxels size through analytical calculations and numerical 
simulations of our model. All simulations in this section assume a columnar 
pattern resembling orientation columns in humans (cycle length = 1.6 mm, 
moderate degree of regularity). Furthermore, we considered noise and BOLD 
point-spread parameters associated with 7T GE imaging (point-spread function 
FWHM = 1.02 mm).  

Contrast range as voxel size dependent integration of power in the frequency 
space 
First, we studied the factors that determine the distribution of differential con-
trast values and contrast range. Using a mathematical formulation of the mod-
el, we derived a relationship between the power spectrum of a columnar pat-
tern and contrast range (Appendix A). When given the power spectrum 
|[(]L, ]X)|X of a columnar fMRI response pattern of size /L × /X, the contrast 
range _ can be calculated as: 

_ = a
L

bcbd
∫ ∫ |[(]L, ]X)|X	d]L

hL/Xi
jL/Xi

hL/Xi
jL/Xi d]L	, 

where	C is the voxel width, and	]Land ]X are coordinates in k-space. 
This relationship gives rise to a simple interpretation of contrast range (Fig. 

3). The power spectrum of a neuronal columnar response pattern characterizes 
the contrast available at each spatial frequency in the original pattern. The 
fMRI response modulates this information by suppressing higher frequencies 
relative to all other frequencies. In the case of a unimodal spatial frequency 
distribution, it transforms the original pattern into a BOLD-fMRI pattern with a 
lower apparent main pattern frequency (0.54 = 1/1.84 cycles/mm relative to 
0.63 = 1/1.6 cycles/mm main pattern frequency; compare vertical lines in 
Figure 3A) and an apparent lower degree of irregularity (not shown). Finally, 
the MRI voxel sampling performs a limited integration in the spatial frequency 
domain, cutting off all components with spatial frequencies higher than what 
the voxel can sample (highest fully sampled frequency equals one over twice 
the voxel width). 

Therefore, when the distribution of spatial frequency components is uni-
modal, the largest increase in this integral with decreasing voxel width is ex-
pected to occur when the integral includes the peak of that distribution (verti-
cal red line in Figure 3B left and right). Accordingly, contrast range, which is 
proportional to the square root of this integral, increases most when reducing 
voxel width to approximately half the cycle length of the apparent main pat-
tern frequency (1.84 mm/2 = 0.92 mm). 
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Fig. 3 Contrast range as integration of spatially filtered pattern components. A The spatial power spec-
trum (in gray; averaged over all directions) of a simulated columnar pattern with a cycle length of 1.6 
mm (ρ=1/1.6) and a moderate degree of irregularity (δ/ρ=0.5). The dotted red curve shows the 
squared BOLD modulation transfer function (MTF; the spatial frequency representation of the BOLD 
point spread function). The BOLD response acts as a spatial filter that modulates the spectrum, resulting 
in the spatial power spectrum of the BOLD response pattern (red curve). The peak of the spectrum (ver-
tical red line) is shifted towards lower frequencies (the vertical gray line shows the peak of the original 
spectrum for comparison). B Contrast range obtained by MRI voxel sampling can be modeled as integra-
tion of contrast in the spatial frequency space. The red curve shows the spatial power spectrum of the 
BOLD response pattern (same as in A). The remaining curves represent the weighting with which voxels 
with width 4 mm (green), 2 mm (purple), 1 mm (orange) and 0.5 mm (blue) integrate the pattern’s 
power spectrum. The gradual fall-off in these weighting curves results from the averaging over all direc-
tions of the two-dimensional rectangular integration area. C Contrast range as a function of spatial fre-
quencies associated with different voxel widths (marked by dots colored as in B). Contrast range is the 
square root of the voxel-size-dependent integral of the BOLD-filtered pattern’s power spectrum. 

Voxel size that optimizes CNR and univariate detection of differential response 
In order to understand the processes involved in optimizing univariate detec-
tion of information represented in columnar patterns, we combined contrast 
range and SNR as a function of voxel size. Time-course SNR characterizes the 
noise level in single measurements from single voxels (Triantafyllou	 et	 al.,	
2005). We adapted this SNR measure by estimating effective noise increases 
due to differential analysis and decreases due to averaging multiple measure-
ments within each condition, taking temporal correlations into account. We 
calculated differential multi-measurement SNR (using 500 measurements for 
each condition, TR = 2 s) and contrast range as a function of voxel width.  

Contrast range decreased with increasing voxel width (Figure 4A, black). It 
sharply fell off with increasing voxel size for voxel width close to 1 mm, which 
is approximately equal to half the apparent columnar cycle length (0.92 mm; 
true cycle length = 1.6 mm). SNR, however, increased with increasing voxel 
width (Figure 4A, orange). The increase in SNR was more gradual than the 
drop of contrast range.  
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Fig. 4 CNR and univariate detection: dependence on voxel size. We simulated fMRI of a columnar pat-
tern with a main cycle length of 1.6 mm (ρ=1/1.6) and intermediate degree of irregularity (δ/ρ=0.5), 
using parameters of 7T GE fMRI. A Contrast range (black curve) and differential multi-measurement SNR 
(in orange) are presented as a function of voxel width. Contrast range is the standard deviation of the 
distribution of differential contrasts sampled by all voxels. Individual voxels differ in contrast. The gray 
bands make it possible to visualize the distributions of contrasts as a function of voxel-width. For each 
voxel width, each band presents the differential responses of 20% of voxels. With increasing voxel width, 
the contrast range decreased while the SNR increased. B Contrast to noise ratio (CNR; the product of 
contrast range and single-voxel SNR) is presented as a function of voxel width (green curve). It reached 
its maximum (at 0.86 mm, dotted line) close to the point where contrast range started to drop (A). The 
distributions of differential responses relative to the noise level obtained from all voxels are presented in 
green bands as a function of voxel width. Each band represents 20% of the voxels. C The probability of 
detecting a differential response in single voxels (univariate analysis) is shown as a function of CNR. For 
each CNR there is a distribution of differential responses relative to the noise level, from we computed 
the corresponding distribution of detection probabilities. This latter distribution is presented in purple 
bands. Each purple band represents 20% of all voxels. The purple curve shows the average detection 
probability computed over the entire distribution of voxels for each CNR value. D CNR as a function of 
voxel width (B) and average univariate detection probability as a function of CNR (C) were combined, 
resulting in average univariate detection probability as a function of voxel width (solid red curve). Simi-
lar to CNR, it reached its maximum for a voxel width of 0.86 (dotted line). 

Contrast range characterizes the distribution of differential responses of a 
set of voxels. Figure 4A also presents the expected distributions of actual dif-
ferential responses (gray bands; each band represents 20% of voxels). 

Next, we multiplied voxel dependent contrast range and differential multi-
measurement SNR in order to obtain contrast to noise ratio (CNR). CNR re-
lates the range of differential contrasts that can be expected in a set of voxels 
to the level of noise in which they are immersed. It also characterized the dis-
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tribution of differential responses relative to noise across voxels. The higher 
the differential response relative to the expected noise in a single voxel, the 
more likely it is that this differential response can be detected using the time 
courses of that voxel. Figure 4B shows CNR as a function of voxel width. It as-
sumed its maximum at a voxel width of 0.86 mm, which is close to half the 
apparent columnar cycle length (0.92 mm, true cycle length = 1.6 mm). 
Again, we visualized the expected distributions of actual differential responses 
relative to noise (Figure 4B; green bands; each band represents 20% of 
voxels). 

The ratio of the differential response in a voxel to the expected noise de-
termines how likely it is to detect this response in the time-course of that 
voxel. We calculated this univariate detection probability assuming a type-I er-
ror rate smaller than 5% (Appendix D). Figure 4C shows the distribution of 
detection probabilities over voxels as a function of CNR (purple bands; each 
band contains 20% of voxels). For low CNR, most of the voxels’ univariate de-
tection probabilities were not higher than the type-I error level of 5%. With 
increasing CNR the detection probability of more and more voxels increased 
and approached 1 eventually. However, even with CNR as high as 10 there was 
still a significant fraction of voxels with low or intermediate detection proba-
bilities. 

