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Summary

The central topic of this thesis are composition models of distributional semantics
and their application for representing the semantics of German and English nominal
compounds. Composition models are mathematical transformations that, given a
compound like Apfelbaum ‘apple tree’, can be applied to the vector representations
of Apfel ‘apple’ and Baum ‘tree’ to obtain a vector representation for the compound
Apfelbaum ‘apple tree’. The new composed representation is deemed appropriate if it
is similar to the representation of Apfelbaum that can be directly learned from large
corpora using distributional methods.

The thesis is structured into eight chapters. The first four chapters introduce
compounds from a linguistic perspective (Chapter 1), present a review of annotation
schemes for nominal compounds and introduce a new hybrid annotation scheme
(Chapter 2), introduce neural networks and how to represent words via numerical
features (Chapter 3) and detail the distributional representation of words (Chapter 4).

Existing composition models of distributional semantics are reviewed and evaluated
in Chapter 5. Chapter 5 also introduces three new composition models: addmask,
wmask and multimatrix, that aim to improve over existing composition models either
though a more efficient parametrization (*mask) or by promoting parameter reuse
across different, but semantically similar words (multimatrix). The results show that
composition models are able to construct meaningful composed representations for
81.8% of the German test compounds, and 78.03% of the English test compounds.
In Chapter 6 composed representations are shown to be a useful indicator when
investigating non-compositional (lexicalized) compounds. For example, when modeling
a compound like Tigerauge, ‘tiger eye’, composition models will produce a composed
representation that corresponds to the literal interpretation of the compound - the
eye of a tiger. This vector, however, is dissimilar to the distributional vector learned
directly from the corpus which captures the lexicalized meaning of semi-precious stone.

In Chapter 7 composed representations prove to be the best features for classifying
compounds in terms of their semantic relations in setups where simplex words and
compounds have representations of the same length. Further analyses show also that
some of the modifier information is discarded during the composition process and that
extrinsic evaluations tasks such as the semantic classification task are necessary for
assessing and improving the quality of the composed representations.

Chapter 8 concludes by emphasizing the main contributions of the thesis and
sketching directions for future contributions.
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Chapter 1

Introduction

Some German words are so long that they have a perspective. Observe
these examples:

Freundschaftsbezeigungen.
Dilletantenaufdringlichkeiten.

Stadtverordnetenversammlungen.

These are not words, they are alphabetical processions. And they are not
rare; one can open a German newspaper at any time and see them marching
majestically across the page, - and if he has any imagination he can see the
banners and hear the music, too. They impart a great thrill to the meekest
subject. I take a great interest in these curiosities.

- Mark Twain, The Awful German Language

Compound nouns, the ‘curiosities’ that Mark Twain took a great interest into in 1880,
have continued to be of great interest to linguists and, more recently, computational
linguists. And not just the German ones: Jackendoff (2016) refers to an example
from Gleitman and Gleitman (1970), an inflectional morphology instruction manual
software programming course1, which could be understood by students in Introductory
Linguistics as long as it was introduced piece by piece, each connection made explicit.
“But if it were presented as a whole to a naive class, few would get it.” (Jackendoff,
2016:17), cf. Gleitman and Gleitman (1970).

This thesis ‘takes a great interest’ in nominal compounds in an attempt to make
them comprehensible for the modern day ‘naive class’ - the computer programs for
natural language processing. Its aim is practical: to build vector-based, composed
representations of compounds. Its motivation is also practical: natural language
processing (NLP) tools face a deluge of compound words similar to the one described
by the creator of Wortwarte (Lemnitzer, 2007) - see Section 1.2.

1The corresponding syntactic paraphrase is a course in programming the software that accompanies
manuals that teach inflectional morphology, Jackendoff (2016).
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Introduction

Coverage can be seen as the ‘Achilles’ heel’ of modern NLP. Recent research
(Ballesteros et al., 2015; Ling et al., 2015) has shown that incorporating character-
based information about words results in improved performance for tasks like parsing
and part of speech tagging, particularly on out-of-vocabulary (OOV) words. If a word
is out-of-vocabulary, i.e. is not part of the subset of words that a particular tool has a
representation for, then none of the useful generalisations that the tool has captured
during training can be applied.

New compounds are frequently OOV words, particularly in German. Computer
algorithms need to be able to represent and interpret new compounds at the same rate
that these are coined.

Composition models offer exactly this prospect - of being able to represent a
compound in terms of its constituent parts, and the way they are combined. Their
main advantage is that they require as input only the representations of the individual
words that make up the compound. Consider for example the compound Jubiläumskäse
‘jubilee cheese’, which names a cheese variety manufactured for a special anniversary
of a cheese factory - i.e. 50 years of production. This compound appears only once
in the 10-billion-token German corpus described in Section 5.3.2. Due to its low
frequency, Jubiläumskäse will be an OOV for many NLP tools. However, the words
Jubiläum ‘jubilee’ and Käse ‘cheese’ are frequent enough to have representations, and
can therefore be used to construct a representation for the compound as a whole.

Because they are just above the word level, compounds are an ideal test case for
understanding how the representations of multiple words should be combined into a
single unified representation before moving on to the representations of more complex
phrases and, ultimately, entire sentences.

Noun-noun compounds in German and English were chosen as exemplary con-
structions for the analysis. The choice was motivated in part by the fact that they
are the most frequent word construction pattern both in English (Plag, 2003:145)
and German (Fleischer and Barz, 2012:117). Another rationale was that much of the
work on the semantic interpretation of compounds described in Chapter 2 focuses on
identifying the internal relation of noun-noun compounds. This meant that the quality
of the composed representations could be evaluated through the lens of the semantic
interpretation.

Much of the research on compound nouns (Levi, 1978; Lauer, 1995; Rosario and
Hearst, 2001; Girju et al., 2005; Ó Séaghdha, 2008; Tratz, 2011) revolved around
finding a set of labels that could be used to categorize compounds. Spärck Jones (1983)
equates interpreting compound nouns with providing a meaning representation for them.
This thesis combines both ideas: it develops an annotation inventory for noun-noun
compounds in Chapter 2 and composition models for representing nominal compounds
as vectors from distributional semantics in Chapter 5. The composed representations
prove their worth when investigating lexicalized compounds in Chapter 6 and when
used as features for classifying semantic relations in German and English compounds
in Chapter 7. The next sections contain a chapter by chapter overview of the thesis,
and a short introduction to what is a compound from a linguistic perspective.

2



1.1 Chapter Guide

1.1 Chapter Guide
The first part of Chapter 2 is a literature survey covering the annotation of semantic
relations in noun compounds both from a theoretical and from a computational
perspective. The second part of the chapter introduces a newly hybrid annotation
scheme that can be used to annotate compounds with a semantic relation (a property)
and a preposition. The last section evaluates the proposed annotation scheme via an
inter-annotator agreement study.

Chapter 3 covers the basics of neural networks and explains some of the charac-
teristics that make them a good fit for modeling compound semantics. The theme of
the second part of the chapter is creating feature representations for natural language
processing. Several representation possibilities are described, with an emphasis on
their generalization capabilities.

Chapter 4 introduces the ideas behind distributional semantics and surveys several
approaches for building distributional representations for words.

Chapter 5 evaluates several existing composition models at the task of creating
composed representations for compounds. The drawbacks of existing models are
addressed by three new composition models. multimatrix, one of the newly introduced
models, is shown to produce the best composed representations both for German and
for English compounds.

Chapter 6 presents several investigations related to lexicalized German nouns and
shows the potential of composed representation as a means for identifying lexicalized
compounds.

Chapter 7 uses composed representations as features for identifying the semantic
relations in German and English compounds. Composed representations are shown
to be better than the original compound representations and than representations
obtained via the addition of the constituent vectors. However, it also shows that some
of the modifier information is discarded during the composition process, and that
combining the modifier and the composed representation improves the classification.

Chapter 8 contains an overview of the contributions of the thesis and an outlook
into future directions.

3



Introduction

1.2 What is a Compound?
A compound is “a lexical unit made up of two or more elements, each of which can
function as a lexeme independent of the other(s) in other contexts” (Bauer, 2001).
Chocolate cake illustrates the definition: it is a new lexical unit, and its parts, chocolate
and cake are frequently encountered separately. Adding more elements to a compound,
as in chocolate cheesecake recipe, is a recursive process: the compound cheesecake is
first modified by chocolate to form chocolate cheesecake, which in turn modifies recipe
to obtain chocolate cheesecake recipe. Compounds have therefore a binary structure
where the elements can in turn be compounds.

As the previous example illustrates, the left element will usually modify the right
element (in English and German). Compounds have a modifier-head structure
(Plag, 2003:135). The head of a compound is usually its right element, while the left
element is called the modifier. The term constituent will be used throughout this
thesis to refer to either of the elements of a compound. A compound typically inherits
its semantic and syntactic characteristics from its head. Semantically, a chocolate cake
is a type of cake - the compound will usually denote a subset from the set denoted by
the head. Syntactically, cake is a noun and the resulting compound - chocolate cake
- is also a noun. Both in English and German compounds inherit their gender and
plural form from the head noun - die Schauspielerin ‘the actress’ is a feminine noun,
and so is die Filmschauspielerin ‘the film actress’.

Compounding, the productive word formation process that gives rise to com-
pounds, places little restrictions on the syntactic category of the elements that combine:
noun-verb (brainwash), noun-adjective (knee-deep), verb-noun (pickpocket), verb-verb
(stir-fry), adjective-noun (greenhouse), adjective-verb (blackmail), adjective-adjective
(light-green) and preposition-noun (afterbirth) combinations2 are all possible combina-
tions in English, although not all are equally productive (Plag, 2003).

The investigations in this thesis focus on nominal compounds, i.e. compounds where
the head is a noun and the modifier can be either a noun, a verb or an adjective, with
a particular emphasis on noun-noun compounds.

Noun-noun compounds result from the combination of two nouns. If the nouns
that are being combined are simple, i.e. they are not derived from any verb, then
the compound bears the name root compound. In contrast, compounds where the
head noun is derived from a verb are called synthetic compounds in English (Plag,
2003) and Rektionskomposita ‘valence compounds’ in German (Eisenberg, 2013).
Apfelbaum ‘apple tree’ and Apfelpflücker ‘apple picker’ illustrate the two classes: ‘apple
tree’ is constructed from the nouns ‘apple’ and ‘tree’ and is a root compound. In the
case of ‘apple picker’, the head ‘picker’ is derived from the verb ‘to pick’ with the suffix
‘-er’. Moreover, the noun ‘apple’ is the accusative object of the verb ‘pick’, making
‘apple picker’ a synthetic compound.

When compounds name a subset of the things denoted by the head noun, like in
chocolate cake, they are called endocentric compounds in English and Determi-

2All examples are from (Plag, 2003:144).
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1.2 What is a Compound?

nativkomposita ‘determinative compounds’ in German (Klos, 2011). Plag (2003)
explains that the semantic head of such compounds is ‘inside’, as suggested by the
neoclassical element endo ‘inside’ of the term endocentric.

An Angsthase lit. ‘fear rabbit’, however, is no Hase ‘rabbit’: it is a frightened
person, the type described by the English scaredy-pants - which, as it happens, is also
not a type of pants. Such compounds are called exocentric/possessive compounds
in English, Possessivkomposita in German and bahúvr̄ıhi3 compounds according
to the Sanskrit terminology (Bauer, 1983). Here the semantic head refer to something
outside of the compound - it is usually a person or an animal that possesses the
characteristic named by the modifier. As Plag (2003) notes, however, exocentric
compounds still derive their syntactic characteristics from their rightmost component,
like the endocentric compounds. It is only the semantic head that deviates, in many
cases by means of a metaphor or a synecdoche.

Musikerfreund ‘musician friend’ is both a friend and a musician. When both
modifier and head contribute equally to the meaning, the compound is called a
copulative compound in English, a Kopulativkompositum in German and a
dvandva4 compound in Sanskrit.

Noun-noun compounds are “a salient feature of Sanskrit and Germanic word for-
mation, whereas in other Indo-European language families like Latin and the Romance
languages, Celtic or Slavic, they are marginal and replaced by syntactic phrases” (Kas-
tovsky, 2009). Often encountered are patterns of the form noun-preposition-noun,
e.g. the Romanian mas,ină de spălat, ‘washing machine’ lit. ‘machine for washing’ or
denominal adjective-noun, e.g. comerciant stradal ‘street merchant’ which is formed
though the combination of the noun comerciant ‘merchant’ and the denominal adjective
stradal derived from stradă ‘street’.

Compounds can contain linking elements, which are called Fugenmorpheme
or Fugenelemente in German. The English list is rather thin, with only -s appearing
as a linking element in compounds like sportsman. In German compounds, however,
linking elements are far more pervasive: n (Blumenvase ‘flower pot’), s (Zweifelsfall
‘case of doubt’), ns (Glaubensfrage ‘question of faith’), e (Pferdewagen ‘horse carriage’),
er (Kindergarten ‘kindergarten’), en (Heldenmut ‘bravery’), es (Siegeswille ‘desire
to win’) and ens (Schmerzensschrei ‘cry of pain’) are all possible linking elements
according to (Eisenberg, 2013:226). The elision of the final vowel in compounds like
Erdöl - *Erdeöl is also considered to be a type of linking element (Fleischer and Barz,
2012).

Meyer (1993) gives as example four compounds with the head Käfig ‘cage’: Schafskäfig
‘sheep cage’ , Löwenkäfing ‘lion cage’, Alligatorkäfig ‘alligator cage’ and Krokodilskäfig
‘crocodile cage’. All four examples refer to a cage intended for the animal denoted

3The term bahúvr̄ıhi itself is a bahúvr̄ıhi compound, formed from the Sanskrit words bahú ‘much’
and vr̄ıhi ‘rice’. The meaning relates neither to much nor to rice - but to a person that has a lot of
rice, i.e. a rich person (Bauer, 2009)§x.

4dvandva is Sanskrit for ‘pair’ and is a reduplication of the Sanskrit word dva ‘two’. Source:
https://www.merriam-webster.com/dictionary/dvandva
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by the modifier. The inclusion of a linking element in each of the cases seems rather
arbitrary: in Schafskäfig the modifier has the linking element -s - a genitive-marking
morpheme, Löwenkäfig has the linking element -n which corresponds to the plural-
marking morpheme for the noun Löwe, Alligatorkäfig has no linking element, while
the almost synonym form Krokodilskäfig has again the genitive marking -s as a linking
element. The linking element seems to be semantically justified only in cases where
the modifier denotes a collection of objects, i.e. Studententreffen ‘students meeting’.
However, as Meyer (1993) points out, the fact that semantically the modifier is a
collection does not necessarily result in the plural linking element being used in every
case: e.g. a Kartoffelverkauf ‘potato sale’ presupposes the setting of several potatoes,
not just one, but the form *Kartoffelnverkauf ‘potatoes sale’ is not used. This is why
linking elements are generally considered to be ‘semantically empty’ (Fleischer and
Barz, 2012:186).

The meaning of compounds evolves over time. All compounds start off composition-
ally - i.e. when first uttered, the speaker has to make sure that the constituents and
the context supply enough information for the correct interpretation of the compound.
However language - and the world it describes - evolves over time. What used to
be considered common knowledge from a synchronic perspective gradually becomes
marginal from a diachronic perspective. Compounds like Blümchenkaffee ‘very thin
coffee’, lit. ‘little flower coffee’ evoke an 18th century reality where a coffee was served
in expensive Meissener porcelain cups. The compound captures the stark contrast
between the very expensive porcelain and the avarice of using only a scant amount of
coffee - which made it possible to see the small floral ornament on the bottom of the
cup. The present day speaker, however, needs more explanations to understand the
semantics of such compounds.

Bauer (1983) describes the different stages that a compound goes through from the
moment it is first coined as follows. First, the compound is a nonce formation. It is
created in order to name something, and the same name might be given independently
by several people. Characteristic for this stage is the high potential ambiguity of
the semantics of the compound: if the first constituent has four meanings and the
second one has two meanings, the new compound could have any of the eight meanings
obtained by combining the constituent meanings. Illustrative in this respect are the
range of interpretations reported by Ryder (1994) for the new compounds she had
presented her study participants (e.g. a llama-pen was paraphrased as ‘a pen where
llamas are kept’, ‘a fountain pen made out of llama fur’, ‘a pen with a llama on it’,
‘furry fountain pen’, ‘a pen shaped as a llama’, etc.).

A second stage in a compound’s formation is the institutionalization stage, in
which the nonce formation starts being adopted by the wider community as a known
lexical item. The potential ambiguity of compounds in this stage is restricted - the
interpretation of the compound is fixed to a subset of the possible meanings, in
many cases only one. A sandwich box is usually interpreted as a ‘box to store/carry
sandwiches’, although it might also mean ‘a box shaped like a sandwich’, ‘a box that
snugly holds the content like a sandwich’, ‘a box with multiple layers of cardboard and
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foam’, etc. However, none of these other interpretations will usually come to mind if
the context does not warrant a reinterpretation of the institutionalized meaning.

In a third stage, a compound takes on a form or meaning that is not consistent
with the application of productive rules. Compounds in this stage are lexicalized.
Between the different types of lexicalization described by Bauer (1983), the semantic
lexicalization is in particular applicable in the case of compounds. In German for
example many names of plants and animals are lexicalized compounds, with a history
that is sometimes hard to track: e.g. Meerkatze ‘guenon’, lit. ‘sea cat’ or Geißfuß
‘ground elder’, lit. ‘goat’s foot’. Lexicalization is, however, not restricted to names of
plants and animals. For compounds like Schneebesen ‘whisk’, lit. ‘snow broom’ and
Windbeutel ‘profiterole’, lit. ‘wind bag’ it is unlikely that a speaker that does not know
what they mean will come up with the correct interpretation.

It should be noted that a subset of the compounds in the nonce formation stage are
never meant to make it past the first stage. Downing (1977) mentions the compound
apple-juice seat and explains its meaning as ‘the seat in front of which a glass of
apple-juice had been placed.’ Lemnitzer (2007) refers to Bierdeckelsteuer ‘beer mat
tax’, a word that brings a vision of a tax return form that is so compact it fits on a
coaster. Such deictic compounds can be used to name things in a particular context.
However, they cannot be interpreted without the context that has called for their use,
and the relationship they express is too infrequent or too specific to warrant the further
use of the compound by a larger community of users.

Lemnitzer (2007) refers to compounding as the (by-far) most frequent method for
creating new words in German. His „15 daily additions to the Wortwarte5 are chosen
from a pool of 1000-2000 words that are not part of the already stored words. The
words come from a selection of online newspapers and websites. He estimates that
around 10% of these are spelling errors, and then there are some names, and some
deictic compounds - but the remainder are newly coined words. The Wortwarte is a
very telling account of how productive this composition process it, and how many new
words one can expect a natural language processing system to have to deal with each
new piece of written text.