In order to evaluate univariate detection across voxels, we calculated the 
probability of detecting a differential response in any voxel given the CNR of 
the entire pattern (not knowing where this voxel’s response lies in the distribu-
tion of responses; Figure 4C; purple curve). This was done by calculating the 
expected value of detection probability with respect to its distribution over 
voxels. As expected, low CNR resulted in low average detection probability. For 
our employed parameters (7T GE imaging, moderately irregular pattern with 
1.6 mm cycle length) a differential multi-measurement CNR of 7.67 was need-
ed in order to achieve an average detection probability of 80%. 

Having studied how CNR depends on voxel width and how univariate de-
tection probability depends on CNR, we were able to combine both stages in 
order to analyze the dependence of univariate detection probability on voxel 
width. Figure 4D shows univariate detection probability (across voxels) as a 
function of voxel width. Like CNR, it assumed its maximum at a voxel width of 
0.86 mm. The resulting detection probability was 45%. 

Voxel size that optimizes multivariate detection and decoding 
In multivariate analysis of fMRI data, information from individual responses in 
multiple voxels is combined. As a result, the probability to detect a multivari-
ate response depends on the differential responses of individual voxels (whose 
distribution depends on CNR) as well as the number of available voxels (Ap-
pendix D). Figure 5A shows multivariate detection probability as a function of 
CNR and number of voxels.  

An alternative approach to multivariate analysis is to train an algorithm on 
a subset of the data with the goal to classify (decode) the stimulation condition 
of an unseen separate subset of the data. A high rate of successful decoding 
would indicate the presence of stimulus specific responses in the data. 
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We simulated linear classification of responses in a pattern of cortical col-
umns as a function of CNR and number of voxels. We then calculated the 
probability of obtaining a rate of successful decoding higher than that obtained 
by chance, assuming a type-I error rate smaller than 5%. The probability of 
significant decoding (Figure 5A right, purple circles) was very similar to the 
probability of multivariate detection (Figure 5A right, green curves). This simi-
larity increased with increasing number of voxels. Therefore, for the remainder 
of the study, we used multivariate detection probability as a single measure for 
optimizing multivariate analysis of fMRI data. 

In analogy to univariate detection, we combined our findings on CNR as a 
function of voxel width, our analytical formula of multivariate detection prob-
ability as a function of CNR and the number of voxels to calculate multivariate 
detection as a function of voxel width. Note that we assumed a fixed area of 
cortex to image from. Therefore, the number of available voxels decreased 
with increased voxel width. 

Figure 5B shows multivariate detection probability as a function of voxel 
width. Multivariate detection probability was numerically indistinguishable 
from 1 across a range of voxel widths (0.35 mm – 1.2 mm). We defined the 
optimal voxel width to be the average over this range, which was 0.78 mm. 

 
Fig. 5 Multivariate detection and decoding: dependence on voxel size. A Multivariate detection and de-
coding as a function of CNR and number of voxels. We simulated multivariate detection and decoding 
from 1,000 volumes, assuming response patterns with a given differential multi-measurement CNR and a 
given number of voxels. From these simulations we calculated the probability of statistically significant 
multivariate detection (green circles, left) and decoding (purple circles, right) assuming a type 1 error 
not higher than 5% (p<0.05). In addition, we used analytical formulas to calculate multivariate detec-
tion probability directly (green curves in the two panels of A). Multivariate detection probability was very 
similar to the probability of decoding. B CNR as a function of voxel width (Figure 4B) and multivariate 
detection probability as a function of CNR and number of voxels (A) were combined, resulting in multi-
variate detection probability as a function of voxel width (green curve). The multivariate detection prob-
ability had a broad peak for a range of voxel widths (0.35 mm – 1.2 mm) whose mean was 0.78 mm 
(vertical line). 

Voxel size that optimizes reconstruction of a pattern of cortical columns 
In order to understand the factor underlying the emergence of optimal voxel 
size for reconstruction of a columnar pattern, we calculated the correlation be-
tween an imaged pattern and its true underlying pattern as a function of voxel 
width. 
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Figure 6A shows pattern correlation for an idealized noiseless measurement 
together with differential multi-measurement SNR as a function of voxel 
width. Similar to the contrast range in Figure 4A, the noiseless pattern correla-
tion decreased with increasing voxel width and fell of very fast when the voxel 
width became larger than half the apparent columnar cycle length (0.92 mm; 
true cycle length = 1.6 mm). 

Unlike CNR, pattern correlation cannot be decomposed into a product of 
SNR and a noiseless measure of contrast. Nonetheless, the noiseless pattern 
correlation and the SNR curves illustrate the two antagonistic factors for opti-
mal voxel size for pattern correlation of imaged patterns containing realistic 
noise. 

Figure 6B presents pattern correlation incorporating realistic noise, as a 
function of voxel width for varying numbers of measurements (nT). The num-
ber of measurements had a small influence on the optimal voxel width by re-
ducing the level of noise. This caused pattern correlation to become more simi-
lar to the ideal noiseless pattern correlation curve, leading to decreases in op-
timal voxel width. However, the differences of optimal voxel width for differ-
ent numbers of measurements were too small to be practically relevant. The 
optimal voxel width when using 1000 measurements was 0.67 mm, considera-
bly smaller than half the apparent cycle length (0.92 mm) and smaller than 
half the true cycle length (1.6 mm/2 = 0.8 mm). 

 
Fig. 6 Reconstruction of a pattern: dependence on voxel size. We simulated fMRI of a columnar pattern 
with a main cycle length of 1.6 mm (ρ=1/1.6) and intermediate degree of irregularity (δ/ρ=0.5), using 
parameters of 7T GE fMRI. A The correlation between imaged patterns (simulated without measurement 
noise) and the real pattern (pattern correlation; black) is shown as a function of voxel width. The orange 
curve shows the differential multi-measurement SNR as a function of voxel width. With increasing voxel 
width, the noise-less pattern correlation decreased while the SNR increased. B The correlation between 
imaged patterns (with added measurement noise) and the real pattern is shown as a function of voxel 
width for different number of measurements. Optimal voxel width decreased with increasing number of 
measurements.  The voxel width that optimized pattern correlation for 1,000 measurements was 0.67 
mm (vertical dotted line).  
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Summary: optimal voxel widths for detection, decoding and reconstruction 
In summary, for a columnar pattern resembling orientation columns in humans 
(cycle length = 1.6 mm, with moderate degree of regularity) and imaging pa-
rameters associated with 7T GE imaging, the voxel width that optimized the 
reconstruction of a columnar pattern (0.67 mm) was smaller than the voxel 
width that optimized univariate detection of responses from that pattern (0.86 
mm). The voxel width that optimized multivariate detection of condition-
specific information was in-between (0.78 mm), although a wide range of 
voxel widths resulted in very similar multivariate detection probabilities. 

 
Fig. 7 Optimal voxel size as a function of the pattern’s main cycle, regularity and BOLD point-spread. The 
plots show the voxel widths that maximized univariate detection, multivariate detection and decoding, 
and pattern correlation as a function of the main cycle length of the columnar pattern (1/ρ; horizontal 
axes) and relative pattern irregularity (δ/ρ; vertical axes) for three different BOLD point-spread function 
widths. The simulated BOLD response and the noise corresponded to 7T GE imaging. 
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Fig. 8 Maximally obtainable detection probabilities and pattern correlations using optimal voxel sizes as 
a function of features of the pattern’s main cycle, regularity and BOLD point-spread. The plots show the 
average univariate detection probability (pOHPHGP

lRF,mno), the multivariate detection and decoding probability 
(pOHPHGP

QlEPF,mno), and pattern correlation that could be obtained (using the optimal voxel sizes from Figure 7) 
as a function of cycle length of the columnar pattern (1/ρ; horizontal axes) and relative pattern irregular-
ity (δ/ρ; vertical axes) for 3 different BOLD point-spread function widths. The BOLD response and the 
noise corresponded to 7T GE imaging. 

Dependence of optimal voxel width on columnar pattern organization 
and BOLD point-spread width 
So far we have shown how functional contrast, the probability to detect a dif-
ferential response and the capacity to reconstruct a columnar pattern depend 
on voxel size and how the optimal voxel width emerges. Next, we estimated 
how optimal voxel width changes as a function of the spatial organization of 
the pattern and as a function of the BOLD point-spread function. 

We calculated univariate and multivariate detection probability and pattern 
correlation as a function of voxel width by repeating the simulations presented 
in the previous section (Figures 4D, 5B and 6B) while varying the main pattern 
frequency, the regularity of the pattern and the width of the BOLD point-
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spread function. We considered BOLD response amplitude and noise that cor-
responded to GE fMRI at 7T. From these simulation results, we determined the 
voxel widths that optimized univariate and multivariate detection probability 
and pattern correlation for each combination of pattern parameters and BOLD 
point-spread width (Figure 7). We also computed the univariate and multivari-
ate detection probability and pattern correlation that can be obtained by these 
optimal voxel widths (Figure 8). However, in order to better understand the 
effect that pattern frequency, pattern regularity and BOLD point-spread width 
had, we considered regular, moderately irregular and irregular patterns sepa-
rately (Figure 9). In addition, we estimated minimum cycle lengths below 
which average detection probability would be smaller than 0.8 or pattern cor-
relation would be smaller than 0.7071 (corresponding to R2=0.5). For regular 
patterns, optimal voxel widths for univariate detection as well as for recon-
struction were close to half the columnar cycle length, while optimal voxel 
widths for multivariate detection were slightly smaller (Figure 9; row 1). Fur-
thermore, optimal voxel widths for regular patterns were relatively independ-
ent of the BOLD point-spread function width. 

Moving to moderately irregular (Figure 9; row 3) and irregular patterns 
(Figure 9; row 5) we observed multiple effects. First, compared to regular pat-
terns, optimal voxels for univariate and multivariate detection and reconstruc-
tion were less dependent on the columnar cycle length.  

As a result, very short cycle lengths resulted mostly in wider optimal voxel 
widths (more similar to optimal voxel widths for longer cycle lengths) com-
pared to regular patterns. This effect increased with increasing BOLD point-
spread width. Note that the shortest cycle lengths of very regular patterns do 
not follow this trend (Figure 9; row 1, column 1). However, their optimal voxel 
widths are not practically relevant as their associated detection probabilities 
are virtually zero. 

In contrast to short cycle lengths, optimal voxel widths for long cycle 
lengths in univariate detection and reconstruction decreased when going to 
more irregular patterns. For multivariate detection, optimal voxel widths in-
creased for both long and short cycle lengths compared to regular patterns.  

Maximally obtainable detection probabilities and pattern correlations in-
creased continuously with increasing cycle length (Figure 9; rows 2, 4 and 6). 
In the case of univariate detection and reconstruction, these increases became 
slightly more gradual with increasing irregularity. Multivariate detection prob-
ability transitioned rather abruptly as a function of cycle length for all levels of 
irregularity.  

Lastly, with increasing irregularity, the cycle length associated with univari-
ate detection probability of 0.8 and pattern correlation of 0.7017 increased 
slightly, while the cycle length associated with multivariate detection probabil-
ity of 0.8 decreased. This shows that the presence of irregularities facilitates 
the multivariate detection of information represented by the pattern while at 
the same time it makes it more difficult to reconstruct that pattern accurately. 
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Fig. 9 Dependence of the optimal voxel size on the pattern’s main cycle, regularity and BOLD point-
spread. This figure highlights a subset of the simulation results presented in Figures 7 and 8. Optimal 
voxel widths and maximally obtainable univariate and multivariate detection probability and pattern 
correlation are shown as a function of the main cycle length for regular (top), moderately irregular 
(middle) and irregular (bottom) patterns. Simulation results obtained with different point-spread widths 
are color coded. The optimal voxel width for regular patterns is close to half the cycle length (compare to 
diagonal black dashed lines). Color coded vertical dashed lines show the minimal main cycle length for 
which detection probability of at least 0.8 or pattern correlation of at least 0.7071 could be achieved. 
Results for shorter cycles are plotted as dotted lines. 
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Magnetic field-strength and pulse sequence dependent differences 
Thus far, we have analyzed the dependence of optimal voxel sizes and the re-
sulting detection probabilities and pattern correlations on parameters related 
to the pattern and the MRI measurement process. fMRI at different magnetic 
field strengths differs with respect to several of these parameters. To assess the 
implications of these differences between fMRI at ultra-high magnetic field 
(7T) and a more standard magnetic field (3T), we varied field strength specific 
parameter settings individually and collectively. For 7T we also compared spin 
echo BOLD imaging (SE) to gradient echo BOLD imaging (GE). 

There are three main magnetic field strength dependent factors with re-
spect to fMRI of cortical columns. These are the amplitude of the BOLD re-
sponse, the spatial width of the BOLD response, and the voxel size-dependent 
characteristics of noise. For each factor we calculated univariate and multivari-
ate detection probability and pattern correlation as a function of voxel width. 
To this end, we repeated the simulations used for presenting Figures 4D, 5B 
and 6B while varying the parameters associated with each of the three factors. 

Varying the response amplitude and BOLD point spread width 
The first factor, response amplitude, is the relative signal change evoked by a 
specific neuronal event. It has been shown that GE response amplitude slightly 
increases at higher field strength and that it is higher than SE response ampli-
tude (Hennig	et	al.,	2003;	Yacoub	et	al.,	2001;	2005). Our response amplitudes 
characterize the BOLD response one would expect from a hypothetical spatial-
ly extended neuronal response, maximally selective for one stimulus condition. 
Here we used response amplitudes of 4% (7T SE), 5% (3T GE) and 6% (7T 
GE) (see Discussion for rationale of parameter choices). The upper row of Fig-
ure 10 shows univariate and multivariate detection probability and pattern 
correlation as a function of voxel width for all three amplitudes. Noise charac-
teristics and point spread width were held constant (7T noise and 1.02 mm 
respectively). All measures benefited from higher responses. The largest in-
crease could be observed for univariate detection (0.30 for 4%, 0.45 for 6% 
response). The optimal voxel size remained constant for univariate and multi-
variate detection. Higher responses did not change the voxel size that opti-
mized univariate or multivariate detection, which could be expected since the 
underlying CNR scales with response amplitude independent of the voxel size. 
Optimal voxel size for pattern correlation was slightly lower for the highest re-
sponse amplitude (0.67 mm for 6% response) compared to the other two re-
sponse amplitudes (0.71 mm for 4% and 5% response). 

The second factor is the width of the BOLD point-spread function. The 
BOLD point-spread function acts as a spatial low pass filter. Therefore, the ef-
fect of this factor will depend on the spatial properties of the columnar pat-
tern. Here, we again used a pattern that resembles the properties of orienta-
tion columns in V1 (columnar cycle length = 1.6 mm). 
  