5http://www.wortwarte.de/
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Chapter 2

The Semantics of Nominal
Compounds

Buying a box of breakfast cereal in a supermarket is not an easy task. There are a
multitude of characteristics that need to be taken into account in order to make an
informed choice. Should it be oats, wheat or maybe barley? Should it be thickly rolled,
flaked, powder or in shapes? Should it contain dried fruit or nuts? Or maybe chocolate
and honey? There is a multitude of choices on the market, and the range of products
is constantly expanding1.

Selecting an annotation scheme has much in common with choosing a box of
breakfast cereal: there are many annotation schemes that have been proposed over the
years, that come in various shapes and sizes, and were build with different goals in
mind. Some advocate for the existence of ‘an infinite number of potential compounding
relations’ (Downing, 1977), others list a restricted set predicates that ‘are recoverably
deleted in the process of complex nominal formation’ (Levi, 1978). Some are developed
in a bottom-up fashion, based on compounds that occur in corpora (Warren, 1978),
while others use a top-down approach, where the semantic relations are first defined
and then a set of compounds is annotated with them (Nastase and Szpakowicz, 2003;
Girju et al., 2005).

This chapter starts off, in Section 2.1, with a literature survey covering the
annotation of semantic relations in English and German noun compounds, both from
a theoretical and from a computational perspective. However, in all fairness, this
chapter only scratches the surface of the literature on the semantics of compounds,
and it is impossible to do justice to all the proposals from the vast literature on the
subject. Most of the work presented in what follows is reflected in one way or another
in the new annotation scheme developed as part of the thesis, to be presented in
Section 2.2. The survey is dotted with remarks that connect the main points drawn
from the existing literature to the new annotation scheme and the corresponding
annotated dataset, presented in Section 7.1.1.

1A bit of trivia: in America, the number of types of cereal has seen a substantial growth: from 160
in 1970, to 340 in 1988 and to 4,945 in 2012 (Aichner and Coletti, 2013).
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The decision to develop a new ‘annotation brand’, despite the multitude of choices
available, was influenced by several factors. The goal of this thesis is to learn how
to represent compounds with the help of computers. The idea is to supplement
the directly observable information a computer receives about compounds, i.e. the
compound constituents, with as much information as possible about the non-apparent
semantics of the compound. To maximize the supplied amount of semantic information,
a new, hybrid annotation scheme was developed. It uses both semantic relations and
prepositional paraphrases for rendering the compound-internal semantics. Creating
a new annotation scheme made it possible to adjust its granularity to fit the task at
hand: computers work better with rule-like distinctions, thus a fine-grained annotation
scheme is a better choice for capturing such distinctions. Ultimately, the work on
the annotation scheme meant a close interaction with a variety of compounds, and
building an intuition about the different nuances of compounding as a linguistic process.
A linguistic process that children grasp when they are between 2 and 6 years old
(Nicoladis, 2006), and continue using throughout their whole life. Can a computer
learn to interpret compounds like a preschool child does?

2.1 Analyzing Compound Semantics: Challenges
and Existing Approaches

Downing (1977) investigates the creation and use of English noun compounds in an
experimental setting. Human subjects are asked either: (i) to create new compounds,
by naming specific objects from a drawing, (ii) to interpret novel noun-noun compounds
or (iii) to judge the appropriateness of a given set of descriptions for a novel compound.

The discussion is focused on compounds that are generally usable and interpretable,
as opposed to deictic compounds which can only be interpreted in context. The
compound apple-juice seat is used to illustrate deictic compounds, where the meaning
of the compound, i.e. the seat in front of which an apple-juice has been placed, makes
sense in the context of use, but would not be generally interpretable. At the same
time, (Downing, 1977:820) makes a point about the difficulties in interpreting existing
nominal compounds:

‘A compound may be highly transparent semantically when it is coined; but once it
has been accepted by the community as a conventionalized name, it may come to be as
arbitrary as any monomorphemic name.’

This observation justifies her decision to study the semantic relations in novel
nominal compounds, as opposed to identifying the relation in institutionalized2

compounds, as in previous studies. According to Downing (1977), identifying the
semantic relation in such institutionalized compounds is more challenging because of
historical and cultural processes that might have altered the initial meaning of the
compound.

2The term institutionalized is used here in the sense defined by Bauer (1983) to mean ‘compounds
that have been accepted by the community as a conventionalized name for a particular concept’.
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Downing (1977) draws several conclusions after analyzing the compounds and the
compound interpretations produced by the human subjects. A first conclusion is that
a necessary condition for creating a new compound is the existence of a relationship
between the compound constituents. Compounds cannot be formed because of the lack
of a relation that connects the constituents: e.g. cousin-chair cannot mean a chair
reserved for non-cousins. This argument also leads to the observation that entities with
no typical interaction patterns (e.g. bird and door) are unlikely to form a compound
(e.g. *bird door).

A second take-away point is that the range of possible new compounds produced
by the human subjects and the diversity of their semantic relations points to the
existence of an infinite number of potential compounding relations. However,
Downing (1977) agrees that one could make a list of the most common relations, which
should include: whole-part (e.g. duck foot), part-whole (e.g. pendulum clock),
half-half(e.g. giraffe-cow), composition (e.g. stone furniture), comparison
(e.g. pumpkin bus), time (e.g. summer dust), place (e.g. Eastern Oregon meal),
source (e.g. vulture shit), product (e.g. honey glands), user (e.g. flea wheelbarrow),
purpose (e.g. hedge hatchet) and occupation (e.g. coffee man)3.

As a third point, Downing (1977) lists several factors that can influence the
suitability of a particular relationship in a specific context:

• the semantic class of the head noun. Particular semantic relations are
preferred by particular classes of head nouns: e.g. occupation for humans;
appearance and habitat for animals and plants; composition, origin and
location for natural objects; purpose for synthetic objects.

• the predictability of the relationship between the two constituents.
Compounds where the set of entities denoted by the modifier is the same as
the one denoted by the head, like *book-novel, are deemed implausible; similarly
implausible are compounds where the modifier denotes a subset of the entities
denoted by the head (e.g. truck-vehicle)4, or where the head implies the modifier
(e.g. *head-hat).

• the permanence of the relationship. The majority of novel compounds
coined by the human participants in Downing (1977)’s studies referred to a
relationship that was habitual or generic in nature. This shows that while it is
possible to create a compound based on a conjunctural relation, like apple-juice
seat, most compounds are based on habitual or generic relations.

Downing (1977) justifies the existence of such constraints by referring to the
information exchange taking place between the speaker and the hearer. The speaker
must make use of the available informational resources and select a modifier that adds
to the information provided by the head, otherwise using the head alone should suffice

3 examples from Downing (1977).
4 although for heads denoting plants or animals this type of relation can be used - e.g. salmon fish,

pine tree, banana plant.
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(e.g. head-hat does not bring anything new to the hearer, a hat is typically worn
on the head). Additionally, the speaker must guarantee the interpretability of the
compound, by making it possible to derive the meaning of the novel compound from
the meaning of its constituents and the context of use. The use of habitual relations as
a basis for compounding would then facilitate the interpretation of the compound, as
habitual relations are likely to be part of the hearer’s mental model for the compound
constituents. In contrast, compounds based on a temporary relation depend much more
on contextually-supplied information and tend to become uninterpretable if taken out
of context. As a last desideratum, the speaker should strive to use a novel compound
for denoting a relevant category. Given the frequent use of compounds as a naming
device, the speaker should try to denote a category that, if not yet conventionalized,
should at least be considered a worthy candidate for being conventionalized.

Downing (1977)’s conclusion is that even if any relationship could be used as a
basis for forming a compound (given the appropriate context), compounds generally
tend to be based on relationships that are perceived as permanent or habitual.

The new annotation scheme proposed in Section 2.2 starts off from very similar
premises to those put forth by Downing (1977). First, it does not claim to include all
the possible compound-internal semantic relations, but only those that were identified
when annotating the chosen subset of data. It includes, however, most of the semantic
relations labeled as common by Downing (1977), thus confirming her analysis. The
factors that influence the suitability of a particular relationship will be more closely
analyzed using the dataset of annotated German compounds in Section 7.1.1. The
analysis will focus on finding out if there are strong preferences for particular semantic
relations given a particular head noun or a particular modifier.

Levi (1978) proposes a study of English complex nominals. She identifies complex
nominals as consisting of three subgroups: nominal compounds (e.g. apple cake), nom-
inalizations (e.g. film producer ; the noun producer is derived from the verb to produce)
and noun phrases with non-predicating adjectives (e.g. electrical engineer ; the adjective
is considered non-predicating because the construction cannot be paraphrased as *an
engineer who is electrical). Levi (1978) justifies including the last category because
of the parallelism between compounds and noun phrases including non-predicating
adjectives (e.g. language difficulties and linguistic difficulties). Her claim is that
non-predicating adjectives are derived from underlying nouns, and therefore behave
like a noun when they are part of complex nominals.

Levi (1978) argues that complex nominals should not be treated as strictly idiosyn-
cratic constructions that need to be individually listed in the lexicon. Rather, complex
nominals are constructions that show clear syntactic and semantic regularities, which
make possible the interpretation of newly coined constructions. She acknowledges,
however, the existence of a certain level of ambiguity regarding the exact interpretation
that a construction should receive. This interpretative ambiguity can make even
compounds with an institutionalized interpretation to be analyzed differently when
the context licenses the alternate interpretation.

12
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Complex nominals are characterized by Levi (1978) as a “very successful means of
compressing syntactic and semantic information into a highly compact form”. Complex
nominals are seen as “naming devices that pick out the relevant categories of the
speaker’s experience”. The “naming device” perspective explains why complex nominals
are such a productive category and also why each such construction must necessarily
start off being semantically transparent and may become institutionalized or even
completely opaque along its history of use. Furthermore, Levi (1978) argues that from
a syntactic perspective complex nominals should be considered nouns and not noun
phrases.

Levi (1978) approaches the semantics of complex nominals stating that

‘. . . the larger part of the semantic relationships that may be associated grammatically
with the surface structures of complex nominals (CNs) can be expressed by a small set
of specifiable predicates that are recoverably deleted in the process of CN formation.
This set is made up of nine predicates: cause, have, make, use, be, in, for, from
and about. These predicates, and only these predicates, may be deleted in the process
of transforming an underlying relative clause construction into the typically ambiguous
surface configuration of the CN.’

and goes on to specify more details about each of the proposed predicates:

• use (e.g. steam iron) refers to use in an instrumental sense (iron using steam
to function), not in an agentive sense (e.g. professor using books).

• in (e.g. field mouse, morning prayers) has a locative meaning and can refer
both to spatial and to temporal locations; the naming of the predicate does not
imply that it applies only to constructions paraphrased by the preposition in -
the name is a symbolic convention; the predicate refers to constructions that can
be paraphrased via in or other location-pointing prepositions, i.e. on or at.

• cause (e.g. tear gas, tears caused by gas - cause1; also birth pains, pains
caused by birth - cause2); the predicate is used to label complex nominals
expressing causative relationships; has two instantiations, cause1 and cause2,
depending on the constituent expressing the cause; cause1 labels only a small
set of compounds.

• have (e.g. apple cake, cake that has apples - have1; lemon peel - lemon has peel
- have2); expresses a possessive relation; have2 is very frequent, while have1
labels only a handful of constructions;

• make. Several subgroups can be identified: (i) constructions like honeybee, where
make stands for “physically producing, causing to come into existence”; (ii) daisy
chains, where the modifier denotes a unit that makes up the group named by the
head; (iii) complex nominals like stone wall, where the head describes an artifact
and the modifier describes the material the artifact is made of; (iv) constructions
like student committee, where the head noun names a human collectivity and
the modifier names its members; just like cause1 and have1, there are far fewer
instances labeled with make1 than with its counterpart, make2.
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• be. Has three subgroups: (i) where the modifier names the material of the head
(e.g. water drop), (ii) where the modifier and the head are in a genus-species
relationship (e.g. pine tree) and (iii) where there is a metaphorical link between
the head and the modifier (e.g. queen bee).

• for (e.g. nose drops). Specifies a relation of intent or purpose between the
constituents. Complex nominals labeled with this predicate can be paraphrased
as “X for Y”. More precise paraphrases using a verb are generally possible
(e.g. nose drops - drops for decongesting the nose; headache pills - pills for
reducing/relieving headache; clothing shop - sell; picture album - store). Levi
(1978) identifies the lexicon as the place where the extra information about the
verb used to paraphrase each particular construction should be stored.

• from. The modifier denotes the source of the head; stands out as one of the
categories with the most homogeneous set of modifiers: they are either natural
sources which are used to extract/harvest the head (e.g. olive oil, alligator leader)
or “places of origin” for the head (e.g. country butter, sea breeze).

• about. Has a large number of equivalent expressions in English: concerned with,
dealing with, pertaining to, on the subject of, on, about, over ; the head is usually
an abstract noun/nominalization (e.g. tax law, history conference, price war);
modifiers can be very diverse - anything that a law, conference, war, etc. might
be about.

Levi (1978) takes the potential interpretation ambiguity to be something that
people can generally cope with: for example if, in using the construction musical
talent the speaker means ‘talent in music’ (in deletion) whereas the listener means
‘talent for music’ (for deletion), the communication will not suffer from this slight
misinterpretation. It is only when the difference in meaning diverges in a significant
way that the communication has to suffer. She states that her theory is not meant to
associate every construction with exactly one of the proposed predicates, but rather
to specify the range of interpretations that a particular construction might receive.
I.e., chocolate bunny might be analyzed both as be and as make2 - bunny is chocolate;
bunny is made of chocolate, and there are reasons to defend any of these analyses.
However, natural language allows describing the construction in both ways. This
suggests that complex nominals display an “indeterminacy of analysis” - for a subset
of complex nominals there is not clear, principled way to choose one predicate over the
other.

Levi (1978) reserves a special treatment for complex nominals containing nouns
derived from verbs - i.e. nominalizations. As Ó Séaghdha (2008) observes, according to
Levi (1978)’s annotation principles history professor and history teacher are assigned
different categories because teacher is derived from the verb to teach. These syntacti-
cally motivated categories lead to similar concepts being sometimes assigned different
categories, as illustrated by the previous example.

Although the predicates proposed by Levi (1978) are too general to provide the
type of fine-grained distinctions needed for the computational processing, the new
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annotation scheme does not claim to be able to remove all ambiguity just because
it is more detailed. The type of ambiguity mentioned by Levi (1978) with regard to
the compound chocolate bunny, where the same compound can be labeled in different
ways, without affecting the interpretation assigned to the compound, is unlikely to be
solved using the new annotation scheme. This genuine ambiguity derives from the fact
that there are multiple ways to conceptualize the same compound, and depending on
the conceptualization one can choose one label over the other. The discussion of the
inter-annotator agreement study in subsection 2.2.8 will come back to this issue.

Another aspect from Levi (1978)’s annotation proposal that was incorporated into
the new annotation scheme is the marking of the relations’ directionality, depending
on how the two constituents fill the relational slots (e.g. see above the difference
between the compounds labeled with cause1 and cause2). What is meant through
the directionality of a semantic relation in the new annotation scheme will be described
in detail in Section 2.2.

Warren (1978)’s empirical investigations aim at discovering whether there is a
limited number of semantic relations between the constituents of noun-noun compounds.
Her analysis is based entirely on naturally-occurring compounds from corpora, an
impressive undertaking for the time the thesis was written. She analyzes a dataset of
4566 compound types, extracted from a selection of texts in the Brown corpus5. Warren
(1978)’s study is comprehensive in that she compiles the dataset by extracting all
the compounds from the selected texts. Moreover, the compound analysis is context-
dependent: the interpretations are chosen after analyzing the compound in its context
of use. An analysis of the syntactic structure revealed that 58% of the dataset consisted
of two-part compounds, and that for compounds with three or more constituents the
left-branching structure is the most common.

The morphological analysis performed by Warren (1978) showed that 118 of the
compounds in the dataset have the first noun inflected: in some cases, the inflected
form is recognized as a plural (sports center), while in other cases the -s is closer to
the German notion of linking element, with no clear rules as to when the inflection
should appear (compare statesman and fireman). In some cases, the trailing -s is a
way to avoid a sense ambiguity, like in plains people.

Warren (1978) uses the term incomplete compounds to refer to combinations
where a member (in most cases the middle component) is left unexpressed but its
presence is assumed by the semantic interpretation, e.g. air(plane) strip. Here the
semantic relation connecting the constituents can only be specified by referring to the
missing component: e.g. an air strip is a strip for airplanes to land on, and not a strip
made of air. Such elliptical constructions generally appear for convenience reasons,
and the resulting compound becomes a conventional name for the referent. They can
also become patterns for constructing other compounds where the same component

5Corpus of American English, created at the Brown University in 1964, under the direction of W.
Nelson Francis.
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is deleted, e.g. airport, aircrew. For such compounds the initial meaning cannot be
recovered without additional knowledge regarding the deleted material.

Compounds are analyzed by Warren (1978) using a comment-topic structure:
the head represents the topic of the compound, while the modifier is used to express
the comment. The comment’s purpose is to further specify the topic by restricting its
scope. This can be done either by classifying the topic or by identifying the particular
topic that is considered in a given context. Classifying comments usually delimit a
class, subgroup or type of the topic. The distinguishing feature can be either directly
named by the comment (e.g. stone wall), or can be only indirectly implied (e.g.
bilge water6). It is interesting to note that when the modifier is used as an indirect
specification of a particular feature, its literal sense is replaced by the implied sense -
e.g. room in room temperature resolves to the normal temperature of a room, which is
around 18˝-23˝C.

Warren (1978) identifies six major types of semantic relations that compounds
can express, and uses a set of participant roles to name them. In most cases, the
participant roles may be reversed, leading to the same semantic relation being applied
in the opposite direction.

1. A is something that wholly constitutes B, or vice-versa: source-result (e.g.
leather shoe), result-source (e.g. paste wax), copula (e.g. girl friend).

2. A is something of which B is a part or feature or vice-versa: whole-part (e.g.
eggshell), part-whole (e.g. wheelchair), size-whole (e.g. 22-inch board).

3. A is the location or origin of B in time or space: place-obj (e.g. city lights),
time-obj (e.g. morning train), origin-obj (e.g. seafood).