 163 

 
Fig. 10 Magnetic field strength and pulse sequence dependent effects. The BOLD response amplitude, 
BOLD point spread width and noise are different for fMRI at different field strength and different pulse 
sequences. Univariate and multivariate detection probability and pattern correlation are presented as a 
function of voxel width while varying these contributing factors. Vertical dashed lines show the optimal 
voxel widths. A Effect of response amplitude. Univariate and multivariate detection probability and pat-
tern correlation are shown as a function of voxel width using BOLD response amplitudes of 4% (7T SE; 
blue), 5% (3T GE; red) and 6% (7T GE; violet); all other factors were held constant (BOLD point-spread 
function FWHM=0.8 mm, 7T noise). Higher response amplitude obtained with GE fMRI at 7T led to in-
creases in univariate detection probability. It increased multivariate detection probability and pattern 
correlation only moderately. B Effect of point-spread width. Univariate and multivariate detection proba-
bility and pattern correlation are shown as a function of voxel width using a BOLD point-spread FWHM 
of 0.82 mm (7T SE; blue), 1.02 mm (7T GE; violet) and 2.8 mm (3T GE; red); all other factors were held 
constant (response amplitude of 4%, 7T noise). The wide point-spread of 3T GE led to dramatic decreas-
es in all 3 measures, and to increases in optimal voxel width (dashed lines). C Effect of noise. Univariate 
and multivariate detection probability and pattern correlation are shown as a function of voxel width for 
7T noise (blue) and 3T noise (red); all other factors were held constant (response amplitude of 4%, 
BOLD point-spread function FWHM=0.8 mm). The noise characteristics at 7T relative to 3T caused in-
creases in univariate detection probability, and moderate increases in multivariate detection probability 
and pattern correlation. D All effects combined. Univariate and multivariate detection probability and 
pattern correlation are presented as a function of voxel width for imaging with 7T SE (blue), 7T GE (vio-
let) and 3T GE (red). Univariate and multivariate detection probability and pattern correlation were 
dramatically lower at 3T GE relative to 7T SE and 7T GE. 
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The second row of Figure 10 shows univariate and multivariate detection 
probability and pattern correlation as a function of voxel width for narrow 
BOLD point-spread function width (FWHM = 0.82 mm, for 7T SE imaging), 
intermediate BOLD point-spread function width (FWHM = 1.02 mm, for 7T 
GE imaging) and wide BOLD point-spread function width (FWHM = 2.8 mm, 
for 3T GE imaging). Noise characteristics and response amplitude were held 
constant (7T noise and 4% respectively). The widest point spread (3T GE, 
FWHM = 2.8 mm) resulted in dramatic reductions in all three measures, mak-
ing detection or reconstruction virtually impossible. For the other two point 
spreads, the slightly narrower point spread of 7T SE (0.82 mm) compared to 
that of 7T GE (1.02 mm) resulted in an increase in univariate detection proba-
bility from 0.45 to 0.59 with no change in optimal voxel width. It had no effect 
on multivariate detection probability which was 1 in either case. Pattern corre-
lation increased from 0.80 (7T GE point spread) using a voxel width of 0.67 
mm to 0.90 (7T SE point spread) using a voxel width of 0.63 mm.  

The third field-dependent factor is the noise characteristics associated with 
different magnetic field strengths. The third row of Figure 10 shows univariate 
and multivariate detection probability and pattern correlation as a function of 
voxel width for 3T noise compared to 7T noise (noise	model	from	Triantafyllou	
et	al.,	2005). Compared to 3T noise, 7T noise resulted in increases of all three 
measures, in a manner comparable to those obtained by increasing the re-
sponse amplitude. The largest increase could be observed for univariate detec-
tion probability (0.33 to 0.45 at voxel widths of 0.92 and 0.86, respectively). 
Pattern correlation increased from 0.73 (optimal voxel width 0.71 mm) to 0.80 
(optimal voxel width 0.67 mm). Optimal achievable multivariate detection 
probability remained 1. 

In a last step, we combined all three factors in order to estimate the overall 
differences between different field strengths. The fourth row of Figure 10 
shows univariate and multivariate detection probability and pattern correlation 
as a function of voxel width for 3T (5% response amplitude, 2.8 mm BOLD 
point-spread function width, 3T noise), 7T GE (6% response amplitude, 1.02 
mm BOLD point-spread function with, 7T noise) and 7T SE (4% response am-
plitude, 0.82 mm BOLD point-spread function with, 7T noise). 

Combining all factors, all measures were considerably reduced at 3T GE 
compared to 7T GE and 7T SE. While response amplitude and noise contribut-
ed to this difference, the dominating factor was the width of the BOLD point-
spread function. 7T GE and 7T SE showed very similar detection probabilities 
and pattern correlations. It appeared that SE’s advantages due to a narrower 
point-spread width and disadvantages due to a lower response amplitude can-
celled each other out. 7T GE had a slight advantage in univariate detection 
(detection probability 0.45 for 7T GE, 0.44 for 7T SE), while 7T SE was better 
at reconstruction (pattern correlation 0.84 for 7T SE, 0.80 for 7T GE). For our 
employed pattern parameters (intermediate irregularity and 1.6 mm cycle 
length) there was no detectable difference in optimal voxel widths between 7T 
GE and 7T SE imaging for any of the three measures.  
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Fig. 11 Optimal voxel size as a function of the main cycle of the columnar pattern for 3T GE, 7T GE and 
7T SE BOLD imaging. Optimal voxel widths and maximally obtainable univariate and multivariate detec-
tion probabilities and pattern correlation are shown as a function of the main cycle length of the colum-
nar pattern for 3T GE (top), 7T GE (middle) and 7T SE (bottom) BOLD imaging. Simulation results for 
different levels of irregularity are presented in color code. Color coded vertical dashed lines mark the 
shortest cycle lengths associated with detection probabilities of at least 0.8 or pattern correlation of at 
least 0.7071. Results for shorter cycle lengths are plotted as dotted lines. For main cycle length longer 
than these thresholds, the optimal voxel widths vary approximately linearly with cycle length. The opti-
mal voxel width for regular patterns is close to half the cycle length (compare to the diagonal dashed 
black lines). The parameters obtained from linear fits to these simulation results are presented in Table 2 
as recommendations for optimal voxel size in different scenarios.  
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The dependence of optimal voxel widths using 3T GE, 7T GE and 7T SE 
on the pattern of cortical columns 
Lastly, we generated a number of scanner and pulse sequence dependent simu-
lations. We estimated optimal voxel widths, univariate and multivariate detec-
tion probabilities and pattern correlations that resulted from these voxel 
widths for each combination of pattern parameters (cycle length and irregular-
ity) under three different scenarios: 3T GE, 7T GE and 7T SE imaging. The im-
aging scenarios determined BOLD point-spread function width, BOLD ampli-
tude and noise characteristics. 

We present results for three different levels of irregularity (Figure 11). Op-
timal voxel widths as a function of cycle length appeared approximately linear 
for cycle lengths longer than that associated with the defined detection thresh-
olds (Figure 11; first column).  

We fitted linear functions to these optimal voxel curves. The estimated co-
efficients made it possible to predict optimal voxel widths as the sum of a min-
imum voxel width and a cycle length dependent part (Table 2). 

Discussion 

Validity of our model and results 

Model of cortical columns 
We modeled columnar patterns as band-pass filtered spatial white noise. This 
results in spatial frequency spectra that are directly determined by the band-
pass filter shape (Appendix B). The resulting frequency spectra consist of a 
main spatial frequency and a range of normally distributed frequency compo-
nents that contribute to the irregularity of the pattern. This model is based on 
the assumption that on average, columns have a specific size and distance be-
tween each other, and that their structure shows some degree of random varia-
tion. (Rojer	and	Schwartz,	1990) demonstrated that such a model accounts for 
realistic cortical columns by comparing modeled patterns and their power 
spectra to patterns of orientation columns in monkey V1 (see	also	Obermayer	
and	Blasdel,	1993).  

In theory, patterns of columns may have a multimodal frequency distribu-
tion. Multimodal distributions will be associated with columnar structures of 
multiple scales. However additional components with spatial frequency signifi-
cantly different than that of the main frequency of the organization may not be 
relevant to the local characterization of cortical columns. For example, the ra-
dial bias (overrepresentation	 or	 enhanced	 responses	 to	 an	 oriented	 grating	 in	
cortical	sites	that	are	retinotopically	radial	to	the	center	of	the	visual	`ield	along	
that	orientation;	Sasaki	et	al.,	2006) or the oblique effect (overrepresentation	of	
cardinal	 orientations;	 Furmanski	 and	 Engel,	 2000) manifest themselves as an 
additional low spatial frequency component of the columnar organization. Alt-
hough various frequency distributions are conceivable as models for columnar 
patterns, a normal distribution similar to the one used in our model appears to 
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be a good approximation to the distribution around the main frequency of the 
organization (Yao et al., 2016). 

We have shown that contrast range is completely determined by the voxel 
width dependent integral of the spatial power spectrum of the BOLD response 
pattern (Figure 3; Appendix A). Furthermore, the BOLD response, modeled as 
a convolution of the pattern of neuronal responses with a BOLD PSF in the im-
age space, is equivalent to a spatial frequency dependent multiplication in the 
spatial frequency space. As a result, if we consider the features of the neuronal 
columnar organization, contrast range depends only on the spatial power spec-
trum of the columnar pattern, not on its phase. 

Detection and decoding probabilities depend on contrast range and the 
number of voxels (Figures 4-5; Appendix D). Their derivation assumes that MR 
measured differential responses follow a normal distribution. In our model, the 
distribution of neuronal responses follows a normal distribution, because the 
pattern of neuronal response is a convolution of Gaussian white noise with a 
linear filter. The distribution of BOLD responses follows a normal distribution 
too, because it is modeled as a convolution (a linear transformation) of the 
neuronal response with a BOLD PSF.  

These conditions are likely to apply not only in our model, but also in 
measured responses. First, differential neuronal responses follow an approxi-
mate symmetric distribution, with a mode near zero, and density that com-
monly decreases with increasing distance from zero. Then in practice, the con-
volution with a BOLD PSF is local averaging over space, which according to 
the central limit theorem, is expected to result in BOLD responses that by de-
fault approach a normal distribution even more than the neuronal responses 
do. 

All this implies that very different columnar patterns will result in the same 
detection and decoding probabilities as long as their spatial power spectra are 
identical. This makes our detection and decoding results depend only on the 
spatial power spectrum of columnar patterns independent of the specific mod-
el that simulated them or whether they were obtained empirically. 

2D functional MRI of a flat cortical region 
Our model assumes that fMRI data were acquired from a slice that overlapped 
tangentially with a flat region of cortical gray matter whose thickness was sim-
ilar to the thickness of the visual cortex (2.5 mm). This approach has been suc-
cessfully implemented in several studies of columnar imaging from V1 (Cheng	
et	al.,	2001;	Goodyear	and	Menon,	2001;	Shmuel	et	al.,	2010;	Yacoub	et	al.,	2008;	
2007). Still, it poses limitations on the area of interest and on the cortical 
anatomy of subjects.  

A more general approach would consider curved cortex as well as arbitrary 
positions and orientations of voxels relative to the cortex. As a result, partial 
volume effects could cause voxels to partially overlap with tissue outside of the 
gray matter, including the white matter and cerebrospinal fluid. This would 
lead to reductions in the response amplitude and proportional reductions in 
the CNR. Such effects can be minimized when voxels are sufficiently small so 
that one can select voxels whose volume overlaps largely with gray matter.  
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In addition, arbitrarily oriented voxels influence the alignment of the voxel 
integration functions relative to the cortical manifold, affecting the sampling of 
the columnar pattern. In three dimensions, the orientation of individual voxels 
can vary parallel to the plane of the cortical manifold (i.e. rotations around the 
normal vector of the cortical manifold). Such variations are likely to have no 
substantial effect when considering isotropic columnar patterns. Additional 
variations of orientation relative to arbitrary axes may affect local sampling, 
but there is no reason to assume that such variations would systematically re-
sult in either increases or decreases of spatial sampling frequencies relative to 
the columnar pattern. 

Lastly, a curved cortex would cause differences in column-to-column dis-
tances along the pial surface of the cortex compared to distances along the 
gray matter/white matter boundary. In general, a curved cortex can be viewed 
as local compressions and dilations of columnar map representations within 
the gray matter. Assuming that compressions are as likely as dilations, we can 
expect the resulting local changes of columnar cycle length to cancel out on 
average, but to also introduce a certain blurring in voxels that integrate over 
layers with different degrees of dilation and compression. 

In summary, we believe that our results are approximate estimates for the 
scenario of arbitrary voxel orientations and sampling of curved cortex. It is 
however possible, that under these circumstances, detection, decoding perfor-
mance, and reconstruction quality are somewhat reduced, and that optimal 
voxels will be somewhat smaller in order to reduce effects related to partial 
volume and curved cortex.  

Modeling the BOLD response as a convolution with a Gaussian independent of 
cortical site 
We assumed that the BOLD response is linear with respect to the underlying 
neuronal activity and that its spatial profile can be modeled as a convolution of 
the neuronal response with a Gaussian point-spread function (PSF) which is 
invariant to the cortical site. This approach is supported by several empirical 
results. Boynton et al. (1996) showed that the temporal BOLD response to 
temporally long stimuli is linear in time. Logothetis et al. (2001) confirmed 
this linearity in time, and demonstrated a linear relationship between neuronal 
responses and the BOLD response. Hansen et al. (2004) reported spatial linear-
ity by using a set of different visual stimuli.  

It has been proposed (Kriegeskorte et al., 2010) and demonstrated (Poli-
meni et al., 2010) that the BOLD response depends on the cortical site, sug-
gesting that it is more complex than a convolution with a single prototypical 
Gaussian. The spatial extent and the magnitude of the response may vary due 
to local variations in vascular geometry. As a consequence, a convolutional 
model with a single Gaussian function could only be an approximating simpli-
fication. However, for patterns of cortical columns with a relatively high spatial 
frequency, such as ocular dominance and orientation columns in V1, and col-
umns for axis of motion in area MT, the only currently feasible approach is that 
of differential imaging. Differential imaging substantially reduces blood vessel 
responses, making the BOLD response more homogeneous parallel to the cor-
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tical manifold. Indeed, our own results (Chaimow et al., 2016) suggest that 
differential fMRI of cortical columns can be modeled as a convolution of neu-
ronal activity with a Gaussian invariant to the cortical site. Therefore, model-
ing the spatial BOLD response as a Gaussian PSF is a useful approximation for 
comparing fMRI contrasts, quantitative modeling, interpretation, and planning 
of high-resolution fMRI studies.  

We expect random variations in local vascular geometry to be more sub-
stantial for veins and venules rather than capillaries, because of their respec-
tive densities. Consequently, responses measured with GE fMRI at ultra-high 
field or at lower magnetic field strengths are more sensitive to responses from 
larger pial veins, and will be more affected by these local variations. As a re-
sult, GE BOLD imaging at 7T does not only suffer from a slightly wider point-
spread function than SE BOLD at the same field strength, but it is also subject 
to responses from draining veins if these are present.  

Here, we did not model the influence of larger blood vessels. We have pre-
viously demonstrated that they can carry informative functional contrast 
(Shmuel et al., 2010). Therefore, when the region of interest contains voxels 
affected by larger blood vessels, CNR and detection of differential responses 
using GE at 7T does not necessarily need to be compromised. However, the 
measured BOLD pattern may be substantially distorted relative to the underly-
ing neuronal organization. 

Choice of point-spread function parameters and applicability to non-BOLD fMRI 
Engel et al. (1997) estimated the BOLD point spread width as 3.5 mm 
(FWHM) at 1.5T. (Parkes	et	al.,	2005) reported a point spread of 3.9 mm for GE 
fMRI at 3T. Using GE imaging at 7T, (Shmuel	et	al.,	2007) measured 2.34 mm 
wide PSF, and due to confounding effects, estimated that the PSF is smaller 
than 2 mm. These previous estimates did not account for the spread of the 
neuronal response due to the receptive field size and scatter in area V1. There-
fore, they estimated the capacity of the BOLD response to resolve retinotopic 
representations, but not the capacity to resolve responses of cortical columns. 
To address the latter, we have estimated point-spread function widths by fitting 
a model of imaging columns to ocular dominance responses from V1 
(Chaimow	et	al.,	2016). The FWHM for GE and SE fMRI at 7T is 1.02 mm and 
0.82 mm, respectively. Based on these results we also derived an estimate for 
the FWHM of the PSF of GE BOLD fMRI at 3T GE (2.8 mm). 

Response amplitudes can vary between subjects, stimuli and imaged area. 
According to a review by Hennig et al. (2003), BOLD response amplitudes de-
pend only moderately on magnetic field strength. Yacoub et al. (2001) report-
ed average response to a visual stimulus of 2.86% at 4T (GE) and 3.73% at 7T 
(GE). The ratio of GE and SE BOLD fMRI amplitude obtained at 7T from the 
gray matter is 1.29 (Yacoub	et	al.,	2005). We recently estimated the median re-
sponse from ocular dominance column responses averaged across left and 
right eye stimulation as 3.1% for GE and 2.0% for SE (7T; average from two 
subjects; Chaimow et al., 2016). According to our model, this averaged re-
sponse is expected to be one half of the maximum response amplitude, defined 
as the maximally selective response for one stimulus condition. Guided by 
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these findings, we set the maximal response amplitudes of our model to 5% for 
3T GE, 6% for 7T GE and 4% for 7T SE. 