4. A indicates the purpose of B: purpose (e.g. coffee cup), goal-obj (e.g. moon
rocket).

5. A indicates the activity or interest which B is habitually concerned with: activity-
actor (e.g. sportsman).

6. A indicates something that B resembles: comparant-compared (e.g. clubfoot).

Each category is further subdivided into subcategories. Warren (1978) assigns
features to the two constituents of the compound in order to make clear the delimita-
tions between the different subcategories. For example, in distinguishing material-
artifact compounds like clay bird, the first noun is required to have the +Material
feature, while the result should have the +Man-made and +Concrete features. Other
features that are used in the classification are +Abstract, +Material, +Artifact, +Shape,
+Group, +Animate, +Inanimate, +Human, +Body Part, +Animal, +Building, +Plant,
+Area, +Time, +Place, +Natural, +Event, +Phenomenon, +Organization, etc.

6dirty water that collects inside the lowest internal portion of a ship’s hull.
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Warren (1978) also notes that prepositional paraphrases are particularly suit-
able for making apparent the compound-internal semantic relation. She lists the
prepositional paraphrases that are usually associated with the proposed participant
roles, e.g. source-result - of : student group - group of students; part-whole - of,
with: clay soil - soil with clay; place-obj and time- obj: in, at, on; origin-obj -
from; goal-instrument - for ; comparant-compared - like.

Warren (1978)’s study served as an inspiration for many features that are included
in the new annotation scheme (see Section 2.2): the annotation of elliptical modifiers
when the relation refers to an implied modifier rather than to the actual modifier; the
annotation of relation directionality (also present in Levi (1978)’s work); the use
of features like +Animal, +Human to delimit the semantic class of the constituents
which can be annotated using a particular semantic relation. Warren (1978) is also
one of the first to point at the regularities in the assignment of semantic relations and
prepositional paraphrases, and to list the prepositions that are typically associated
with particular semantic relations. The combination of the semantic relation and
prepositional paraphrase annotation is one of the main features of the new annotation
scheme.

Finin (1980) proposes a rule-based system for automatically deriving semantic
interpretations for nominal compounds. In his system, words are represented as
frames which contain slots, and each slot can in turn have multiple facets. The
frames are organized into an abstraction hierarchy and are connected via the ako and
the instance relations. The ako (‘a kind of’) relation points to the superconcept of a
concept, while its inverse, the instance relation, links concepts to their sub-concepts
or instantiations. For example, the frame for the concept to-fly includes the slots
ako, instance, agent, object, instrument, source and destination. In addition
to these local slots, the concept to-fly will also inherit slots from all its direct and
indirect ancestor concepts. The facets of a slot are a method to describe the semantics
of the slot by specifying, for instance, requirements ($require facet), preferred values
($prefer facet), default values ($default facet), typical values ($typical facet), the
importance of the role for the concept as a whole ($salience facet) and whether the
role is obligatory, optional, prohibited or dependent ($modality facet). For example,
the source and destination slots of the concept to-fly could require that the
matching element is a city or an airport (using the $require facet).

In his discussion about conceptual modification Finin (1980) compares two
fundamentally different ways of identifying the compound-internal semantic relation
intended by the speaker: a concept independent mode, where the relation is chosen
from a fixed set of potential relations that stays the same for every compound and the
concept dependent mode, where the set of relations is determined by the identity of
the concepts and can therefore be different from one compound to the other. Finin
(1980)’s own work takes the selection of the relation set to be concept dependent.

Finin (1980)’s system takes as input complete concept representations containing all
the necessary frames, slots and corresponding facets (in his system these are manually
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defined). The output is a list of possible semantic interpretations and their associated
scores, with the highest scoring interpretation being considered the most probable.
The system assigns interpretations based on a series of rules. Each rule defines the
pre-conditions that have to be met for the rule to apply and the interpretations that
are generated when the rule is applied. Finin (1980) defines several classes of rules:

• idiomatic rules, where the rule applies only if the constituents exactly match the
ones specified by the rule. Idiomatic rules are defined for exocentric compounds
and for compounds where the meaning cannot be easily recovered based on the
interaction patterns of the constituents.

• productive rules, which define a general pattern with many possible instantiations.
• structural rules, which create a structural relationship between the modifying

and the modified concepts and are particularly useful for analyzing compounds
containing nominalized verbs.

The biggest emphasis is placed on the structural rules, for which the author identifies
eight possible subtypes:

1&2. N1 fills one of N2’s slots or N2 fills one of N1’s slots: e.g. magnesium wheel, where
the concept magnesium is considered to fill the raw-material slot of the concept
wheel; January flight, where January is taken to fill the time slot of the concept
to-fly

3&4. Thing + Role Nominal or Role Nominal + Thing: when the modified concept
is a noun that refers to a slot/role in of an underlying concept. E.g. cat food
is taken to be the object of a to-eat event where the agent is a cat. In the
reverse direction, a food bowl is an instrument of to-eat with the object being
food.

5&6. Specific + Generic or Generic + Specific, where one concept is the subconcept of
the other, like F4 plane or building NE43.

7. N1 be N2, where the compound is at the same time an N1 and an N2, as in
woman doctor.

8. Attribute transfer, when an attribute or property of the modifier is transfered to
the modified concept, as in iron will or elephant legs.

Finin (1980)’s system is remarkable in that it underlines the need for a more com-
prehensive representation of concepts. Although he does not address the problem of
mapping the surface form of a compound into the corresponding concept frames, he
advocates for the need to develop good representations for polysemous words and for
sense-disambiguating the constituents before the compound interpretation process.
The use of underlying concepts allows the rules to access not only the semantics of
the constituents themselves, but also the semantics of associated concepts, like it is
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the case with pilot and to fly, while the attribute transfer rule presupposes access to a
variety of prototypical concept attributes: iron is strong, elephants are large, etc. The
saliency of a slot creates a ranking of the concept’s slots, with the more salient slots
having a higher probability of becoming the basis for compound formation. Another
noteworthy aspect is the treatment of idiomatic compounds: they have dedicated rules
that match the surface form directly to the interpretation, an approach which closely
matches the treatment of idiomatic compounds proposed in this thesis, which will be
presented in Chapter 6.

The annotation guidelines of the new annotation scheme contain restrictions or
specifications of the type of constituents that can take part in a given relation. Even
if the restrictions are not defined in a logical model, they do serve as a pre-filtering
mechanism, designed to simplify the annotation process, given the large number of
semantic properties proposed by the new annotation scheme. Consider for example the
annotation of compounds with a head that denotes an animal: most of their compound-
internal semantic relation will probably be of type habitat, or appearance. It is
very unlikely for compounds with such a head to have a modifier connected via a
topic relation. This means that even if the annotation scheme contains many different
relations, the semantic class of the head and/or modifier could be used to pre-filter the
most likely semantic relations.

Ryder (1994) proposes a model for compound interpretation based on Langacker’s
cognitive grammar (Langacker, 1987) and ideas inspired by the schema theory
as proposed in Rumelhart et al. (1986b). Her analysis of compounds is relevant to
our explorations because she considers “[...]the problem of compound interpretation
from the point of view of a real person faced with a real noun-noun compound”. Even
as her goal is to make predictions about what types of patterns are used by human
speakers and listeners when creating and interpreting compounds, the insights of her
analysis can be readily transfered and applied to the computer-based interpretation of
compounds.

Ryder (1994) distinguishes between three possible compound types that were also
previously identified by Downing (1977): deictic, novel and institutionalized compounds.
Ryder emphasizes the importance of having an appropriate context when learning the
meaning of institutionalized compounds for the first time. She gives the example of a
person, unfamiliar with the compound milkman, that first encounters the compound in
the context ‘I saw the milkman’. Even if the person is aware of the individual meanings
of the words milk and man, given only this impoverished context it is impossible to
correctly guess what the semantic relation connecting milk to man is. This observation
prefigures the importance of choosing the right context when building distributed word
representations for the compound and its constituents, a matter that will be the topic
of Chapter 4.

The grammar used by Ryder (1994) is defined to be “a structured inventory of
conventional units” (Langacker, 1987:57). There are three possible types of units:
phonological units (segments, syllables, words, familiar phrases), semantic units
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(concepts) and symbolic units, which form through the association of a phonological
unit with a semantic unit. The units are entries in a semantic network, and the
separate pieces of information associated with a unit can be accessed independently,
some more frequently than others. The units are connected via three types of rela-
tions: (i) the relation that connects a phonological and a semantic unit, giving rise
to a symbolic unit; (ii) the categorization relation, where a unit can be seen as
an instantiation of a more abstract unit: e.g. the semantic unit [cat] is an instan-
tiation of the unit [animal] which in turn instantiates the semantic unit [living
thing]; (iii) the integration relation, where multiple units of the same type combine
to create a larger unit of the same type, e.g. the symbolic units [[cat]/[kæt]]
and [[food]/[fud]] combine into a new symbolic unit with composite structure,
[[cat]/[kæt]]-[[food]/[fud]]. A crucial aspect that is underlined by Langacker
(1987) with respect to the resulting composite structures is that generally they have
qualities that cannot be directly extrapolated starting from the original elements
that were combined. The term accommodation is used to refer to the process of
altering the meaning of one or both components in order to form a meaning for the
composite structure (e.g. in the case of the compound doghouse, the semantics of the
word dog remain unaltered while the meaning of the word house undergoes a heavy
accommodation process).

These cognitive grammar concepts are operationalized by Ryder (1994) using
schemata. Schemata are “[...]basic data structures for representing the generic concepts
stored in memory” (Rumelhart et al., 1986b:18). They can model different concept
types including objects, situations, events, sequences of events, actions or sequences of
actions. Schemata have variables with default values. The variables correspond to
possible instantiations of the abstract concepts represented by the schemata. Ryder
(1994) illustrates the idea of a variable inside a schemata using the schemata for the
party event: there is a variable for the purpose of the party, and one for the present
that is brought to the party. If purpose is filled with given in the honor of the host’s
birthday, then the present variable should be filled with present for the person who
celebrates birthday.

Schemata can embed: the schema corresponding to the event patient visit to the
doctor includes separate subschemata for the patient and for the doctor. Moreover,
the schemata can inherit from each other: the schema for doctor inherits from the
more general schema for person. In general, schemata represent knowledge at all levels.
They are active processes, in that their variables and defaults vary in response to new
situations and change with use. They are recognition devices for particular situations -
i.e., there must be ways to measure how well a schemata fits a given situation.

Based on ideas from cognitive grammar and schemata, Ryder (1994)’s investigations
focus on analyzing the strategies used by the speaker and the hearer in the creation and
interpretation of compounds. She takes the interpretation to be guided, in the absence
of context, by known linguistic patterns or semantic information schemas. The
linguistic patterns are derived from all the expressions known to the person:
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• known compounds that share a modifier (e.g. sea + Obj. meaning a metaphorical
extension of Obj. that lives in the sea: sea cucumber, seahorse) or head (e.g. the
pattern Obj. + box where the box is meant as a container for Obj.: pencil box,
wine box)

• frequently encountered combinations (e.g. Location + Animal, where the an-
imal originates from the specified location: Angora goat, Labrador retriever,
Animal1+Animal2, where Animal2 resembles Animal1 in some way: tiger cowrie,
zebra spider)

• combinations that are based on matching features in the schemas of their com-
ponents: e.g. in baby spoon, the notion of bringing food to a person’s mouth is
central to the schema for spoon, while the baby fill the person role

• groups of compounds where the individual components are similar (e.g. Contained-
Container: flour sack, water glass, flowerpot)

• compounds formed by analogy to other compounds (Angora goat lead to Angora
rabbit, meaning rabbit with long, silky fur)

Ryder (1994) notes that compounding forms “... a continuum from smaller and
less productive patterns to the larger, extremely productive ones”. She devises two
experiments where she elicits judgments about the interpretation of novel compounds,
built either using a specific pattern or at random. The conclusion of her experiments
is that if the compound is based on a specific pattern, the responses of the partici-
pants will be very homogeneous and will produce approximately the same meaning
interpretation that was used to create the compound in the first place. Furthermore,
she found a remarkable uniformity in the participant’s responses when interpreting
random compounds7, suggesting that different individuals tend to use similar linguistic
templates, even when confronted with a seemingly odd construction.

Another interesting observation Ryder (1994) makes is that if accommodation is
required to arrive at a meaning for the compound, the head is accommodated 4.6
times more frequently than the modifier. An example she gives is the compound
school-shark, where 62.5% of the subjects chose to accommodate the head shark to one
of its metaphorical senses8, even as the noun school has a sense related to marine life9.

She concludes that the use of compounding is predictable, but that each compound
can be assigned a range of possible meanings. The range is very restricted in some
cases, leading to a rule-like interpretation, while in other cases the range covers a larger
number of interpretations. Ryder (1994)’s probabilistic perspective on the interpretation
of compounds, justified by the methodology used in her experiments, suggests that a
model for the automatic interpretation of compounds should be designed to allow for
the same range of interpretations that was observed in the human responses.

7compounds produced by randomly pairing two concrete nouns. E.g. from Ryder (1994): dish-stick,
ear-stone, elephant-web.

81. a person who is ruthless and greedy and dishonest; 2. a person who is unusually skilled in
certain ways; definitions from WordNet 3.1 (Fellbaum, 1998).

9a large group of fish; definition from WordNet 3.1.
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Lauer (1995) covers two aspects of noun compound interpretation: parsing com-
pound noun sequences of length greater than two, and the semantic analysis of noun
compounds. The parsing component is intended to distinguish between left-branching
and right-branching interpretations: e.g. the compound company tax policy10 can be
either interpreted in a left-branching way, as a policy regarding company tax or in a
right-branching way, as tax policy that applies to companies.

Lauer (1995) proposes a model that captures dependency relations between the
compound constituents. The intuition behind his model is that if the first two nouns
form a more acceptable sequence (e.g. company tax), then the construction should
have a left-branching interpretation. If, however, the first and the third noun are a
more acceptable sequence (e.g. company policy), then the construction is deemed to be
right-branching.

Lauer (1995)’s parsing system requires three ‘ingredients’: a corpus, a part-of-speech
lexicon and a thesaurus. He uses The New Grolier Multimedia Encyclopedia (Grolier
Inc., 1992), comprising about 8 million words, as a corpus. The part-of-speech lexicon
is used to determine which words are listed as always being nouns. This information
is used in extracting compound sequences from the raw text corpus, while trying to
minimize the erroneous extraction of sequences where words with multiple possible
parts-of-speech are used in their non-nominal sense. The third ingredient, the thesaurus,
is used to group together the constituent nouns into a set of categories. Lauer (1995)
uses Roget’s thesaurus containing 20,445 nouns grouped into 1043 categories, with
an average of 34 distinct words per category (e.g. goldfish and trout are in the same
category).

Lauer (1995)’s training set consists of 24,251 two-noun compounds extracted from
the Grolier corpus, where each constituent appeared in Roget’s thesaurus. The model
is based on the concept of affinity, i.e. how likely it is for the concept represented by
the first noun to act as a modifier for the concept represented by the second noun. The
affinity between concepts is estimated using the training set compounds, and is then
used to predict the correct interpretation of the compounds in the test set. The test
set has 244 three-noun compounds which were manually annotated for being either
left or right branching. The model computes a ratio between the probability of the
sequence being left-branching and it being right-branching. One interesting aspect
is that the formula used by Lauer (1995) factors in the possibility of a word being
polysemous and thus ‘shared’ between multiple categories - consider suit (law) and
suit (clothing). The model is able to predict the correct branching for 77.5% of the
test compounds, while the most frequent interpretation baseline is at 66.8%. The most
frequent interpretation baseline is the left-branching one, thus concurring with the
empirical observation concerning the most common type of structure made earlier by
Warren (1978).

Lauer (1995) approaches the semantic analysis of noun compounds using preposi-
tional paraphrasing. He states the problem as follows: given a noun-noun compound,
specify its semantic interpretation by predicting the preposition involved in the com-

10example from Lauer (1995).
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pound’s preferred paraphrase. The choice is between eight possible prepositions: of,
for, in, about, with, from, on and at. The intuition here is that a compound like reptile
heaven and its prepositional paraphrase heaven for reptiles are interchangeable and
will be used with approximately the same frequency, so one can use the prepositional
paraphrase estimates to model the compound interpretation. The test set consists
of a random sample of 400 noun-noun compounds from the Grolier corpus, which he
manually annotates, talking the actual sentential context into account.

The model makes again use of the categories in Roget’s thesaurus to abstract
above the lexical level. For each (concept, preposition) tuple the model estimates
two probabilities, depending on whether the concept is the attachment head or the
object of the preposition. The model makes a strong independence assumption, namely
that the modifier and the head concept contribute their preferences for a particular
prepositional paraphrase independently, and the best interpretation is the one that is
the most likely given the independent preferences of the modifier and of the head.

The model analyses each compound with respect to each preposition, and provides
a score for every choice. The prediction of the model is taken to be the preposition
with the highest score among the eight possible ones. The model achieves an accuracy
of 47%, where the most frequent preposition baseline (of ) is at 33%. In the discussion
section Lauer (1995) points to the fact that the concept association was not the best
modeling choice because preposition have lexical collocation preferences, and the same
concept might in reality require different prepositions depending on the actual noun.
Also, the assumption that the head and the modifier have completely independent
preferences does not always hold - e.g. in welfare agencies one has to take both nouns
into account to rule out the fact that agencies cannot be the beneficiary of welfare.

Lauer (1995)’s study is one of the first to attempt a statistical modeling of the noun
compounds, by leveraging information obtained from large amounts of unannotated
text. This makes his system one of the first ones to depart from hand-crafted knowledge-
based models, which generally had good results on the subset of modeled compounds
but poor generalization capabilities. However, the relatively modest results obtained
by Lauer (1995)’s system point to the challenges in building an automated system
for the semantic analysis of noun-noun compounds, and underline the importance of
choosing compound representations that are compatible with the proposed task.

Barker and Szpakowicz (1998) propose an inventory of 20 semantic relations for
specifying the semantics of noun compounds. For each semantic relation they provide
a paraphrase to aid in the interpretation task (e.g. winter semester :time:‘modifier
is the time of compound’; paper tray:content:‘modifier is contained in compound’).
They propose an interactive, semi-automatic system for assigning semantic relations
to compounds. It keeps a history of the semantic relations previously assigned to
compounds with the same head or with the same modifier. For each new compound to
be interpreted, it proposes a list of likely semantic relations to choose from. The list
includes the paraphrase for each semantic relation, with the head/modifier/compound
slots filled in by the modifier/head/compound that is currently being analyzed. Barker
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and Szpakowicz (1998) report that the correct semantic relation was among the ones
proposed by the system for 69% of the 886 compounds analyzed in this way. Their
system relies on the intuition that compounds that share the modifier or the head are
likely to also share the subset of semantic relations that render their semantics.