Our choice of parameters is motivated by the current common use of high-
field BOLD fMRI for imaging columns. Nonetheless, our model can be applied 
to any fMRI contrast whose spatial responses can be approximated by a point-
spread function of known shape and width. 

Measures for evaluating the quality of imaging a pattern of cortical col-
umns 
In order to quantify the quality of imaging a pattern of cortical columns, we 
implemented four different measures: the probability of univariate detection of 
a response, the probability of multivariate detection of a response, the proba-
bility of statistically significant decoding of a stimulus condition from a re-
sponse pattern and the correlation between the true columnar pattern and the 
measured response pattern. These four measures can be grouped into two clas-
ses, according to the possible objectives which one might have when imaging 
and analyzing a columnar structure.  

The first three measures (univariate detection probability, multivariate de-
tection probability and probability of statistically significant multivariate de-
coding) evaluate whether the features of the columnar pattern and the data-
acquisition parameters make it possible to detect differences between respons-
es to two different stimuli that represent a specific dimension (such as ocular 
dominance or preferred orientation). These responses can either be considered 
voxel by voxel (univariate detection) or as multi-voxel patterns (multivariate 
detection and multivariate decoding). 

Historically, single voxel detection by means of the univariate approach has 
been the dominant method of fMRI analysis. An early study (Menon	 et	 al.,	
1997) identified single voxels within human V1 that responded with a higher 
amplitude to stimulating one eye relative to the other. Based on previous stud-
ies in primates (e.g.	Ts'o	et	al.,	1990), this feature should represented in ocular 
dominance columns. Therefore, stimulus specific responses of a columnar or-
ganization are not necessarily confined to single voxels. Instead, we can expect 
a distribution of single-voxel differential responses: some may respond posi-
tively, some negatively and others may not respond at all.  

Multivariate techniques consider the entire pattern as a single high-
dimensional response, combining all available information. Furthermore, their 
multivariate response estimates can benefit from spatially uncorrelated noise 
components. For these reasons, multivariate techniques outperform univariate 
analysis and should be the method of choice for detecting differences between 
responses to stimuli organized in a columnar pattern. 

Furthermore, in the multivariate case, detection is not necessarily part of 
an explicit statistical test. It is more common to train a classification algorithm 
on a subset of the data in order to “decode” the stimulus condition from the 
rest of the data. However, successful decoding is evidence that the data shows 
condition specific responses. 

Note that in both cases, detection and decoding, the objective is to test 
whether the responses carry information on the studied dimension of the stim-
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ulus (e.g., stimulated eye, orientation etc.). In other words, the objective is to 
test whether there is a statistical dependence between the specific stimuli and 
the corresponding responses (Kriegeskorte	and	Bandettini,	2007). Such statisti-
cal dependence can be evaluated in two directions, e.g. different stimuli cause 
different responses (= classical statistical analysis, e.g. GLM) and different re-
sponses are associated with different stimuli (= ‘decoding’) (Kriegeskorte	and	
Bandettini,	2007). Indeed, in our simulations, the probability to detect a multi-
variate response and the probability to achieve a statistically significant classi-
fication/decoding performance were virtually identical. 

The forth measure (pattern correlation) evaluates to which extent the fea-
tures of the columnar pattern and the data-acquisition parameters make it pos-
sible to accurately reconstruct the spatial structure of the columnar pattern. 
Under this objective, i.e. to reconstruct the pattern of cortical columns, it is not 
sufficient to show that information is encoded in a set of voxels; instead, the 
spatial structure of this information (the pattern of cortical columns) is of in-
terest. Examples of this approach include successful imaging of ocular domi-
nance columns in human V1 (Cheng	 et	 al.,	 2001;	 Goodyear	 and	Menon,	 2001;	
Yacoub	et	al.,	2007), maps of temporal frequency in V1 (Sun	et	al.,	2007), orien-
tation columns in human V1 (Yacoub	 et	 al.,	 2008) and columns in area MT 
showing preference to an axis of direction of motion in MT (Zimmermann	 et	
al.,	2011). Even when CNR is high, the reconstructed pattern may possibly not 
resemble the true neuronal organization. This can be the case either because of 
voxels that are too large (thus reducing contrast but also reducing noise, and 
too large to capture the pattern’s frequencies), wide fMRI point-spread func-
tion or additional distortions of the reconstructed pattern due to differential 
responses of large blood vessels. 

Thus far, we used the terms ‘objective’ to define the goal of a study, and 
‘measure’ to describe quantities we use in our current study for evaluating dif-
ferent ‘approaches’ to achieve an objective. As an example, we consider detec-
tion of a difference between responses to two stimuli as an objective. This ob-
jective can be addressed by 3 different approaches, e.g. univariate detection, 
multivariate detection or multivariate decoding. The 3 measures we use to 
evaluate these 3 different approaches are univariate detection probability, mul-
tivariate detection probability and probability of statistically significant decod-
ing. 

Making an explicit distinction between objectives (e.g., in our case, (1) de-
tection of information on a specific dimension of the stimuli and (2) recon-
struction of the organization) and between associated methodological ap-
proaches (e.g. univariate vs. multivariate analysis) made it possible to define 
appropriate measures that reflect the quality of imaging a pattern of columns. 
This in turn allowed us to estimate optimal imaging parameters for each of the 
approaches, and to demonstrate that optimal parameters are not necessarily 
identical between approaches. 

We have shown that in general, reconstruction requires smaller voxel size 
than detection. This is especially true for irregular patterns, where detection 
can benefit from low-frequency components using relatively large voxels with 
high SNR, whereas accurate reconstruction requires high spatial-frequency 
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content to be captured, which can only be achieved with smaller voxels. In ad-
dition, optimal voxel size for reconstruction decreases further with increasing 
SNR. Optimal voxel size for detection does not decrease if this SNR increase is 
largely voxel size independent (e.g. due to increased data volume or techno-
logical improvements). 

Comparison to previous results 
A number of studies estimated optimal voxel sizes for detection of responses of 
non-columnar organizations. Bodurka et al. (2007) proposed an optimal voxel 
width of 1.8 mm (isotropic) at 3T, based on equal contributions of physiologi-
cal and thermal noise. They argued that further increases in voxel size led to 
diminished returns in SNR while at the same time increasing the chance of 
partial volume effects. 

Hyde et al. (2001) showed that 1.5 mm wide isotropic voxels were optimal 
for detecting activation in somatosensory cortex evoked by finger tapping at 
3T. They also explain this as the optimal tradeoff between noise and partial 
volume effects, based on the fact that this voxel size matches the activation 
volume, which they equate with the thickness of layers 3 and 4. 

Similarly, Glover and Krueger (2002) developed a theoretical model of im-
aging a Gaussian-shaped activated region. They then showed empirically using 
a task of bilateral finger apposition at 1.5 T that CNR as a function of voxel 
size agreed with their model and that voxels of 4 x 4 mm and a slice thickness 
that was left constant at 5 mm were optimal. 

Our study differs from those mentioned above in that we consider fine 
scale columnar patterns. We have shown that optimal voxel widths for detec-
tion, decoding, and reconstruction depend on the spatial properties (scale and 
irregularity) of the pattern and on the fMRI point-spread function. Partial vol-
ume effects are minimized when imaging a slice that overlaps tangentially 
with a flat region of cortical gray matter and whose thickness does not exceed 
the thickness of cortex. In this situation, for imaging sufficiently coarse pat-
terns, even small improvements in SNR by using larger voxel widths can be 
beneficial for detection, decoding, and reconstruction. Furthermore, voxels 
much smaller than 1.5 mm and 1.8 mm may be optimal for imaging fine-
grained patterns using fMRI contrast with relatively narrow PSF.  