The new annotation scheme to be presented in Section 2.2 will follow similar
principles, advocating for a head-centric annotation of compounds. In this setup, the
annotation task presupposes that one annotates all the compounds with the same
head at one time, thus encouraging the emergence of annotation patterns: e.g. the
annotation of compounds with the head cup will likely lead to the identification of
compound clusters that are labeled with a material relation (e.g. plastic cup, porcelain
cup) and with a content relation (e.g. tea cup, coffee cup). The same patterns might
emerge later when annotating a similar head like glass - e.g. plastic glass, beer glass
etc.

Rosario and Hearst (2001) study the semantic relations in nominal compounds in
a domain-specific setting. They focus on noun compounds extracted from biomedical
text and consequently their relation inventory is the result of applying the general
techniques previously described in the literature to the particularities of the biomedical
domain. It is interesting to note that some of the relations in their inventory are used
in the same way as in general-purpose classification schemes (e.g. material for latex
glove, topic for headache questionnaire, instrument for laser irradiation), whereas
others are overloaded with meanings specific to the biomedical domain (e.g. location
is used both in for physical locations as in hospital beds and for parts of the human
body, as in brain artery, liver cell). In addition, their inventory also contains relations
that cater to the particular needs of the biomedical subdomain they are modeling (e.g.
defect for gene mutation, or procedure for brain biopsy). Some of the relations
also specify the directionality of the relation (e.g. cause(1-2) for food infection, where
the food causes the infection vs. cause(2-1) for flu virus, where the flu is caused by
the virus).

Rosario and Hearst (2001) identify 38 semantic relations, but use for the automatic
classification only a subset of 18 semantic relations which label a minimum of 25 of
examples in their dataset. The classification experiments are based on two types of
representations: first, a lexical representation, where each word is represented as a one-
hot vector of the dimensionality of the vocabulary (1184 words, in their case); second,
a knowledge-based representation using MeSH (Medical Subject Headings), a domain-
specific lexical hierarchy. Compound representations are formed by concatenating the
representations of their two constituents.

A neural network with one hidden layer and a tanh nonlinearity is used to perform
the classification. The network outputs a number in (0,1) for each of the 18 possible
semantic relations, representing the probability that the compound under examination
is based on a particular semantic class. This architecture makes it possible to model
compounds where two or more relations are deemed as possible (e.g. bladder dysfunction
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can be labeled both location and defect), and render unnecessary strict guidelines
for labeling a compound with one relation or the other.

Rosario and Hearst (2001) obtain almost the same performance using the lexical
features (62% accuracy) and the MeSH hierarchy features (61% accuracy). However,
they prove that the model based on MeSH hierarchy features has better generalization
capabilities than the model based on lexical features. They simulate more realistic
scenarios in which the system has to predict the relations of compounds whose heads,
modifiers or both constituents were not seen during the training procedure. In such
cases, the hierarchy-based model is still able to make sensible predictions, whereas the
lexical model is reduced to random guessing.

Rosario et al. (2002) show that the compound-internal semantic relation can be
identified with an accuracy of approximately 90% by using the semantic categories
that the head and the modifier belong to. The semantic categories are identified
by traversing in a top to bottom fashion the same domain-specific lexical hierarchy,
MeSH, that was used by Rosario and Hearst (2001). The examples they give are
compounds like leg paresis, skin numbness and hip pain where in each case the modifier
is a Body Region (MeSH category A01) and the head is a Nervous System Disease
(MeSH category C10). They consider the relation that holds for these compounds to
be located in. This semantic relation is considered then to be a general pattern for
the compounds with modifiers and heads belonging to these two particular categories.

Fig. 2.1 Clustering of compounds with respect to the MeSH categories of their con-
stituents; figure reproduced from Rosario et al. (2002).

Figure 2.1, reproduced from Rosario et al. (2002), illustrates the clustering of
compounds with respect to the MeSH categories. The 15 level 0 categories of the MeSH
hierarchy are plotted on the horizontal axis - for the modifier - and on the vertical axis
- for the head. The distribution of compounds is shown to be non-uniform, meaning
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that for a compound with the head/modifier from a specific category there is only a
subset of semantic relations that could potentially apply. Intuitively, their study shows
that categorical information regarding the semantics of the modifier and the head
can be used to pre-filter the semantic relations that are possible given the observed
categories of the constituents, an idea also put forth in previous studies (Warren, 1978;
Finin, 1980; Ryder, 1994).

Nastase and Szpakowicz (2003) propose an annotation scheme with 50 relations
for annotating the semantics of modifier-noun pairs. The modifiers can be nouns,
adjectives or adverbs. They use the relations to annotate a dataset of 600 modifier-
noun pairs, and end up using only 30 of the 50 proposed relations, because the other
20 relations do not occur in their dataset. Examples of compounds annotated using
their annotation scheme are flu virus, annotated with the semantic relation cause,
concert hall annotated as purpose, printer tray annotated as part and daisy chain
annotated as whole. Each relation has an associated paraphrase that can be used
for testing if the relation applies to a specific compound: e.g. cause is paraphrased
as H makes M occur or exist. The constituents of the annotated compounds are also
disambiguated with respect to the word senses in Roget’s thesaurus, using WordNet
(Fellbaum, 1998) as additional information. In their experiments they use Roget’s and
WordNet-based features to build semantic relation classifiers, with an expressed aim of
obtaining an interpretable algorithm rather than a perfect score. The best performance
was obtained using a rule induction system.

Lapata and Keller (2004) showed that the prepositional paraphrases for noun
compounds can be predicted using co-occurrence frequencies obtained from the web.
They show that large amounts of unannotated web data can provide more information
about the typical preposition than the statistics obtained from a balanced corpus like
the BNC, or by the use of concepts instead of nouns in the interpretation process
like in Lauer (1995). Lapata and Keller (2004) evaluate their co-occurrence models
on Lauer (1995)’s test dataset and obtain 55.71% accuracy at predicting the correct
prepositional paraphrase using a trigram model, fpn1, p, n2q. For comparison, Lauer
(1995)’s best result was 47% accuracy.

Kim and Baldwin (2005) use the inventory of 20 semantic relations proposed by
Barker and Szpakowicz (1998) to annotate a dataset of 2,169 binary noun compounds.
They note that particular pairs of semantic relations seem to be the cause for systematic
disagreement between the annotators: source and cause, purpose and topic,
object and topic. Their approach to the automatic interpretation is based on
four WordNet similarity measures, namely wup (finds the depth of the least common
subsumer (LCS) of two words, normalized using the combined depth of the concepts),
lch (length of the path between the two concepts, scaled by the maximum length
path), jcn (subtracts the information content on the LCS from the sum) and lin
(scales the information content of the LCS relative to the sum).
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Compounds in the test set are compared (pairwise) to all the compounds in the
training set. Each test compound is then assigned the semantic relation of the most
similar compound from the training set. When comparing two compounds, each
similarity measure is applied to the modifier pair (mi, mj) and to the head pair (hi, hj).
The modifier and head similarities are then integrated into a compound-level similarity
either using a linear combination with a weighting parameter α or using the F-score
formula. The best accuracy, 53.3%, is obtained using wup similarity and α=0.5.

Although they are using a WordNet-based approach, Kim and Baldwin (2005)
argue that explicit disambiguation of the constituents’ senses is not required for the
interpretation of noun compounds. Their position is that the pairwise comparison with
other compounds in enough to filter out compounds containing different senses of a
word: e.g. loan rate is judged to be more similar to bank interest than to personal
interest because simpbank, loanq ą simppersonal, loanq.

Turney and Littman (2005) use the 600 noun-modifier pairs labeled by Nastase
and Szpakowicz (2003) in a series of experiments. Their approach stands out from
others because they try to explicitly model the relation and quantify relational
similarity, rather than modeling the constituents and thus model the relation between
the constituents only indirectly. They construct relation representations by considering
a series of 64 patterns such as X of Y, X for Y, X onto Y and their inverses. For
each pattern, they record the frequency of occurrence (X and Y are replaced by the
modifier and the noun, respectively). The logarithm of the frequencies is used to
build a 128-dimensional feature vector. The similarity of two relations is computed
by measuring the cosine of the angle between their log-frequency vectors. Turney and
Littman (2005) obtain an F1 score of 26.5 at predicting one of the 30 semantic relations
for the 600 noun-modifier pairs, using nearest neighbor classification and leave-one-out
cross-validation.

Turney (2006) reports on another set of experiments using the same dataset labeled
by Nastase and Szpakowicz (2003). Turney (2006) makes explicit the distinction
between attributional and relational similarity. The attributional similarity of two
concepts A and B “depends on the degree of correspondence between the properties of
A and B” (Turney, 2006:381). Concepts with a high degree of attributional similarity
are for example dog and wolf. Relational similarity is measured between two pairs
of words A:B and C :D, and “depends on the degree of correspondence between the
relations between A and B and the relations between C and D” (Turney, 2006:382). Good
analogies, like mason:stone::carpenter:wood have both high relational similarity between
the pairs mason:stone and carpenter:wood as well as high attributional similarities
between the individual components of the pairs - mason-carpenter and stone-wood.
Turney (2006) models the relational similarity of noun-modifier pairs using a technique
he calls Latent Relational Analysis (LRA). Using the same setup like in Turney and
Littman (2005) and the LRA-based features, Turney (2006) obtains an F1 score of
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36.6 at predicting the correct semantic relation for the 600 noun-modifier pairs in the
dataset.

Girju et al. (2005) annotate noun compounds using the list of 8 prepositional
paraphrases proposed by Lauer (1995) and their own list of 35 semantic relations. Girju
et al. (2005) annotate both two part compounds as well as compounds that consist of
three nouns. The constituents of the compounds are disambiguated with respect to
WordNet senses. It is interesting to note that the authors devise an inventory with 35
semantic relations before they start the annotation task. At the end of the annotation
(approx. 4500 compounds), they discover that only 21 out of the 35 proposed relations
were actually used by the annotators. Most frequent in their case are the relations
part-whole(girl mouth), attribute-holder(quality sound), purpose(migraine
drug), location(Texas university), topic(art museum) and theme(car salesman).
Their experiments focus on the automatic identification of the best semantic relation
for a given compound. The best results are obtained using a binary Support Vector
Machine (SVM) classifier for each pair of relations and a majority voting scheme for
selecting the winning semantic relation label. The results for the semantic relation
classification task show a marked increase in accuracy (from 43.53% to 66.78%) if the
“gold” preposition is added as an additional feature, suggesting that there is a close
interaction between the semantic relation and the corresponding preposition.

Girju (2006) approaches the compound interpretation problem from a multilingual
perspective, and studies compounds in English along with their translations in four
Romance languages: French, Italian, Spanish and Romanian. The annotation inven-
tory contains in this case 22 semantic relations and the corresponding prepositional
paraphrases. Each compound is translated into the four Romance languages. A dataset
is formed by taking only those noun-noun compounds, ’N N’, whose translations in
all four Romance languages follow the pattern noun-preposition-noun, ’N P N’. The
automatic classification experiments in Girju (2006) show that: (i) adding the English
prepositional paraphrase improves the accuracy of semantic relation identification (from
56.03% to 58.02%); (ii) accuracy is further improved by adding the prepositions from
translations in different languages as features (66.1% using the French prepositions;
68.5% with French and Italian; 69.3% with French, Italian and Spanish and 71.2% with
the prepositions used for translating the compound into all four Romance languages).

Ó Séaghdha (2008) develops a relational annotation scheme for compounds, follow-
ing Levi (1978)’s predicate-based proposal. His inventory and the associated annotation
guidelines are aimed at minimizing the ambiguity in assigning an unique annotation
label to each compound. The inventory includes six categories for capturing coherent
semantic relations (be, have, in, actor, inst, about) and three categories for
other compounds, whose semantics is not covered by the previous six categories (rel,
lex, unknown). The annotation also considers the directionality of the semantic
relation: subscript 1 is used to indicate that the order of the constituents matches
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the order specified by the relation’s definition, while subscript 2 is used to mark the
reverse order of the constituents w.r.t. the definition of the relation. Table 2.1 presents
the inventory of semantic relations proposed by Ó Séaghdha (2008), together with
illustrative examples.

Relation Example Definition

be
soya bean
ice crystal
cat burglar

N2 which is (a) N1; N2 like N1:
appositive compounds
material-form compounds
resemblance compounds

have
reader mood
grass scent
computer clock
star cluster

compounds expressing:
mental or physical conditions
and properties;
part-whole relations
group membership

in pig pen
evening edition

spatial location
temporal location

actor student demonstration participants are sentient
(includes organizations)

inst production line participants are not sentient
about history book

exam practice
house price

an item that is about something
mental state or activity
prices and charges

rel lithium hydroxide
diamond jubilee

used as a fall-back category when none
of the six categories above can be used;

lex monkey business for lexicalized or idiomatic compounds;
unknown non-interpretable compounds

Table 2.1 Semantic relations in Ó Séaghdha (2008)’s inventory - excerpt from Table 3.1
in Ó Séaghdha (2008).

Ó Séaghdha (2008) evaluates the annotation scheme in an inter-annotator agreement
study. He reports 66.2% raw agreement and a Kappa score of 0.62 for the semantic
relation annotation on a sample of 500 compounds. The compounds are automatically
extracted from the British National Corpus (Burnard, 1995), a text collection containing
90 million words. The interpretation of the compound is always performed in context:
the annotator is presented with the compound and the corpus sentence where it occurs,
and is asked to provide a relation label and a directionality judgment Another important
aspect of this study is that many of the chosen compounds are infrequent - 97 out of
the 500 compounds in the IAA study occur only once in the BNC.
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1443 compounds annotated with the six semantic relations are subsequently used
in machine learning experiments. The six semantic classes label roughly similar
proportions of data: the most frequent relation, in, labels 21.3% of the data; the least
frequent, be, labels 13.2%.

Two types of information are used to capture the interaction between the compound
constituents: lexical information - information about the compound constituents as
individual words and relational information - information about the typical interactions
between the entities designated by the pair of constituents. Based on the lexical
and relational information one can distinguish between different types of similarity
for a particular concept. Lexical similarity considers pairwise similarities between
constituents: plastic knife and metal spoon are similar because the pairs (plastic, metal)
and (knife, spoon) are similar. Relational similarity models the typical interactions
between compound constituents using the contexts where they appear together as
independent words. The underlying intuition is that word pairs appearing in similar
contexts will have similar semantic relations. Consider the contexts: “The knife was
made of cheap plastic.”; “Spoons are typically made of metal.”. Given the similarity of
the contexts, the relation between knife and plastic is assumed to be similar to the
relation between spoon and metal.

The distinction between lexical and relational similarity is similar to the one
proposed by Turney and Littman (2005) and Turney (2006), who refer to lexical
similarity as attributional similarity.

Ó Séaghdha (2008) uses distributional information to model the semantics of the
compound constituents. A first set of features, which is based on conjunctions, is
extracted from the tagged, lemmatized and parsed BNC corpus. In effect, the noun Ni

is modeled using the information provided by the counts of the relation conjpNi, Nj),
were Nj is part of the target vocabulary. The target vocabulary contains the 10,000
nouns that occur most frequently in a conjunction relation in the corpus. Each co-
occurrence vector is normalized to either L1 or L2 norm, depending on the kernel it
will be used with.

Another set of features is based on the Web 1T Google 5-Gram Corpus (Brants
and Franz, 2006), and builds distributional representations in a similar way to the
conjunction-based features. However, parsing cannot be used in this case, as the corpus
consists only of word ngrams. Therefore, the pattern used to extract co-occurrence
information from the ngrams is based on the “joining terms” used previously by
Turney and Littman (2005)11. The target vocabulary is constructed independently for
each joining term and consists of the 10,000 most frequent co-occurrences with that
term. The extraction pattern allows for non-nominal material after the joining term:
Ni J p␣Nq˚ Nj ␣N . In this extraction pattern Ni is the noun to be modeled, J is the
joining term, ␣N is a non-nominal and Nj is a noun from the target vocabulary.

The Web 1T corpus is also the source of verbal co-occurrence information, extracted
using the patterns Ni that|which|who V ␣N and Ni that|which|who V p␣Nq˚ Nj ␣N ,

11The joining terms used by Ó Séaghdha (2008) are: and, or, about, at, by, for, from, in, is, of, to,
with and like.
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where Ni and Nj are the nouns to be modeled and V is the verb. The feature takes
into account if the noun occurs before the verb (subject reading) or after the verb
(object reading).

The classification experiments use SVMs with an extension for multi-class classifica-
tion. The setup uses 5-fold cross-validation. The experiments compare the performance
of different kernel types, and the impact of the different features on the classification
task. The best classifier based on lexical features is the JSD RBF kernel using 5-gram
features based on the joining term and, which obtains 61.0% accuracy and 58.8%
F1-score. The contribution of the distributional representation of the head noun is
proven to be more important for the classification than the contribution of the modifier
noun: a classifier using head-only features reaches an accuracy of 51%, while the
modifier-only classifier obtains only 40.1% accuracy.

While a classifier based only on lexical similarity obtains good results, Ó Séaghdha
(2008) further shows that the combination of lexical and relational features can improve
the classification results. Relational features are based on contexts where the two
constituents of the compound occur together as separate words and are modeled via
string kernels. Relevant contexts for each compound are extracted from the BNC and
from the Gigaword corpus. The combination of the best classifier using lexical features
and the best JSD set kernel using relational features resulted in the best classification
performance overall: 62.7% accuracy, 61.2% F1-score.

The best results on the dataset proposed by Ó Séaghdha (2008) were reported
in Ó Séaghdha and Copestake (2013). The setup follows closely the one in
Ó Séaghdha (2008), with the difference that now the feature extraction relies heavily
on the grammatical relations between the constituent words, extracted in the form
of dependency tuples. The lexical information is gathered from corpus sentences
containing the compound constituents. The sentences are automatically parsed and all
the tuples of the form (dependency relation, dependent word) which have a constituent
as a head are considered as features. Ó Séaghdha and Copestake (2013) consider as
relational information only the sentences where a pair of constituents appears as two
separate words and are no more than ten words apart. As an additional restriction,
the contexts that extend past five words to the left of the leftmost constituent or five
words past the right of the rightmost constituents are discarded.

Again, classifiers using lexical information performed better than the ones using
relational information: the best result using lexical information was 63.0% accuracy
and 61.0 F1-score, while the best result obtained using relational information was 52.7%
accuracy and 50.7 F1-score. The best overall result was obtained by a combination of
the individual lexical and relational classifiers, which obtained an accuracy of 65.4%
and 64.0 F1-score.

Tratz and Hovy (2010) propose a fine-grained taxonomy with 43 semantic relations
for annotating the semantics of noun compounds, and an annotated dataset containing
17509 compounds. The taxonomy consists of semantic categories that resemble but
are not identical to the ones previously proposed by Barker and Szpakowicz (1998)
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and Girju et al. (2005). Tratz and Hovy (2010) motivate their new inventory by the
necessity to achieve more reliable inter-annotator agreement than was obtained for
these earlier inventories.

Word-based features

- {synonyms, hypernyms} for all NN and VB entries for each word
- intersection of the words’ hypernyms
- all terms from the ‘gloss’ of each word
- intersection of the words’ ‘gloss’ terms
- lexicographer file names for each word’s NN and VB entries (e.g. n1:substance)
- logical and of lexicographer file names for the two words
- lists of all link types (e.g. meronym links) associated with each word
- logical and of the link types (e.g. n1:hasMeronym(s)^n2:hasHolonym(s))
- PoS indicators for the existance of VB, ADJ and ADV entries for each noun
- logical and of the PoS indicators for the two words
- ‘lexicalized’ indicator for the existence of an entry for the compound
as a single term
- indicators if either word is a hypernym of the other
- indicators if either word is in the definition of the other
Roget’s Thesaurus-based features

- Roget’s division for all noun (and verb) entries for each word
- Roget’s divisions shared by the two words
Surface-level features

- indicators for the suffix types (e.g. deadjectival, de-nominal [non]agentive,
deverbal [non]agentive)
- indicators for degree, number, order, locative prefixes (e.g. ultra-, poly-,
post- and inter-, respectively)
- indicators for whether or not a preposition occurs within either term
- the last {two, three} letters of each word
Web 1T ngram features

- patterns over trigrams and 4-grams containing both constituents
Table 2.2 Features used for automatically classifying semantic relations in noun com-
pounds by Tratz and Hovy (2010).

The taxonomy was developed gradually and the process involved both refining
existing categories and removing problematic categories. The taxonomy’s development
process was guided by the analysis of the disagreements between the annotations of
different annotators, gathered using Amazon’s Mechanical Turk service. The taxonomy
and the definitions that were provided with it are intended to provide a way to
uniquely label any given compound using a single relation label. The refinement steps
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Category name Dataset percentage Example

Objective
objective 17.1% leaf blower

Doer-Cause-Means
subject 3.5% police abuse
creator-provider-cause_of 1.5% ad revenue
justification 0.3% murder arrest
means 1.5% faith healer

Purpose/Activity Group
perform&engage_in 11.5% cooking pot
create-provide-generate-sell 4.8% nicotine patch
obtain&access&seek 0.9% shrimp boat
mitigate&oppose 0.8% flak jacket
organize&supervise&authority 1.6% ethics authority
purpose 1.9% chicken spit

Ownership, Experience, Employment, Use
owner-user 2.1% family estate
experiencer-of-experience 0.5% family greed
employer 2.3% team doctor
user_recipient 1.0% voter pamphlet

Temporal Group
time-of1 2.2% night work
time-of2 0.5% birth date

Location and Whole+Part/Member of
location 5.2% hillside home
whole+part_or_member_of 1.7% robot arm

Composition and Containment Group
contain 1.2% shoe box
substance-material-ingredient 2.6% plastic bag
part&member_of_collection&config&series 1.8% truck convoy
variety&genus_of 0.1% plant species
amount-of 0.9% traffic volume

Topic Group
topic 7.0% travel story
topic_of_cognition&emotion 0.3% auto fanatic
topic_of_expert 0.7% policy expert

Other Complements Group
relational-noun-complement 5.6% eye shape
whole+attribute&feature 0.3% earth tone
&quality_value_is_characteristic_of

Attributive and Equative
equative 5.4% fighter plane
adj-like_noun 1.3% core activity
partial_attribute_transfer 0.3% skeleton crew
measure 4.2% hour meeting

Other
lexicalized 0.8% pig iron
other 5.4% contact lense

Personal*
personal_name 0.5% Ronald Reagan
personal_title 0.5% Gen. Eisenhower

Table 2.3 Semantic relation inventory used by the Tratz dataset - abbreviated version
of Table 4.5 from Tratz (2011). Note that some relations have a slightly different name
in the actual dataset than the aforementioned table; this table lists the relation names
as found in the dataset.
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described by the authors clearly target relations that were systematically confused by
the annotators, with the aim of modifying the taxonomy in order to minimize such
sources of confusion.

The categories are defined using sentences: e.g. the category substance has
the definition n1 is one of the primary physical substances/materials/ingredients that
n2 is made/composed out of/from. The name of the relation is usually a two part
description of the expected categories of the two constituents separated by the ` sign:
e.g. substance/material/ ingredient + whole. The individual categories form
taxonomic groupings, e.g. the temporal group, the causal group, the purpose
group, etc.

Tratz and Hovy (2010) report on automatic classification experiments on their newly
proposed dataset using a Maximum Entropy classifier. They extract a wide variety
of features, relying both on knowledge-bases like WordNet and Roget’s thesaurus, on
ngram data from the Web 1T corpus as well as on surface-level features. Table 2.2
presents a list of the features used by Tratz and Hovy (2010). The features model both
the semantics of the individual constituents of the compound, as well as their pairwise
interactions (especially via relations in the WordNet hierarchy). One of the features
explicitly targets lexicalization, and marks compounds that have dedicated entries in
WordNet. The experimental setup used 10-fold cross-validation. The feature ablation
study shows that the two features with the strongest influence were the hypernyms
feature and the WordNet gloss terms feature, thus underlining the importance including
type-level information into the feature set. Tratz and Hovy (2010)’s classifier obtains
an accuracy of 79.3% on their dataset, and 63.6% on Ó Séaghdha (2008)’s dataset.

Tratz (2011) proposes a revised noun compound relation inventory with only 37
semantic relations which allows for a better mapping between prepositional paraphrases
and noun compound relations. The compound classification experiments described
in Tratz and Hovy (2010) were, however, not re-run on the revised dataset. Since
only the Tratz (2011) dataset is publicly available as part of the semantically-enriched
parser built by Tratz (2011)12, this dataset is used in the semantic relation classification
experiments in Chapter 7. The Tratz (2011) dataset is the largest publicly-available
annotated noun compound dataset for English, containing 19158 compounds annotated
with 37 semantic relations. Table 2.3, which is an abbreviated version of Table 4.5 in
Tratz (2011), illustrates these relations by characteristic examples and indicates the
relative frequency of each relation within the dataset as a whole.

Klos (2011) analyses the process of compounding in German, focusing in particular
on the impact of composition and compositionality in the interpretation of nominal
compounds. The analysis includes a series of studies whose goal is to uncover the
mechanisms that people make use of when interpreting compounds. Two of these
studies are of particular interest for this thesis: the first one, which studies the context-
free interpretation of compounds, and the third one, which complements the first study
by looking at how the interpretation is affected by context.

12The dataset is available for download at http://www.isi.edu/publications/licensed-sw/fanseparser/
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Study 1: Context-free interpretation of compounds. Although from a data-
driven perspective Klos (2011)’s corpus of 20 compounds in the first study seems
exceedingly small, it becomes clear that the added value here are the range of interpre-
tations offered for these compounds by the 117 participants in the online study. The
compounds chosen for the study fall into four categories, ranging from idiomatic to
newly coined: lexicalized compounds (e.g. Geisterfahrer ‘ghost rider’), institutionalized
compounds (e.g. Raucherkneipe ‘smoker’s bar’), deictic compounds (e.g. Autofieber
‘automobile fever’) and randomly constructed compounds (e.g. Tassentier ‘cup animal’).
Klos (2011) draws several conclusions from this study:

• people are generally aware of the fact that a compound can have multiple
senses, and will, when the compound is unknown to them, propose several likely
interpretations;

• the interpretation is usually based on a concrete semantic relation involving the
two constituents of the compound; an interpretation based on an underspeci-
fied relation is in most cases to vague to be considered a satisfactory meaning
interpretation;

• each compound is compositional to a different degree; this makes it possible
to derive the generally accepted interpretation for a subset of the unknown
compounds; however, the compositional interpretation will not correspond to the
generally accepted interpretation in all cases;

• the moment a person knows the object denoted by a compound, she can have
the illusion of compositionality: “once one knows that a houseboat is a boat that
one can sleep and cook in, the contributions of its morphemes to the meaning
seem clear” (Libben, 2006:11).

• when the analysis of a compound using the normal ordering (modifier first, head
second) does not lead to a plausible interpretation, the grammatical rules will be
overridden and the interpretation will use the constituents in the reverse order;

• compounds can be analyzed in isolation, as long as the person can think of
a suitable interpretative context for their analysis; the context is generally
determined by the semantics of the head word.

• people make use of known word associations when interpreting unknown com-
pounds: the randomly created compound Hausleger, lit. ‘house layer’ is inter-
preted as persons that lays houses like eggs, i.e. that builds many houses because
the verb legen, from which the noun Leger is derived, collocates strongly with
the noun Eier ‘eggs’ in the expression Eier legen ‘to lay eggs’.

Study 3: Compound interpretation in and out of context. Klos (2011) looks at
the differences in compound interpretation with and without context. A person is first
asked to interpret a compound without context, and is subsequently asked to reconsider
the interpretation while looking at the compound’s actual context of occurrence. The
goal of the study is to find out if the initial out-of-context interpretation is revised,
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modified or confirmed in the presence of context. The study focuses on five compounds
identified in the columns of a magazine for women. Thirty participants are asked to
interpret the five compounds, first in isolation and then given the original context of
the article where the compound was extracted from. The results of the study show
that while context can help in the interpretation of compounds, its presence does not
necessarily lead to a clear, unique and unambiguous interpretation of the compound.
The compositional interpretation plays, also in this case, the leading role, while the
immediate context serves as a way to identify the textual referents named by the
compound.

Summary. The approaches to noun-noun compound interpretation surveyed in this
section present an interesting discrepancy: early theoretical models make use of a very
rich set of semantic features and an accompanying format for arranging this knowledge
and try to come as close as possible to describing the compound interpretation process
as done by humans. In contrast, the modern computational approaches aim at modeling
compounds using a ‘flat’ representation of the constituents, obtained using various
counts and statistics derived from corpora. Even if the modern annotation schemes
make use of semantic distinctions similar to the features proposed early by Warren
(1978), Finin (1980) or Ryder (1994), the computational methods focus directly on the
task of classifying the compounds according to some annotation scheme. The aim of this
thesis is to analyze the semantics of compounds with the purpose of understanding how
to devise a method for creating computational representations for nominal compounds.
These representations should, ideally, be able to capture both the semantics of the
individual constituents as well as the semantic relation that connects them.

The next section introduces a new hybrid annotation scheme. The dataset annotated
using this annotation inventory, presented in Section 7.1.1, is used in computational
experiments targeting the automatic identification of compound-internal semantic
relations described in Chapter 7.

2.2 Head-Centric Compound Analysis with a Hy-
brid Annotation Scheme

Acknowledgement. The annotation scheme described in this section is the result of
a team effort - see the Chapter 8.1, Contributions section for details.

This section introduces a new, hybrid annotation scheme which uses both
semantic relations (properties) and prepositional paraphrases (prepositions) to
render the semantics of noun-noun compounds. The motivation for combining semantic
relations with prepositional paraphrases can be illustrated for German by considering
the set of compounds involving the concrete noun Haus ‘house’ presented in Table 2.4.
They illustrate the range of modifiers the head Haus can combine with and the diverse
set of semantic relations and prepositional paraphrases that need to be assigned.
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material, user, goods and location are only a subset of the properties that
compounds with the head Haus can have13.

Compound Property/Preposition

Holzhaus ‘wooden house’ material/aus ‘of’
Schneehaus ‘snow house’ material/aus ‘of’
Steinhaus ‘stone house’ material/aus ‘of’
Gästehaus ‘guest house’ user/für ‘for’
Jugendhaus ‘youth house’ user/für ‘for’
Autohaus ‘car dealership’ goods/für ‘for’
Möbelhaus ‘furniture store’ goods/für ‘for’
Baumhaus ‘tree house’ location/in ‘in’
Eckhaus ‘corner house’ location/an ‘on’

Table 2.4 Compounds with the head Haus ‘house’, annotated both with a semantic
relation (property) and a prepositional paraphrase (preposition).

A straightforward way of conveying the meaning of a compound is to annotate it
with the preposition that best paraphrases the interaction between the modifier and
the head. While such prepositional paraphrases have been proposed in the literature as
being are natural and intuitive (Lauer, 1995), this type of annotation assigns in some
cases the same preposition to compounds where the modifier serves different functions
with respect to the same head.

For example, the compound Gästehaus ‘guest house’ refers to a building whose
intended users are the guests. In contrast, the compound Autohaus ‘car dealership’
does not refer to a building whose intended users are cars, but rather to a building
that is used for displaying and selling cars. Still, both compounds are paraphrased
using the same preposition für ‘for’. These differences in interpretation are reflected
in the new hybrid annotation scheme by the annotation with different properties, in
this case user for Gästehaus and goods for Autohaus. Examples like these justify
the hybrid nature of the new annotation scheme: semantic properties that name the
relation between the modifier and the head are required to further specify the meaning
of the prepositions. Thus, the correlation between prepositions and properties, which
was also noticed in previous analyses (Warren, 1978; Girju et al., 2005; Girju, 2006),
results in a better disambiguation of both meaning aspects.

The dual annotation also yields more consistent annotations. As seen in Table 2.4,
compounds annotated with the same property will typically be associated with the
same preposition or the same subset of prepositions. For example, the properties
material and user are each associated with one preposition in the examples in

13In the annotated dataset which will be presented in Section 7.1.1, Haus is the head of 161
compounds, which are annotated with 19 different semantic relations.
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Table 2.4 (aus ‘of’ and für ‘for’, respectively). The property location is associated
with two different prepositions that further specify the spatial arrangement: Baumhaus
‘tree house’ refers to a house that is located in ‘in’ a tree, whereas Eckhaus ‘corner
house’ signifies a house that is located an ‘on’ the corner. In cases where the same
preposition is associated with more than one property, the property serves to further
disambiguate the meaning of the preposition. The preposition für ‘for’, associated
with the properties user and goods in the examples in Table 2.4, is a case in point.

This multi-way mapping between the properties and the prepositions in the anno-
tation scheme can be explained by the fact that the set of prepositions outnumbers
the set of properties: Table 2.5 presents an overview of the inventory of properties
and prepositions used by the new annotation scheme. The properties are used to label
the relation between the immediate constituents of a compound and are assumed to
be language-independent. The prepositions, on the other hand, are language-specific
and therefore need to be specified each time the annotation scheme is applied to a
new language. The annotation scheme, in its current instantiation for German, uses
57 properties and 19 prepositions. 26 properties label the compound-internal relation
in its default direction, by specifying the way the first constituent, the modifier,
relates to the second constituent, the head. Examples of such relations are material,
habitat, hyponym, etc. E.g. in Lederschuh ‘leather shoe’ the modifier Leder ‘leather’
names the material that is used for making the Schuh ‘shoe’. These relations have
only appeared in the default direction in the dataset. However, given the data-driven
methodology used for creating the annotation inventory, the possibility that some of
them might have inverses should not be excluded. A point in case is the compound
Geigenholz ‘violin wood’, which is not part of the current dataset. Here the head Holz
‘wood’ names the material used for crafting the modifier Geige ‘violin’, so a suitable
property would be material*, where * is used to indicate the inverse direction of
a relation. However, because this compound is not part of the dataset, the inverse
relation corresponding to material is not part of the current inventory.

The inventory includes 14 bi-directional properties, i.e. where the modifier and the
head can swap the roles they play in the semantic relation: e.g. in Kinderchor ‘children
chorus’, the modifier Kinder ‘children’ denotes the members of the group denoted by
the head Chor ‘chorus’, relation annotated as member. In the case of Marinesoldat
‘marine soldier’, the situation is reversed: the head Soldat ‘soldier’ is a member of the
denotatum of the modifier, Marine ‘marine’, relation annotated as member*.

Althogh far fewer, there are also 3 properties that appear only in the inverse sense
- these are access*, storage* and relation*. E.g. in the case of Bücherregal
‘bookshelf’, the head Regal ‘shelf’ is used as storage for the modifier Bücher ‘books’.
They are considered inverse relations because they specify how the head connects to
the modifier.

Identifying the directionality of the relation has also been undertaken in previous
studies, like Levi (1978) and Ó Séaghdha (2008). If the relation and its inverse are
collapsed into a single unit, the inventory then contains 43 distinct categories and is
comparable in terms of size to the inventories proposed by Warren (1978), Rosario and
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Hearst (2001), Nastase and Szpakowicz (2003) or Tratz and Hovy (2010). As a side
note, Ó Séaghdha (2008) also collapses the direct and inverse of the predicates in his
inventory (containing 6 actual semantic categories). The decision to collapse the two
directions into one label, was, in Ó Séaghdha (2008) case, motivated by the relatively
small size of his compound dataset, and Ó Séaghdha and Copestake (2013) also report
the (more modest) results for the uncollapsed categories. Collapsing the two directions
and identifying the semantic relation as being the same in the two cases makes sense
from a semantic point of view. As illustrated in the example above, the membership of
one constituent to the group denoted by the other constituent can be easily established,
irrespective of the role played by each constituent in the context of the compound.
The experiments in Chapter 7 will report on the results of the automatic classification
using both collapsed and uncollapsed categories.