In Chaimow et al. (2011), we considered performance of a multivariate 
pattern analysis algorithm on simulated data from ocular dominance columns 
acquired at 3T. In that study we chose a fixed number of voxels rather than a 
fixed volume, and we did not model noise correlations (since we were inter-
ested in modeling a best–case scenario for decoding based on cortical col-
umns). Furthermore we used a point-spread function that was confounded by 
receptive-field effects. For these reasons voxel sizes that optimized decoding 
were larger than those we report here. 

Implications for fMRI of cortical columns 

Which voxel size should we use? 
In Table 2 we provide practical recommendations for optimal voxel sizes ac-
cording to our model, under a number of scenarios. In general, if reconstruc-
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tion is the goal, voxel size needs to be at least smaller than half of the colum-
nar cycle length, and even smaller when taking irregularities into account.  

If, however, the goal is to detect information present in the columnar pat-
tern, the question will be whether the main pattern components are expected 
to survive the BOLD point-spread. If the answer is positive, the columnar cycle 
length determines optimal voxel size. However, if the point spread is too wide, 
not all is lost. Depending on the level of irregularities, sets of voxels can be 
used to detect low spatial frequency information about the stimulus with opti-
mal widths that exceed the typical widths of columns. 

The advantage of high-field fMRI 
When only considering increases in response amplitude and SNR, the effects of 
high field are rather moderate. The differences in noise at 7T compared to 3T 
led to CNR improvements of 35% while the larger response amplitude of 7T 
GE contributed a 20% increase. Taken together, this makes for an increase of at 
most 62% in CNR. Although these are significant increases, similar results 
could be achieved by acquiring 2-3 times larger amount of data. However, for 
imaging cortical columns we found that the most important difference be-
tween 3T and 7T is the narrower point-spread function at 7T, even more so 
when using SE imaging. This factor caused a massive difference in detection 
probability and pattern reconstruction.  

Only the narrow point spreads at 7T make detection and reconstruction of 
a columnar pattern with the scale of orientation columns possible. Yet, GE at 
7T may be less suited for reconstruction than SE, given that it is prone to dis-
tortions of the pattern of cortical columns due to residual differential respons-
es of large pial blood vessels. 

These results suggest that developments that focus on improving the spatial 
specificity of the functional contrast would be the most promising strategy for 
improving fMRI of cortical columns. 

Imaging of unknown patterns 
Let us assume a semi-regular pattern of columns with a spatial frequency dis-
tribution that can be approximated by a Gaussian. However, we have no a pri-
ori knowledge about the main cycle length or degree of irregularities. How can 
we determine whether the imaged pattern resembles the underlying pattern of 
columns and whether the point-spread function width of our imaging tech-
nique and our employed voxel size were sufficiently small to resolve this pat-
tern? 

First, our results have illustrated that reconstruction is generally more diffi-
cult than detection. Therefore, the ability to detect a stimulus specific multivar-
iate response should be a prerequisite for accurate reconstruction. 
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Fig. 12 Imaging of unknown patterns. A columnar pattern and the corresponding fMRI maps are shown 
for adequate voxel width and voxel width that is too large. The first row shows the true columnar pattern 
and its spatial frequency spectrum (main pattern cycle length = 1.6 mm, moderate irregularity). The 
second row shows the results of fMRI (7T GE, including noise) when voxel width is adequate. The spatial 
frequency spectrum averaged over all orientations shows a clear peak and returns to low values well be-
low the highest frequency that the voxels sample (vertical green lines; the dotted line represent highest 
spatial frequency along k-space diagonal). When voxel width is too large (third row), the spatial frequen-
cy spectrum is being cut off abruptly. 

The next question then is whether the voxel is small enough to resolve the 
BOLD response pattern. Here the spectrum of the response can help (Figure 
12). A well resolved pattern will result in a gradual decrease of spatial fre-
quency components higher than the main pattern frequency towards the high-
est frequency that the voxel can sample (Figure 12B). If the voxel size is too 
small, we can expect an abrupt cutoff close to the highest sampled frequencies 
with no significant decreases when approaching this point (Figure 12C). How-
ever in practice, high measurement noise may make it difficult to differentiate 
between spectra resulting from adequate voxel widths and those resulting 
from voxels that are too wide. 

Finally, how can we tell if the point-spread function width is too wide, and 
does not allow resolving the pattern? Unfortunately, this is impossible to tell 
from the spatial structure of the imaged pattern alone, as the BOLD response 
results in similar types of spectra compared to the neuronal response, only 
with different apparent cycle lengths and degrees of irregularity. Another fac-
tor to consider is that wide point-spreads result in low contrast. In order to 
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quantify whether the contrast is too low given the spatial pattern, quantitative 
modeling may be necessary. In our study (Chaimow	 et	 al.,	 2016) we used a 
probabilistic extension of the present model together with Markov Chain Mon-
te Carlo sampling in order to estimate the posterior distribution of point-
spread widths given prior knowledge about parameters of ocular dominance 
columns. A similar approach can be taken here, using prior information about 
the point-spread width in order to infer the unknown pattern parameters. 

 
Table 3 In a review on pattern information fMRI, Formisano and Kriegeskorte (Formisano and 
Kriegeskorte, 2012) show in a schematic way (their Figure 2) how pattern information may depend on 
voxel size and field strength. They pose a number of “…important questions [that] remain unanswered”. 
This table provides answers to these questions within the context of our modeling results. 

Which spatial resolution maximizes pattern infor-
mation at 3T? 

It depends on the structure of the pattern and on 
the available volume. For a moderately irregular 
isotropic pattern with a cycle length of 1.6 mm and 
a volume of 24 mm x 24 mm x 2.5 mm we esti-
mate the optimal voxel width as 1.2 mm. 
 

Which spatial resolution maximizes pattern infor-
mation at 7T? 

For a pattern similar to that described for 3T, the 
optimal voxel size for gradient echo at 7T is 0.78 
mm; for spin echo at 7T it is 0.77 mm. 
 

Is 7T better than 3T for revealing pattern infor-
mation? 

Yes it is. This is mainly due to the narrower point 
spread function of the BOLD response at 7T. 
 

Does the optimal field strength for pattern infor-
mation studies depend on the resolution (e.g. does 
3T yield greater pattern information than 7T at 
lower resolutions)? 

There is no effect that would result in 3T having an 
advantage over 7T. However, when comparing 7T 
GE to 7T SE, we see that the gradient echo gains a 
slight advantage at voxel sizes larger than 2-3 mm, 
due to a higher response amplitude and a lesser 
relevance of the point spread of the BOLD re-
sponse.  
 

 

Conclusion 

The success of imaging cortical columns depends on a number of factors and 
their interrelationships. To quantify these dependencies, here we have com-
bined current knowledge into an integrated, quantitative model of imaging 
cortical columns. Our model makes it possible to evaluate how detection and 
decoding of a stimulus-specific response and the reconstruction of a pattern of 
cortical columns depend on the parameters of the pattern, voxel size, fMRI 
point-spread, and noise characteristics. 

Our model addresses open questions that are of interest to the neuroimag-
ing community (Formisano	and	Kriegeskorte,	2012;	see	our	Table	3). While our 
findings need to be tested empirically, they can already guide the modeling, 
planning, and interpretation of imaging cortical columns. 
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Appendix A. Contrast range can be computed from the columnar pattern power spectrum

Let (ym,n) be a 2N
1
⇥ 2N

2
sized array of MR measured differential responses relative to baseline
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]. The MR measurement can be modeled (Chaimow et

al. 2011, Haacke et al. 1999) as

ym,n =
1

L
1
L

2

N1�1X

p=�N1

N2�1X

q=�N2

B(p/L
1
, q/L

2
)e ⇡

mp
N1

nq
N2

=
2N1X

p=1

2N2X

q=1

Bp,qe ⇡
mp
N1

nq
N2 = 2N

1
2N

2

Ä
idft2

î
(Bp,q)
óä

m,n
, (A.1)

where B(k
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) is the Fourier transform of b(x
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) and where we have defined Bp,q := 1
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Contrast range c of the measured responses (ym,n) is defined as
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assuming that the mean of differential responses is known to be zero.