Property Labeling the
Semantic Relation

Associated
Prepositions
in German

Dataset % Example

Composition Group 17.05%
1 component mit 0.65% Chlorwasser ‘chlorine water’(with)
2 ingredient aus,mit 2.50% Nudelsalat ‘pasta salad’(with)
3 ingredient* für 0.16% Kaffeemilch ‘coffee creamer’(for)
4 member aus 0.66% Kinderchor ‘children chorus’(of)
5 member* von 0.79% Marinesoldat ‘marine soldier’(of)
6 part mit,aus 5.61% Pendeluhr ‘pendulum clock’(with)
7 part* von 6.68% Pferderücken ‘horseback’(of)

Descriptive Group 15.61%
8 appearance mit,wie 3.40% Babypuppe ‘baby doll’(like)
9 appearance* wie 0.86% Mauerring ‘ring wall’(like)

10 attribute als,an,für,in,mit,
keine_prep,von

4.16% Berufssoldat ‘professional soldier’

11 construction method in,mit,wie 0.27% Etagenbett ‘bunk bed’(in)
12 consistency mit,wie 0.46% Fleischtomate ‘beef tomato’(like)
13 material aus 5.89% Lederschuh ‘leather shoe’(of)
14 measure an,für,in,mit 0.15% Literflasche ‘litre bottle’(of)

15 measure* von,zwischen 0.42% Körpertemperatur
‘body temperature’(of)

Locative Group 10.04%
16 habitat an, auf,bei,in,unter 2.34% Wasserfrosch ‘water frog’(in)
17 location an,auf,bei,durch,

in,nach,über,um,
unter,zwischen

5.10% Kirchenkonzert ‘church concert’(in)

18 location* auf,durch,in,um 0.95% Schlossberg ‘castle hill’(on)
19 prototypical place of use an,auf,in,unter 1.65% Gartenstuhl ‘garden chair’(in)

Origin Group 3.08%
20 eponym aus,nach,von 1.21% Sachertorte ‘Sacher cake’(of)
21 origin aus,von 1.87% Angorakatze ‘Angora cat’(from)

Temporal Group 3.09%
22 occasion an,bei,für,in,zu 1.47% Abendkleid ‘evening dress’(for)
23 time an,aus,bei,für,

in,um,von,zu
1.62% Abendblatt

‘evening newspaper’(in)
Usage Group 30.70%

24 active use für 4.68% Ballettschuh ‘ballet shoe’(for)
25 container aus,für,in 0.32% Dosensuppe ‘canned soup’(in)
26 container* für 2.66% Brotkorb ‘bread basket’(for)
27 content aus,mit,von 2.14% Adressbuch ‘address book’(with)
28 function als 2.71% Hausboot ‘house boat’(as)
29 function* als 0.26% Landbrücke ‘land bridge’(as)
30 manner of functioning durch,für,in,mit,

über,wie,keine_prep
2.77% Kohleherd ‘coal stove’(with)
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Property Labeling the
Semantic Relation

Associated
Prepositions
in German

Dataset % Example

31 production method an,aus,durch,in,
mit,nach

0.61% Pfannkuchen ‘pancake’(in)

32 prototypical holder an,auf,in,um 1.30% Haarschleife ‘hair ribbon’(in)

33 prototypical holder* an,für 0.22% Kleiderpuppe ‘mannequin’,
lit. ‘clothes doll’(for)

34 purpose of use für,gegen 3.51% Brotmesser ‘bread knife’(for)
35 result of use für 0.60% Schneekanone ‘snow cannon’(for)
36 storage* für 0.85% Bücherregal ‘bookshelf’(for)
37 user für 4.47% Babybett ‘baby bed’(for)
38 usage für 3.60% Konzerthaus ‘concert house’(for)

Other Properties 18.61%
39 access* zu 0.22% Kellertreppe ‘basement stairs’(to)

40 cause aus,durch 0.19% Vulkaninsel ‘volcanic island’,
lit. ‘volcano island’(by)

41 cause* durch 0.10% Regenwolke ‘rain cloud’(by)
42 comparison wie 0.42% Satellitenstadt ‘satellite city’(like)
43 comparison* wie 0.06% Karriereleiter ‘career ladder’(like)

44 diet keine_prep 0.37% Ameisenbär ‘anteater’,
lit. ‘ant bear’

45 diet* für 0.11% Gänsedistel ‘boar thistle’,
lit. ‘geese thistle’(for)

46 goods für,mit 0.66% Blumenladen ‘flower shop’(with)
47 hyponym keine_prep 1.64% Eichenbaum ‘oak tree’
48 owner von 2.50% Metzgerladen ‘butcher’s shop’(of)
49 owner* mit,von 0.21% Grundeigentümer ‘landowner’(of)
50 product für,mit 1.70% Apfelbaum ‘apple tree’(with)
51 product* von 0.60% Hühnerei ‘chicken egg’(from)
52 raw product aus,von 2.29% Lavandelöl ‘lavender oil’(from)
53 relation* von 0.85% Chorleiter ‘choir leader(of)’
54 specialization für 3.77% Augenarzt ‘eye doctor’(for)
55 topic für,über 2.92% Klavierschule ‘piano school’(for)
56 no property keine_prep 0.72% Eselsbrücke ‘mnemonic’,

lit. ‘donkey bridge’
57 other property keine_prep 1.06% Pfandflasche ‘deposit bottle’

Table 2.5 Semantic relation inventory. The percentages and examples listed here come
from the annotated German dataset presented in more detail in Section 7.1.1.

The properties and prepositions in the new annotation scheme were derived in a
data-driven manner, starting from naturally-occurring examples of compounds. The
compound dataset was obtained by extracting compounds headed by concrete nouns
from the German wordnet GermaNet (Hamp and Feldweg, 1997; Henrich and Hinrichs,
2010). Annotating compounds from GermaNet had several advantages: the compounds
in GermaNet have already been split into their immediate constituents (Henrich and
Hinrichs, 2010). In addition, each constituent is labeled with its part of speech and its
role - whether it is the head or the modifier of the compound.

The particular choice of head nouns was based on a list by Melinger et al. (2006)14.
The list is organized into several categories including animals, plants, professions, food,
furniture, vehicles, buildings, clothing, tools, etc. Additional head nouns were extracted
from GermaNet from similar semantic categories. The motivation for starting with

14http://www.psycholing.es.uni-tuebingen.de/nag/index.php, last accessed April 27, 2017.
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the class of concrete head nouns is that their associated properties are relatively easy
to identify and therefore also to annotate. In some cases, the chosen heads had both
concrete and abstract senses. An example of this type is Zug, meaning ‘train’ in a
concrete sense but which has an assortment of abstract meanings like ‘trait’, ‘feature’,
etc. In such cases the annotation focused only on those compounds with the head in
a concrete sense. The chosen heads also include ambiguous nouns where both senses
refer to a concrete object, like Schloss, which can mean either ‘castle’ or ‘lock’. In this
case compounds relating to both senses were annotated.

The decision to annotate only concrete nouns brings with it an important implica-
tion: the annotation scheme, in its current form, can only be used to label concrete
compounds, similar to the already annotated ones. No assumptions can be made
that using the annotation scheme presented here one will be able to annotate all the
potential compounds of a language. The goal of the annotation effort was to analyze the
patterns that appeared in the naturally-occurring compounds that were investigated,
and advance the understanding of the mechanisms at work for this subset of concrete
compounds.

The annotation was performed on a per head basis: all compounds with the same
head from the data were analyzed and grouped semantically as illustrated for the head
Haus ‘house’ in Table 2.4. This allowed the annotators to identify patterns in the
annotation of similar heads: for example a head that denotes an animal, like Maus
‘mouse’ is likely to form compounds that will identify its habitat (Feldmaus ‘field
mouse’) or its appearance (Streifenmaus ‘striped mouse’), categories that will also
be encountered when annotating other heads denoting an animal: e.g. Eisfuchs ‘polar
fox’, Wasserspinne ‘water spider’ - habitat, Silberfuchs ‘silver fox’, Kreuzspinne ‘cross
spider’ - appearance.

The annotation scheme was designed for annotating noun-noun compounds. In
some cases, the compounds extracted from GermaNet were assigned two modifiers,
a noun and a verb. An example of this type is the compound Badeanzug ‘bathing
suit’, where both the noun Bad ‘bath’ and the verb baden ‘to bathe’ are listed as
modifiers. The annotation in this case considers only the noun to be the modifier, and
assigns the (property, preposition) label that characterizes the relation between the
nominal modifier and the head. Nominalized verbs are allowed both as heads (e.g.
Arbeiter ‘worker’ from arbeiten ‘to work’ in Bauarbeiter ‘construction worker’) and as
modifiers (e.g. Benutzer ‘user’ from benutzen ‘to use’ in Benutzerkonto ‘user account’).
The annotation is in accord with the observation made by Ó Séaghdha (2008), that
compounds having nominalizations as constituents and root compounds should receive
compatible analyses. This is in contrast to previous proposals like Levi (1978) and
Lauer (1995) that considered nominalizations a separate group, leading to different
analyses for similar compounds like history professor and history teacher.

The annotation inventory listed in Table 2.5 is the result of a long process of
refinement of the annotation scheme. The initial version of this annotation scheme
was presented in Dima et al. (2014), and contained 37 properties (6 of which with
direct/inverse directions) and 17 prepositions. The inventory and the associated
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annotation guidelines were further extended and improved for the new annotation
scheme version. In some cases, the name of the category was kept, but the definition
and the distinguishing properties of the category were changed to better fit the patterns
observed in the data. The refining step also took into account the lessons learned from
a set of machine learning experiments presented in Sorokin et al. (2015), that used
a dataset of compounds annotated with the initial version of the annotation scheme.
Such refinement steps are common when designing new annotation schemes (Girju
et al., 2005; Tratz and Hovy, 2010).

The annotation scheme design criteria identified by Ó Séaghdha (2008) were
instrumental in choosing the properties to be included in the inventory. In particular,
the proposed inventory contains a coherent set of properties and tries to establish clear
boundaries between the different properties. Another desideratum is to reduce to a
minimum the cases where two properties might seem appropriate. The annotation
guidelines contain several tests to help distinguish among two competing properties.
An example of this type is the test distinguishing the property appearance* from
the property material. appearance* labels compounds where the modifier denotes
a material, and the head evokes (the shape of) the object made from that material
(like in Schokoladenhase ‘chocolate bunny’). In contrast, the property material
labels the compounds where the head not only evokes a shape but refers to the actual
object, while the modifier names the material it is made of (like in Holzlöffel ‘wooden
spoon’). The annotation principles, as well as the criteria used for identifying and
distinguishing between properties are presented in a comprehensive set of annotation
guidelines (Telljohann et al., 2017).

In some of the cases, the constituents of the compound or the compound itself
allow for multiple interpretations. For the new annotation scheme, if the annotators
were aware of multiple interpretations of the same compound, they had to choose
one of the senses as the main sense and annotate it. The properties and prepositions
associated with the additional interpretations would then be added to a separate list.
An example of this type is the compound Apfelring ‘apple ring’, which in its primary
sense means ‘thin, dried pieces of apple, cut lengthwise from the cored fruit’ and is
annotated as raw product/aus ‘from’. In a secondary sense, Apfelring refers to a
‘sour candy with apple flavor, similar to gummy bears’. This second sense is annotated
as ingredient/aus ‘from’.

Lexicalization. Another particular aspect of the annotation scheme is the annotation
of idiomatic compounds such as Löwenzahn ‘dandelion’, literally ‘lion tooth’. Similar
to Ó Séaghdha (2008), these compounds are annotated according to the relation between
the components in the absence of an idiomatic meaning, e.g. Löwenzahn is annotated
as part*/von ‘of’. In addition, however, such compounds receive a lexicalization
annotation. The lexicalization annotation is meant to capture the different ways in
which the meaning of a compound deviates from its compositional meaning.
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Compound Property/Preposition Lexicalization
pattern

Pfefferkuchen ‘gingerbread’,
lit. ‘black pepper cake’ zutat/mit ‘with’ lex_M

Fingerbeere ‘fingerpad’,
lit. ‘finger berry’ part*/von ‘of’ lex_H

Bullauge ‘porthole’,
lit. ‘bull’s eye’ part*/von ‘of’ lex_M,lex_H,

lex_R

Schwertfisch ‘swordfish’ part/mit ‘with’ lex_MS

Kirschwasser ‘cherry brandy’,
lit. ‘cherry water’ raw product/aus ‘from’ lex_HS

Table 2.6 Lexicalization annotation for partially- or fully non-compositional compounds.

Table 2.6 illustrates the different lexicalization patterns identified by the annotation
scheme. The label lex_M marks cases when the modifier is used quasi-metaphorically,
as in the compound Pfefferkuchen: Pfeffer does refer to black pepper, but to a spice
mix used to flavor the cake (which does not contain black pepper). Similarly, lex_H
labels cases where the head of the compound undergoes a similar process: the Beere
in Fingerbeere does not refer to a ‘berry’, but to the soft pad of flesh at the top of a
finger.

The compound Bullauge15 illustrates the case when, at a first glance, the compound
seems perfectly compositional, but the actual referent has no visible connection to
the meaning of the constituents (in this case, ‘bull’ and ‘eye’). The lexicalization
annotation in Table 2.6 marks in this case both the atypical use of the constituents via
lex_M and lex_H, as well as the atypical nature of the relation between them, via the
label lex_R. An seen in this example, the lexicalization labels can be freely combined
to annotate the lexicalization pattern of any compound.

Another two labels that can be used are lex_MS and lex_HS, which label an atypical
sense of either the modifier or the head, but where there is a clear resemblance relation
between the canonical meaning of the constituent and the one used in the compound.
Examples of this type are Schwertfisch ‘sword fish’, where the modifier ‘sword’ names
the long, pointy snout of the fish which resembles a sword, and Kirschwasser ‘cherry
brandy’, where the head Wasser ‘water’ is used to denote the similarity between this
type of brandy and water (both are colorless).

In Chapter 6 this lexicalization annotation is used to compare the automatic ‘com-
positionality’ score assigned using a composition model to the judgements made by
the human annotators.

15Small, round window in the hull of a ship/air plane; name for the door of a washing machine.
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No preposition. The annotation scheme presumes that every compound is annotated
with at least one property and one preposition. There are, however, cases when the
compound does not license a preposition, like in the case of the compound Lachsfisch
‘salmon fish’, annotated with the property hyponym in Table 2.5. In general, com-
pounds annotated with the semantic relation hyponym do not allow for a prepositional
paraphrase, as also observed by Warren (1978) and Lauer (1995). Rather than not
providing a preposition label for a subset of the compounds, the annotation uses the
label keine_Präposition ‘no preposition’ to mark such compounds. The explicit anno-
tation with the no preposition label is very convenient from an automatic classification
perspective, giving the classifier the possibility to identify types of compounds that do
not take a preposition. As Table 2.2 shows, the keine_prep ‘no preposition’ label is
typical for compounds with the property hyponym and diet and for a part of the
compounds annotated as attribute and manner of functioning.

No/other property. In a similar vein, the label no property is used to annotate
compounds where the semantic relation between the two constituents has lost so much
of its meaning that it is impossible to recover, and its exact origin is uncertain. This is
the case with strongly lexicalized compounds like Meerkatze ‘guenon monkey’, lit. ‘sea
cat’.

Another special-status property label is other property. It is used to label
compounds whose relation is known, but does not conform to any of the previously
identified patterns, like Pfandflasche ‘deposit bottle’. Most previous annotation schemes
(Girju et al., 2005; Ó Séaghdha, 2008; Tratz and Hovy, 2010) include an other relation
that can be used to annotate the compounds that do not fall under any of the other
categories defined by the inventory. However, since the new annotation scheme does
not claim to be exhaustive, the use of the label other property is reserved for those
compounds where the semantic relation is only applicable to a single constituent pair,
or to a very restricted set of compounds which usually share the modifier. other
property is thus used to label non-productive patterns. If the annotation scheme
is used to annotate new compounds, the annotators are encouraged to create new
properties for the productive semantic relations that they encounter and preserve this
property for such ‘idiosyncratic constructions’ - as (Warren, 1978:241) refers to them.

Elliptical annotation. In compounds like Buchstabensuppe ‘alphabet soup’, lit.
‘letters soup’, the semantic relation does not directly connect the two constituents of
the compounds. Instead, it relates the head to an implied modifier. In the example
above, the modifier Buchstabe ‘letter’ is a shorthand for Buchstabennudel ‘letter-shaped
pasta’, which is the actual ingredient of the soup. In such cases, the annotation involves
reinserting the missing argument, by specifying the elliptical modifier, and assigning
the property/preposition label that corresponds to the compound with the reinserted,
correct, modifier. Approx. 6% of the compounds in the annotated dataset require the
annotation of an elliptical modifier.
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2.2.1 The Composition Group

The composition group includes four properties that connect two constituents involved
in a composition relation: part/*, member/*, ingredient/* and component. The
properties marked with an /* appear in the inventory of the new annotation scheme
both as a direct and as an inverse relation.

The part relation labels compounds where one of the constituents is a part of the
other: Pendeluhr ‘pendulum clock’, annotated as part/mit ‘with’, where the modifier
‘pendulum’ is a part of the head ‘clock’ and Pferderücken ‘horseback’, annotated as
part*/von ‘of’, where the modifier Pferd ‘horse’ has as part the head Rücken ‘back’.
The two compound constituents can belong to a very diverse set of semantic categories:
they can be artifacts, animals or body parts but also plants, buildings or clothing.
Together, the part relation and its inverse are the most frequent category in the
annotated dataset, labeling approx. 12% of the data (see Section 7.1.1, describing the
annotated dataset, for details).

The member relation relates two constituents that are not physically part of one
another. It indicates that the entity denoted by one of the constituents is, conceptu-
ally, a part of the entity or group denoted by the other constituent. Examples are
Kinderchor ‘children chorus’, annotated as member/aus ‘of’ and Marinesoldat ‘marine
soldier’, annotated as member*/von ‘of’. As seen from the examples, this property is
more restrictive in terms of the semantic categories allowed for the constituents: one
constituent must have the +Group feature for this property to apply.

ingredient labels the relation between a food item and an ingredient (another
food item) that is used in its making: e.g. Nudelsalat ‘pasta salad’ annotated as
ingredient/mit ‘with’; Kaffeemilch ‘coffee creamer’, lit. ‘coffee milk’, annotated as
ingredient*/für ‘for’. The constituents can refer either to solid food or to drinks.
The ingredient property imposes stronger restrictions on the semantic class of the
constituents: both are expected to have an +Edible feature for the label to apply.

The component relation describes the case when the modifier is a part of the head
but cannot be seen with the naked eye: e.g. Chlorwasser ‘chlorine water’, Vanilinzucker
‘vanillin sugar’.

2.2.2 The Descriptive Group

The descriptive group contains six properties: material, appearance/*, attribute,
construction method, consistency and measure/*. The most frequent property
from this group in the annotated dataset is material, which labels close to 6% of
the compounds. The modifier can be either generally recognized as a material, like
in Lederschuh ‘leader shoe’, or it can be used to denote the material only in the
compound’s context: e.g. Daunenkissen ‘down pillow’, Drahtbügel ‘wire coat hanger’.

The appearance property is used to label compounds where the modifier describes
the outer appearance of the head, e.g. Babypuppe ‘baby doll’. The property can also
be used in its inverse form, where the second constituent provides a description for
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the first constituent: Mauerring ‘ring wall’, lit. ‘wall ring’ denotes a wall shaped as a
ring. appearance* is also used to label compounds like Schneemann ‘snowman’ and
Schokoladenhase ‘chocolate bunny’, where the first constituent names a material that
is formed to resemble the entity denoted by the second constituent.

Another property where the modifier is related via analogy with the head is
consistency, which labels compounds like Fleischtomato ‘beef tomato’, lit. ‘meat
tomato’. In this case the modifier refers to the consistency of the head rather than to
its outer appearance as in the case of appearance.

The attribute property connects a descriptive modifier to the head, e.g. Berufs-
soldat ‘professional soldier’. The modifiers of the compounds labeled by this property
will, in many cases, be translated into English via adjectives. Warren (1978) calls such
modifiers adjective-like comment-nouns, and shows that the sense of these nouns in
compounds can be readily described via adjectives. Examples she gives for English
are key (key fact), record (record time), root (root issue). Similar examples from the
German dataset are: Traum ‘dream’ in Traumfrau, Traummann ‘ideal woman/man’,
Traumauto ‘ideal car’; Schutz ‘protection’ in Schutzmauer ‘defensive wall’, Schutzleiter
‘wire with ground protection’ lit. ‘protective conductor’. Another defining trait of such
modifiers is that they preserve the sense in which they are used in most compounds
they are part of.

construction method labels compounds where the modifier describes a parti-
cular aspect in the construction of the head: e.g. Etagenbett ‘bunk bed’, lit. ‘story
bed’.

The measure property connects two constituents where the first constituent names
a measure for the second. It can refer to standardized measurements (e.g. Literflasche
‘liter bottle’) or ad-hoc ones (e.g. Kniestrumpf ‘knee sock’). The inverse property,
measure*, labels cases when the head denotes a measurement for the modifier: e.g.
Körpertemperatur ‘body temperature’.

2.2.3 The Locative Group
The locative group contains three properties: location/*, habitat and prototypi-
cal place of use. They relate the modifier and the head in terms of their spatial
properties.

In the case of location the modifier is the location of the head’s denotatum. The
head can be a building (e.g. Berghütte ‘mountain hut’), an object (e.g. Seitentür ‘side
door’) or an event (e.g. Kirchenkonzert ‘church concert’). The property is also used
to locate body-related compounds such as Rückenhaar ‘back hair’ or Kopfhaar ‘head
hair’. In its inverse sense the property labels compounds where the head specifies the
location of the modifier: e.g. Schlossberg ‘castle hill’.

location refers to fixed locations, from which the entities denoted by the con-
stituents are rarely, if ever, removed. By contrast prototypical place of use
labels compounds where the modifier names the typical place of use for the head, e.g.
Gartenstuhl ‘garden chair’. The prototypical aspect of this relation comes into play
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as the compound is called with the same name even when removed from the location
named by the modifier: a garden chair remains a garden chair even if it happens to be
on the balcony. The name does not change with this change of location. Moreover, the
typical location of use has a big impact on the appearance and characteristics of the
object: a garden chair will have different characteristics from an office chair.

The habitat property connects the constituents of a compound where the head is
an animal or a plant, and the modifier represents its natural habitat. The modifier can
name either a typical location, e.g. Alpenpflanze ‘Alpine plant’, a type of environment,
e.g. Wasserfrosch ‘water frog’ or a plant, e.g. Himbeerkäfer ‘raspberry beetle’. In the
last case, the plant usually serves both as the habitat and as the main food source of
the entity denoted by the head.

2.2.4 The Origin Group

The origin group contains two properties: origin and eponym. Both label compounds
where the modifier describes the origin of the head. The origin can refer to the place
(e.g. Angorakatze ‘Angora16 cat’) or time period (e.g. Barockfassade ‘Baroque façade’)
something originates from. eponym labels compounds where the head is named after
its inventor, e.g. Sachertorte ‘Sacher cake’ is a cake named after its inventor, Austrian
Franz Sacher.

2.2.5 The Temporal Group

The temporal group encompasses two properties: time and occasion. The property
time is used to label compounds where the modifier specifies the time point (e.g.
Abendblatt ‘evening newspaper’) or time interval (e.g. Sommerreifen ‘summer tires’)
when the head occurs, is produced or is used. Due to the temporal reference, the set
of modifiers is restricted to time-denoting nouns: names of days, time of days, seasons,
time periods, religious holidays etc.

The property occasion labels compounds where the modifier specifies the (festive)
occasion for which the head is created (e.g. Geburtstagskuchen ‘birthday cake’), used
(e.g. Adventskerze ‘Advent candle’), worn (e.g. Abendkleid ‘evening dress’) or given
(e.g Hochzeitsgeschenk ‘wedding gift’). In addition to the set of time-denoting nouns
used also by the time property, the modifiers labeled by the property occasion also
include names of special events in a person’s life (e.g. birthday, wedding, vacation,
beginning/ending of school/university etc.).

16Angora is the historic name of Ankara, the capital of Turkey. The initial compound with this
modifier was ‘Angora goat’, a goat with long, silky fur. The modifier Angora has taken on a second
sense, meaning ‘with long fur’, both in the original compounds, and also in compounds using the
original compound as a pattern, e.g. ‘Angora ferret’.
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2.2.6 The Usage Group

The usage group is by far the largest group of properties of the new annotation scheme,
encompassing 12 properties: active use, container/*, content, function/*,
manner of functioning, production method, prototypical holder/*,
purpose of use, result of use, storage*, user and usage. All these properties
are connected by the fact that they describe a facet of usage. This group is a clear
illustration of the fact that compounding serves as a naming device, and that things
are generally defined in terms of their intended use.

The property active use connects a modifier expressing an activity to the head
denoting the object used for that activity. A typical example is the compound
Ballettschuh, ‘ballet shoe’, where the head is an artifact. The head can also be a
physical location, e.g. Arbeitszimmer ‘study’, lit. ‘work room’.

container is a bidirectional property expressing the relation between the two
constituents where one is a container and the other is its content. In its direct sense,
container labels compounds where the content is packaged in the container: e.g.
Dosensuppe ‘canned soup’, lit. ’can soup’. The inverse relation, container*, labels
containers that are manufactured with a particular content in mind, e.g. Brotkorb
‘bread basket’, Bierflasche ‘beer bottle’, etc.

In the case of the content relation, the modifier refers to the typical content of
the head: e.g. Adressbuch ‘address book’. In this case the head itself is not a type of
container, but rather a visual or textual artifact where the content denoted by the
modifier is depicted or stored.

The function/* property refers to a group of compounds where one constituent
specifies the functions that the other constituent takes on, in addition to the ones it
inherently has. For compounds labeled with function, the modifier is the source of
the additional attributes taken on by the head: i.e. a Hausboot ‘house boat’ is a boat
were one can cook, sleep, or work - in other words - live in, like in a house. In the case
of compounds labeled by function* like Landbrücke ‘land bridge’, it is the modifier
that takes on additional functional attributes entailed by the head - a land bridge is a
strip of land that serves as a bridge between two larger land areas separated by water.

manner of functioning connects a modifier denoting a power source to a
head denoting, in most cases, a man-made artifact. The modifier can be a natural
combustible - Kohleherd ‘coal stove’, an animal - Hundeschlitten ‘dog sledge’, or denote
the payment necessary for the head to function, e.g. Münztelefon ‘pay phone’, lit. ‘coin
phone’. Similarly, production method labels compounds where the modifier denotes
the method through which the head was created: e.g. Pfannkuchen ‘pancake’.

The property prototypical holder/* links constituents denoting artifacts to
the place they were designed to adorn. The holder can be either the modifier, e.g.
Haarschleife ‘hair ribbon’ or the head, e.g. Kleiderpuppe ‘mannequin’, lit. ‘clothes
doll’.

purpose of use and result of use describe the compound-internal relationship
where the modifier is the purpose (e.g. Brotmesser ‘bread knife’) or the result (e.g.
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Schneekanone ‘snow cannon’) of using the head. In general, the same head will be
connected to different modifiers with the same semantic class, resulting in a typology
of the head - see, for example, the additional compounds with the head Messer ‘knife’:
Fischmesser ‘fish knife’, Käsemesser ‘cheese knife’, Fleischmesser ‘meat knife’, where
all modifiers name things that can be cut using the knife.

In the case of the property storage*, the head specifies a place where the things
denoted by the modifier are typically stored, e.g. Bücherregal ‘bookshelf’. The property
relates semantically to the property container*, however, the heads are not typically
regarded as containers. They assume a container functionality only when they are part
of this type of compounds.

The property user connects a modifier denoting a person, group of persons or
animal to a head denoting some building or artifact that it uses, e.g. Babybett ‘baby
bed’. In many cases the head undergoes an accommodation process, and the meaning
of the head in the resulting compound can drift quite far from the initial meaning of
the head, like it is the case for Hundehütte ‘dog house’, literally ‘dog hut’ (a Hundehütte
will be much smaller in size than a typical Hütte ‘hut’).

The property usage labels compounds where the modifier names the designated
usage for the head, e.g. Konzerthaus ‘concert house’. In contrast to the property
purpose of use, in this case the head is not meant for performing some action
on the modifier. The head is in most cases a place/building where the modifier is
performed/performs its action. The property is also used to connect something that is
being transported to its transport route, e.g. Autostraße ‘car road’.

2.2.7 Other properties
Twelve other properties were considered too specific to be assigned to any of the above
mentioned groups, and are going to be individually introduced in this section.

The property access* labels compounds where the head is the means for reaching
or accessing the place denoted by the modifier. The modifier can be a closed or
open space, e.g. Kellertreppe ‘basement stairs’, Gartentür ‘garden gate’, lit. ‘garden
door’. The head can be a path leading to a place, like Straße ‘street ’ in Klosterstraße
‘monastery street’.

The cause/* property connects a constituent naming (usually) a phenomenon to
the head that is regarded as its cause. In Vulkaninsel ‘volcanic island’ lit. ‘volcano
island’, the activity of the volcano leads to the creation of the island. Conversely, in
Regenwolke ‘rain cloud’, the cloud is regarded to be the cause of the rain.

comparison/* labels compounds where one of the constituents is compared
to the other. In contrast to appearance/*, this property does not refer to the
outer appearance of the constituents, but relates them in terms of more abstract
characteristics. The comparison can be related to their function, e.g. Satellitenstadt
‘satellite city’, but also to more abstract traits, e.g. Rabentochter ‘cruel daughter’, lit.
‘raven daughter’. In a small number of cases the inverse relation, comparison*, also
appears, e.g. Karriereleiter ‘career ladder’.
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The diet/* property connects an animal or insect with a type of food (typically
another animal, insect or plant). Cases where the head denotatum has genetically
evolved to eat the modifier denotatum are annotated with diet, e.g. Ameisenbär ‘ant
eater’, lit. ‘ant bear’. Cases where the modifier denotatum is particularly fond of eating
the head denotatum (although it is not its main food source), are annotated as diet*,
e.g. Gänsedistel ‘boar thistle’, lit. ‘geese thistle’.

The property goods labels compounds where the modifier is the merchandise of
the place named by the head, e.g. Blumenladen ‘flower shop’. The head might not be
conventionally regarded as a selling location but it acquires this additional meaning
through the combination with the modifier, e.g. Bierzelt ‘beer tent’.

The hyponym relation connects modifiers that denote an individual from a family
to a head denoting its family (in the biological sense), e.g. Eichenbaum ‘oak tree’. In
most cases, however, the modifier alone will have the same meaning as the compound -
Eiche ‘oak’ and Eichenbaum ‘oak tree’ are synonyms.

owner/* connects a constituent specifying an owner to the thing it owns. In the
case of owner, the modifier can also name a profession exercised (historically) by the
owner of the place, e.g. Metzgerladen ‘butcher’s shop’. The reverse direction, owner*,
labels compounds where the modifier names the thing that is owned, which becomes
a categorization factor for the entity denoted by the head, e.g. Grundeigentümer
‘landowner’.

The category product/* connects a producer to the thing it produces. The
method of production can be natural - like a tree producing fruit, e.g. Apfelbaum
‘apple tree’, or industrial - like a factory producing artifacts, e.g. Brotfabrik ‘bread
factory’. The inverse relation, product* displays the same patterns, this time with the
modifier naming the producer: e.g. Hühnerei ‘chicken egg’, Vereinszeitung ‘association’s
newspaper’.

raw product labels compounds where the head is obtained from the modifier,
usually through an industrial process, e.g. Lavandelöl ‘lavender oil’, Grapefruitsaft
‘grapefruit juice’, Maismehl ‘corn flour’.

relation* connects a modifier denoting a group to a head denoting a special
function for that group, e.g. Chorleiter ‘choir leader’. In many cases only one person
can assume the specified function at a given time.

specialization connects a head denoting a person or animal to an activity
that it specializes in. The activity can be specified either directly, e.g. Bauarbeiter
‘construction worker’, Jagdhund ‘hunting dog’ or via the main item of interest, e.g.
Augenarzt ‘eye doctor’.

topic connects a modifier that denotes the thematic content of the head, e.g.
Klavierschule ‘piano school’. The subset of heads that can participate in a topic
relation are knowledge-containing artifacts like books, newspapers, magazines or
knowledge-spreading locations, like schools, universities, academies etc.
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2.2.8 Inter-annotator Agreement Study

To verify the consistency of new annotation scheme, an inter-annotator agreement
(IAA) study was conducted. 44 head nouns and the corresponding 481 compounds
were selected for the study. To make the evaluation more indicative, the selection was
limited to previously unannotated heads. The modifier set, however, which consists
of 387 unique modifiers, overlaps in proportion of 79.84% (309 modifiers) with the
modifier set of previously annotated compounds.

The IAA heads were selected from GermaNet, using similar criteria to the ones used
for the previously annotated heads (see description at the beginning of Section 2.2). In
order to be selected, the head should have at least a concrete sense. Only the compounds
corresponding to the concrete sense(s) of the head were selected for annotation.

The main reasons for choosing the IAA compounds in this way - and not use a
random sample of the GermaNet compounds - are two-fold: first, the annotation scheme
was designed for concrete nouns, and the selection had to contain exclusively compounds
denoting concrete objects. Second, the annotation guidelines specify that for a more
consistent annotation the compounds with the same head should be annotated together.
This meant first picking the heads and then selecting all the non-abstract compounds
from GermaNet formed with those heads.

The compounds were annotated by two annotators, native speakers of German.
One had extensive experience with using the current version of the annotation scheme,
while the other was familiar with the annotation setup, and had annotated compounds
before, but not using the current inventory. An initial familiarization step was required
for the second annotator. It involved annotating 100 of the already annotated gold
compounds, and discussing the annotation with the experienced annotator. This step
was necessary as the annotation inventory is relatively large, and annotating some
training compounds gives the starting-out annotator a better grasp on what are the
distinctions that need to be made.

The annotators then proceeded to independently annotate the 481 compounds.
Again, the compounds were annotated per-head: the annotator was aware of the
whole cluster of compounds with the same head while performing the annotation. The
annotation for each compound consisted of the property, the preposition(s), and, where
necessary, the elliptical modifier, the lexicalization pattern(s) and the annotation of
the extra sense(s).

The agreement among the annotators was measured using Cohen’s Kappa coefficient
(Cohen, 1960), defined as

κ “
A0 ´ AE

1´ AE

(2.1)

In Eq. 2.1, A0 represents the proportion of annotations the annotators agree on,
while AE is the proportion of annotations for which the agreement is expected by
chance. In other words, the κ coefficient computes the proportion of agreement after
the agreement due to chance is removed.
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If the annotation guidelines are very clear about when to use a particular property
and preposition label, then A0 should be well above chance, and result in a κ coefficient
that is close to the theoretical maximum, which is 1.

Separate κ values were computed for the property and the preposition annotation.
The property annotation result is κ “ 0.59, which is very close to a good agreement
according to the classification of Kappa coefficients proposed by Landis and Koch
(1977)17. The preposition annotation resulted in a good agreement with κ “ 0.65, for
the subset of 467 compounds which were assigned exactly one preposition.

Although the theoretical upper limit of κ is 1, in practice this is only achieved if
the two annotators assign the categories with the same probability distribution. In
practice, however, annotators might exhibit biases towards different categories. The
actual maximum Kappa, κM , can be computed for two particular annotators, using
the formula in Eq. 2.2,

κM “
AM ´ AE

1´ AE

(2.2)

AM is obtained by pairing the marginals for each annotated category, taking the
minimum of each pair and summing the minimum values. In this study, the values for
the maximum agreement are κM “ 0.80 for the property annotation and κM “ 0.92
for the preposition annotation.

Table 2.7 and Table 2.8 present a detailed account of the IAA agreement, by looking
individually at each of the categories.

Property IAA. In the case of the property annotation, one immediate observation is
that only 47 out of the 57 properties in the inventory were used for annotating the
IAA subset of compounds. Overall, a couple of trends can be observed:

• the most frequently annotated property is attribute, which was annotated 81
times; the most frequently annotated properties tend to have a below average
agreement, around 0.4-0.5.

• the categories with the highest agreement (and with a relatively high frequency of
annotation) are categories with a more restricted definition, where the expected
features are clearly defined: e.g. material (modifier is generally a material),
time (modifier is a time expression), ingredient (both constituents are edible),
content (modifier denotes the content, head is restricted to visual and textual
artifacts where the content is depicted or stored), part* (the modifier is the
whole and the head is the part), occasion (the modifier is an event), user (the
modifier is a living being, the intended user of the head).

• the annotators systematically confused particular properties: e.g. topic vs.
specialization, where one of the annotators consistently annotated one relation

17The good range is from 0.6 to 0.8.
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Property Per property
agreement

Total
annotations

Nr.
agreements

Ann1
only

Ann2
only

1 container 1.000 4 2 0 0
2 comparison 1.000 2 1 0 0
3 member* 1.000 8 4 0 0
4 relation* 1.000 2 1 0 0
5 habitat 1.000 4 2 0 0
6 material 0.972 37 18 1 0
7 time 0.915 24 11 1 1
8 ingredient 0.866 23 10 2 1
9 content 0.865 55 24 3 4
10 part* 0.860 53 23 3 4
11 occasion 0.820 17 7 1 2
12 user 0.806 32 13 4 2
13 prototypical place of use 0.777 23 9 2 3
14 specialization 0.756 52 20 2 10
15 appearance* 0.748 8 3 2 0
16 ingredient* 0.724 11 4 1 2
17 owner 0.724 11 4 2 1
18 product 0.694 20 7 2 4
19 active use 0.684 26 9 8 0
20 origin 0.674 35 12 2 9
21 consistency 0.666 3 1 1 0
22 manner of functioning 0.664 9 3 2 1
23 appearance 0.568 7 2 1 2
24 production method 0.568 7 2 2 1
25 container* 0.562 38 11 0 16
26 raw product 0.560 58 17 9 15
27 part 0.548 25 7 5 6
28 attribute 0.528 81 23 31 4
29 measure* 0.517 19 5 3 6
30 prototypical holder 0.498 4 1 1 1
31 hyponym 0.487 24 6 5 7
32 location 0.452 42 10 6 16
33 cause 0.397 5 1 0 3
34 purpose of use 0.371 45 9 26 1
35 function 0.325 12 2 1 7
36 usage 0.203 42 5 9 23
37 no property 0.172 11 1 1 8
38 other property 0.145 24 2 10 10
39 component 0.142 13 1 5 6
40 prototypical holder* -0.001 1 0 0 1
41 construction method -0.001 1 0 0 1
42 location* -0.001 1 0 0 1
43 eponym -0.004 4 0 4 0
44 goods -0.004 4 0 4 0
45 result of use -0.006 6 0 4 2
46 topic -0.007 7 0 7 0
47 product* -0.023 22 0 15 7

Table 2.7 Agreement per property for the 481 compounds in the IAA study. Total
annotations = Nr. agreements * 2 + Ann1 only + Ann2 only.
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instead of the other; this inconsistency was due to the annotator disregarding
one of the restrictions of the specialization class, namely that the head must
be a living being, and using the property for heads denoting buildings; also, the
existence of compounds with the same modifier annotated as specialization
contributed to this confusion, e.g. Augenklinik ‘eye clinic’ was annotated similarly
to Augenarzt ‘eye doctor’.