Inserting A.1 into A.2 and applying Parseval’s theorem yields
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When simulating or sampling a differential response pattern we will work with a discretized ap-

proximation (bm,n) of size 2Nsim
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2
such that bm,n := b
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= Bp,q (Roberts, 2012). This allows us to compute contrast range from (bm,n)

by means of its power spectrum,
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Appendix B. Modeling realistic isotropic columnar patterns

Let (gm,n) be a 2Nsim
1
⇥2Nsim

2
sized Gaussian white noise array of independent sample fromN (0, 1).

Its discrete Fourier transform is (Gp,q), with expected values E[
��Gp,q

��2] = 2Nsim
1

2Nsim
2

.

An isotropic columnar pattern (am,n) can be modeled by filtering the white noise array (gm,n) with

an isotropic filter (Rojer and Schwartz, 1990). The filtering can be implemented as a multiplication in

spatial frequency space such that

(am,n) = idft2

î
Gp,q · Fp,q

ó
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  We can express the filter (Fp,q) as

Fp,q =
s(k(p, q))

CF
,

where s(k) is a one-dimensional and direction-independent filter-shape function and k(p, q) =
q
(p�N1�1)2

L2

1

+ (q�N2�1)2

L2

2

is absolute spatial frequency. The normalization constant CF (see Appendix B.1) ensures that the filter

output has an expected variance of one.

In particular we define the filter shape function as
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2�2 ,

where parameters ⇢ and � control the main spatial frequency and the degree of irregularity, re-

spectively. The filter shape function defines the distribution of absolute spatial frequencies in the

modeled pattern as can be shown by calculating the expectation of |Ap,q|2. Using Fp,q 2 R and
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we get
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Appendix B.1. Filter normalization
We derive the normalization constant CF by requiring the expected variance of the modeled pattern

(am,n) to be 1. am,n are weighted sums of zero-mean random variables and therefore E[am,n] = 0. It

follows that
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Bringing the expectation inside and using Fp,q 2 R and E[
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It follows that the normalization constant CF is given by
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Appendix C. Differential multi-measurement SNR

Time-course signal-to-noise ratio (tSNR) can be written as:

tSNR=
S∆
�2

0
+�2

p

, (C.1)

where S is the baseline signal intensity and �
0

and �p are the standard deviations of thermal and

physiological noise components, respectively. These independent noise components can be modeled as

�
0
= S
V

and �p = S�, where V is the voxel volume and  and � are parameters that can be estimated

by fitting C.1 to real tSNR measurements (Trinatafyllou, 2005).

The effect of arbitrary repetition times (TR) can be modeled using a correction factor for  (Chaimow

et al. 2011).

In order to obtain SNR estimates for the difference between two condition averages over Nt mea-

surements each we consider �2

p and �2

0
separately. Let ✏0

t and ✏p
t be thermal and physiological noise

values on individual measurements. Thermal noise is independent between measurements. Therefore,
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Physiological noise is correlated in time. We model these correlations by means of an autore-

gressive model. Purdon and Weiskoff (1998) found that the physiological noise correlations be-

tween subsequent measurements q can be modeled as q = exp(�TR/15), where TR is the repeti-

tion time in seconds. The correlation between measurements at times t
1

and t
2

is then given by
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. It follows that the variance of the difference of averaged phys-
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Here we assumed that block size is large enough that temporal correlations between conditions can be

neglected.

Taken together the resulting differential multi-measurement SNR is

dSNR(Nt) =
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Appendix D. Detection probability

Appendix D.1. Multivariate detection
Let us consider a set of N voxels and let the measured differential response of voxel with index

m 2 1, ..., N be

ŷm = ym+ ✏m,

where ym is the true differential response without noise and

✏m ⇠N (0,�)

is the normally distributed differential multi-measurement noise with standard deviation �.

We define noise-level-normalized differential responses

ûm :=
ŷm

�
=

ym

�
+
✏m

�
.

Given a true differential response ym, the measured noise-level-normalized differential response ûm
is distributed according to

ûm|um ⇠N
�

ym/�, 1
�

.

When trying to detect a multivariate response, we consider (um) and equivalently (ym) to be non-

zero if the test statistic k(ûm)k2 =
PN

m=1
û2

m is greater or equal to some critical value �2

crit
.

We choose �2

crit
, such that the probability to falsely detect a response is smaller than some constant ↵

(e.g. ↵= 0.05). Such false positives occur when k(ûm)k2 � �2

crit
and um = 0 for all m (null-hypothesis).

The latter condition implies that under the null hypothesis, k(ûm)k2 is �2
distributed and therefore

�2

crit
(↵) = F�1

�2

N
(1�↵/2),
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where F�1

�2

N
is the inverse cumulative distribution function of the �2

distribution with N degrees of

freedom.

The distribution of k(ûm)k2 given an arbitrary noise-level-normalized true differential response (um)
is a non-central �2

distribution with non-centrality parameter � =
PN

m=1
u2

m and N degrees of freedom.

Given a certain contrast-to-noise ration cnr = c/�, where c is the contrast range, and assuming nor-

mally distributed differential responses, individual um can be considered random variables distributed

according to

um ⇠N (0, cnr) .

Therefore, if we express the non-centrality parameter � divided by the squared contrast-to-noise ratio

as:

�

cnr2
=

NX

m=1

Å um

cnr

ã2
,

we see that � divided by the squared contrast-to-noise ratio is itself distributed according to a (central)

�2
distribution with N degrees of freedom, or in other words, � is distributed according to a scaled �2

distribution with N degrees of freedom and scale parameter 1/cnr2
.

Let f (x; a,�, N) be the probability density function of the scaled non-central �2
distribution with

scale parameter a, non-centrality parameter � and N degrees of freedom (setting a = 1 results in

a non-scaled distribution and setting � = 0 results in a central �2
distribution). The probability

density function of g(x; cnr, N) of the unconditioned distribution k(ûm)k2 (independent of the specific

realization of differential responses) can be obtained by integrating over � and was derived by Holla

(1970):

g(x; cnr, N) =
Z 1

0

f (x; 1,�, N) f (�; cnr�2
, 0, N)d�

=
xN/2�1e�

�x
2(1+cnr2)

2(1+ cnr2)�(N/2)

The resulting distribution is a gamma distribution with shape parameter k = N/2 and scale parameter

✓ = 2(1+ cnr
2).

The probability of detecting a multivariate response can then be calculated as the probability of

k(ûm)k2 being at least �2

crit
:

pmulti

detect
(cnr, N) = P
î
k(ûm)k2 � �2

crit

ó

=
Z 1

�2

crit

g(x; cnr, N)dx

= 1� G(�2

crit
; N/2,2(1+ cnr2)). (D.1)

where G(�2

crit
; N/2, 2(1+ cnr2)) is the Gamma cumulative distribution function with shape parameter

N/2 and scale parameter 2(1+ cnr
2).

Appendix D.2. Univariate detection
Univariate detection probability is a special case of multivariate detection probability. However, in

this study we used two different probabilities that need to be distinguished.
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The first probability is the detection probability given a specific true differential response y . Refer-

ring to the multivariate derivation, in this case � is given as y2/�2
(the squared differential response

relative to noise) and no integration over � is necessary:

puni,specific

detect
(cnr) = P
î
|u|2 � �2

crit

ó

=
Z 1

�2

crit

f (x; 1, y2/�2
, 1)dx

= 1� F(�2

crit
; y2/�2

, 1). (D.2)

where F(�2

crit
; y2/�2

, 1) is the non-central �2
cumulative distribution function with non-centrality pa-

rameter y2/�2
and one degree of freedom, and �2

crit
is given by D.1 with N = 1.

The second probability is the average univariate detection probability over voxels. The multivariate

detection probability takes into account that the specific true differential response pattern given the

contrast-to-noise ration is not known. In the case of N = 1 the multivariate detection probability

averages over the distribution of differential responses. This can also be interpreted as averaging over

a distribution of voxels. As a consequence average univariate detection probability is a special case of

multivariate detection probability as derived above for N = 1:

puni,avg

detect
(cnr) = pmulti

detect
(cnr, 1). (D.3)
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