• another type of systematic confusion occurred between the properties goods
vs. container*: for compounds like Zigarettenautomat ‘cigarette vending
machine’, there is a potential ambiguity between the ‘vending machine’ acting as
a container for the ‘cigarettes’ and it being the selling place of the ‘cigarettes’. The
annotation guidelines did not mention this type of ambiguity. It was, however,
implied - for the creators of the annotation scheme - that a more specific semantic
relation like the one expressed by the goods property would take precedence over
the more abstract containment relation expressed by container*. A similar
confusion occurred between purpose of use and container*, for compounds
like Pfeffermühle ‘pepper mill’.

• the properties raw product and product* were the subject of another
systematic confusion. This time, however, it was the new head, Holz, that was
the source of the ambiguity. In compounds like Eichenholz ‘oak wood’ the ‘wood’
can be seen either as being a natural product of the tree - a product* annotation,
or as something that is obtained through an industrial process - a raw product
annotation. After discussion, the decision was to annotate compounds of this
type with the property raw product. However, this type of confusion between
the properties links back to the “indeterminacy of analysis” observed by Levi
(1978), which noted that for a subset of compounds there is not a clear, principled
way of choosing one predicate over another. The product* property is also
the property with the lowest agreement, the negative value indicating that the
agreement is less than expected by chance.

• the property other relation appears to be problematic from another per-
spective: as described in Section 2.2, it targets compounds where the semantic
relation is very specific. However, it gives the annotator the freedom to asses
the specificity of the relation and decide if it should be annotated with other
relation or if it is just a borderline case of a more general relation. An example
of this type is the compound Zielfoto lit. ‘target photo’, which refers to ‘a
snapshot of the participants crossing of the finish line in a sports competition’.
One annotator chose to label the semantic relation using the property other
property, while the other annotated an elliptical modifier, Zieleinlauf ‘finish’
and the property content.

Preposition IAA. The per preposition agreement shows a better correlation between
the frequency with which a particular preposition is annotated and the agreement. The
most often annotated preposition, für ‘for’, also reaches the maximum agreement score,
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Preposition Per Preposition
agreement

Total
annotations

Nr.
agreements

Ann1
only

Ann2
only

1 für 0.792 294 126 26 16
2 gegen 0.724 11 4 2 1
3 wie 0.693 20 7 4 2
4 aus 0.690 118 43 13 19
5 durch 0.662 12 4 1 3
6 an 0.661 15 5 2 3
7 mit 0.654 93 32 14 15
8 von 0.627 162 56 29 21
9 in 0.554 65 19 10 17
10 keine_Präposition 0.546 107 32 21 22
11 als 0.298 13 2 2 7
12 auf 0.215 9 1 2 5
13 um -0.001 1 0 0 1
14 zu -0.002 2 0 0 2
15 nach -0.003 3 0 3 0
16 unter -0.003 3 0 2 1
17 bei -0.006 6 0 5 1

Table 2.8 Agreement per preposition for the 481 compounds in the IAA study. Total
annotations = Nr. agreements * 2 + Ann1 only + Ann2 only.

0.792. It is interesting to compare in this regard the maximum values in Table 2.7 and
Table 2.8: the agreement per property reaches close to perfect agreement for categories
like material and time - 0.972 and 0.915, respectively, but is much lower for the
most consistently annotated preposition - 0.792. However, overall, the per preposition
κ score is better than the property one. Another observation is that in 85% of the
cases if the annotators disagree about the preposition annotation, they also disagree
about the property label. Table 2.9 presents a comparative disagreement analysis.
In most disagreement cases, the annotators disagreed both on the property and the
preposition (so on the combined label). Cases where the disagreement affected only
the preposition usually refer to a genuine ambiguity: a Schlaftablette ‘sleeping pill’
could be für ‘for’ or gegen ‘against’ sleeping. The cases where the annotators disagreed
on the property but agreed on the preposition are generally cases when the same
preposition is associated with different properties: e.g. for Hautklinik ‘skin clinic’, both
annotators chose the same preposition für ‘for’, but two different properties, topic
and specialization. However, both properties allow for a prepositional paraphrase
using für ‘for’, so in effect these annotations should also count as cases where they
disagreed on the combined label annotation.

Disagreement in # of instances
Both property and preposition 116
Property only 69
Preposition only 20

Total # of property disagreements 185
Total # of preposition disagreements 136

Table 2.9 Disagreement analysis.

The insights of the IAA study were used to improve the annotation guidelines,
by including further specifications of the expected annotations where necessary. The
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obtained κ scores are similar to the ones reported by Girju et al. (2005) for English
compounds (κ “ 0.58 for the annotation with 35 semantic relations, κ “ 0.80 for the
annotation with 8 prepositions), but are lower than the scores reported for the initial
version of the annotation scheme (κ “ 0.74 for property annotation and κ “ 0.75 for
preposition annotation). The decrease in the κ score between the different versions
of the annotation scheme is most likely a consequence of increased complexity of the
annotation scheme, due to the addition of new properties (from 37 to 57).

The 481 compounds in the IAA study will be further used in Chapter 7 to assess
the capabilities of the machine learning model for automatic interpretation of noun
compounds. This subset of compounds should be particularly challenging for the
computer-based analysis, given that the heads of these compounds will not be part of
the training data.

All the inter-annotator agreement statistics described in this section were obtained
using DKPro Agreement (Meyer et al., 2014), a module of DKPro Statistics for
computing inter-annotator agreement measures. DKPro Statistics is a collection of
open-licensed statistical tools written in Java.

General remarks. The annotation scheme presented in this section illustrates the
wide range of semantic relations that nominal compounds can be based on. As stated
before, the main goal in creating the new annotation scheme was to be able to render the
semantics of nominal compounds as precisely as possible, using a combined (property,
preposition) label. The annotation effort has confirmed the thesis put forth by Ryder
(1994), that compounding forms “[...] a continuum from smaller and less productive
patterns to the larger, extremely productive ones”.

From a computational perspective, the challenge that lies ahead is to understand and
model the mechanisms behind compounding in order to provide suitable representations
for nominal compounds. The next two chapters describe the machinery used to build
compound representations, while Chapters 5, 6 and 7 present the empirical results.
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Chapter 3

Neural Networks for Natural
Language Processing

Deep learning is the technology behind the recent progress in speech processing (Dahl
et al., 2010; Hinton et al., 2012) and image recognition (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014). The use of deep, multi-layer neural networks has lead
to large error reductions („30%) on landmark datasets in the respective fields. The use
of deep learning has also lead to advances in natural language processing: starting with
Bengio et al. (2003)’s neural language model and the introduction of word embeddings
in Collobert and Weston (2008), Turian et al. (2010), Collobert et al. (2011b), the
field has seen a shift in the choice of machine learning techniques to use, and features
to represent language data. The combination of neural network architectures and
distributed representations has brought about advances in the state-of-the-art of several
NLP tasks and applications like POS tagging (Santos and Zadrozny, 2014), parsing
(Chen and Manning, 2014), named entity recognition (Collobert et al., 2011b), machine
translation (Sutskever et al., 2014; Bahdanau et al., 2014) etc.

The combination of neural networks and distributed word representations has thus
far shown good generalization behaviour. Given that compounding is a productive
linguistic process, it is important that the computational models used to model it have
the ability to generalize to unseen examples. This makes the combination of neural
networks and distributed representations a natural setting for exploring the semantics
of nominal compounds.

The first part of this chapter will cover the basics of neural networks and explain
some of the characteristics that make them a ‘good fit’ for modeling compound
semantics. The presentation will focus in particular on the building blocks of a neural
network, and the algorithms that are used for training it - i.e. for making a network
pick up patterns in the data, and generalize from examples that it sees in order to
predict particular traits for new examples of the same type. The theme of the second
part of the chapter is creating feature representations for natural language processing.
The discussion will cover several types of representations and focus in particular on

57



Neural Networks for Natural Language Processing

their generalization capabilities. Appendix A provides an overview of the mathematical
notation used throughout this and the upcoming chapters.

3.1 What are Neural Networks?

The exposition in this and the following two sections is based on materials from MacKay
(2003) and Nielsen (2015).

Neural networks are a biologically-inspired class of machine learning algorithms.
A neural network consists of a multitude of individual units, organized in several
layers and connected via weights of varying strength. Artificial neural networks were
designed by analogy to the human brain, which can be seen as a network made of tens
of billions of neurons (i.e. the units) connected via each neuron’s dendrites and axon
(i.e. the weights).

Figure 3.1a illustrates a neural network unit, with inputs x1 to xN and weights w1
to wN . An additional parameter called the bias is usually added as w0. The input of
the bias is always taken to be x0 “ 1. Both the inputs and the weights are real-valued
numbers. The activation of a unit, a, can then be computed using the formula in
Eq. 3.1:

a “
N
ÿ

i“0
wixi “ w0x0 ` w1x1 ` w2x2 ` . . .` wNxN (3.1)

The output of the unit, y, can then be computed using Eq. 3.2:

y “ fpaq (3.2)

where f is an activation function, applied to the activation of the unit, a, to
produce y.

x1 xN

w0

w1 wN

y

. . .

(a) A single neuron.

Input
layer,

size = 5

Hidden
layer 1,
size = 8

Hidden
layer 2,
size = 4

Output
layer,

size = 2

(b) A feed-forward neural network.

Fig. 3.1 Neural network illustrations.
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A feed-forward neural network, like the one illustrated in Figure 3.1b, is or-
ganized into multiple layers: the input layer, whose purpose is to provide the initial
inputs to the network, one or multiple hidden layers, and the output layer. The
number of layers and the number of units per layer define the architecture of a
network: the example network in Figure 3.1b has 5 input units, two hidden layers with
8 and 4 units respectively, and two output units. Networks with two or more hidden
layers are usually called deep neural networks. The architecture of the neural
network will have an impact on its efficiency, and is, in practice, chosen empirically
depending on the type of problem to be solved.

Activation Functions. The activation function f is, as mentioned above, the function
that is applied to the activation of a unit to obtain its output value. A set of activation
functions widely used in the literature is illustrated in Figure 3.2:

• the identity function, fpxq “ x, f : RÑ R

• the logistic function, fpxq “ 1
1`e´x , f : RÑ r0, 1s

• the hyperbolic tangent function (tanh), fpxq “ tanhpxq, f : RÑ r´1, 1s

• the rectified linear unit function (ReLU), fpxq “ maxp0, xq, f : RÑ r0,8s

• the parametric rectified linear unit function (PReLU), fpxq “ maxp0, xq`a minp0, xq,
where a is a learnable parameter.

The essential property of a good activation function is that a small change in its
input value should result in a small change in its output value. This makes it possible
for small adjustments in the weights of the network to result in small improvements of
the network’s capability to produce the correct output. Different activation functions
transform their input differently: e.g. the output of the logistic function can be directly
interpreted as a probability, because its codomain is [0,1]. In cases where a probabilistic
interpretation is not required, the rectifiers ReLU (Glorot et al., 2011) and its parametric
variant PReLU (He et al., 2015) have proven to be some of the best choices for an
activation function, especially when the architecture of the neural network involves
multiple layers of hidden units.
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Fig. 3.2 Activation functions.

3.2 Supervised Learning with Neural Networks

Neural networks are appealing because they offer a way to predict an output given
an input or set of inputs. For example, the network can learn to predict the selling
price of a house (the target value, t), given some of its characteristics like number of
rooms (x1), age (x2), location (x3), size of the plot it is built on (x4), etc. This type of
setup, where the desired target is a real-valued number, is a regression problem. If
the target is instead a discrete set of items, such as the property labels in inventory of
the annotation scheme previously introduced in Section 2.2, then it is a classification
problem.

Intuitively, the main idea behind supervised learning with neural networks is the
following: given a set of N examples pxi, tiq, find a set of weights w and biases b
for the units of the neural network that capture the correlation between each of the
input vectors xi and its target ti. The performance of the weights at capturing this
correlation can be assesed by comparing yi, the output of the network for the input xi,
to the target vector, ti.

xi is the input vector for the example i. xi = (x1, x2, . . . , xk)J is also called the
feature representation of example i, where k is the number of features in the input.
In the example above, the features are all the characteristics of the house that are
considered informative for the task of predicting its price, such as its number of rooms,
age or location.

ti is the target representation of the example i. For a regression problem, the
target value is, as mentioned in the example above, a real-valued number. For a
classification problem, the target vector ti is defined as a one-hot vector, i.e. a vector
where all components are 0 save for the component corresponding to the index of the
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current label. E.g. when classifying trees in terms of their size, the possible labels can
be defined to be {small, medium, large}. The target vector for small can then be
represented as p1, 0, 0qJ, medium as p0, 1, 0qJ and large as p0, 0, 1qJ.

yi is the output of the neural network for the example i. This is the prediction
that the network makes based on the input xi. If the network is good at capturing
the correlations in the data, yi is expected to be close to the target vector ti. If the
network has not learned the correlations, yi and ti are expected to be far apart.

Cost function. The function that is used to quantify how much has the network
‘learned’ is called a cost function, the loss or the objective function. The cost
function can have different definitions, depending on the problem at hand.

One of the most commonly used cost functions is the mean squared error (MSE)
function from Eq. 3.3:

Jpw, bq “
1
N

N
ÿ

i“1

1
2 ||yi ´ ti||

2
“

1
N

N
ÿ

i“1

1
K

K
ÿ

j“1

1
2pyij ´ tijq

2 (3.3)

where w, b are the weights and biases of the neural network to be estimated, N is
the number of training examples, K is the number of features for each example, yi is
the output of the network for the input xi and ti is the correct target vector associated
with the input xi. In training a neural network with a MSE cost function, the goal
is to minimize the error between the network’s output and the real target vector.
The overall performance of the network can be judged based on this ‘mean of errors’
computed by the MSE function: if most errors are close to 0, then the mean is also
going to be close to 0; conversely, if most errors are large, the mean of the errors will
also be a large number. The MSE cost function can be used both for regression and
for classification problems.

Another choice is the cross-entropy cost function, presented in Eq. 3.4, where
again N stands for the number of training examples, yi is the output of the network for
the input xi and ti is the target value for the example xi. ln is the natural logarithm,
i.e. the logarithm with base e. For numbers between (0,1), ln takes strictly negative
values, therefore the components of the sum in Eq. 3.4 are all negative. The initial
minus sign makes the cost function positive overall.

Jpw, bq “ ´
1
N

N
ÿ

i“1
rti ln yi ` p1´ tiq lnp1´ yiqs (3.4)

The cross-entropy cost function is particularly well suited for classification problems,
where the possible target/output values are 0 and 1. For example, if the target value
ti is 0, and the output of the network, yi, is close to 0, then the first term of the sum
cancels, and the second term is « ln 1, which is « 0. For the other case, when the
target value is 1, if the output of the network is also close to 1, then the second term
of the sum cancels, and the first term is lnp« 1q, so, again « 0. This means that if our
network makes correct predictions, the cross-entropy cost function will be 0.
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The cross-entropy cost function can also be used for regression problems, provided
that the output(s) of the network are between 0 and 1. This can be obtained, for
example, by using the logistic function as the activation function of the last layer.

If a probabilistic interpretation of the outputs of the network is desired, a cost
function called the categorical cross-entropy or negative log likelihood can be
used. The first step in using such a cost function is to equip the network with a custom
output layer, called a softmax layer, that computes the output of each unit of the
output layer1 according to the formula in Eq. 3.5:

yL
j “

eaL
j

řm
k“1 eaL

k

(3.5)

where k ranges over the m possible classes that an output might belong to in a
given classification scheme. The softmax function is a normalized exponential - the
denominator sums over the outputs for all m classes, and thus guarantees that the
outputs of the network sum to 1 (see Eq. 3.6). Intuitively, the softmax layer allows
the network to express its certainty about the class a particular example belongs to.
Probabilities close to 1 mean that the network is quite certain about the class it has
chosen, whereas having approximately equal probabilities for each of the classes means
that the network is uncertain about the class assignment for that particular example2.

ÿ

j

yL
j “

ř

j eaL
j

řm
k“1 eaL

k

“ 1 (3.6)

If there is only one correct class assignment, then the negative log likelihood cost
function is defined by Eq. 3.7:

Jpw, bq “ ´
1
N

ÿ

x

ln yL
k (3.7)

where k is the correct class for example x. Remember that in a multi-class
classification problem, yL

k is a one-hot vector of size m, the number of classes, where
the non-zero element is the component with index k. This cost function minimizes the
case when k is not the winning class. The softmax layer ensures that if the winning
class is maximized, i.e. if the output for the correct class is pushed towards 1, the
output of the remaining classes is necessarily driven towards 0.

Cost functions are parametrized by the weights and biases of the neural network.
The cost function is applied to the input vectors, which are generally provided from an
external source and can be considered fixed from the perspective of the cost function.
This means that changes in the output value of the cost function can only be caused
by changes in the values of its parameters. Minimizing the cost function means, in
effect, finding a set of parameters, i.e. of weights and biases, that will minimize the

1Activations and outputs of the units in the last layer are marked with a superscript L: aL, yL.
2This interpretation is only valid for cases when there is only one correct class assignment.
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difference between the output predicted by the network and the real target value. A
good set of parameters that minimize the cost function can be discovered by training
the neural network.

3.3 Training a Neural Network
In a supervised learning setup, the data that needs to be modeled is split into three
disjoint sets: a training set, a validation (dev) set and a test set. The idea behind
this type of setup is to use the examples in the training set to discover a good way
to set the weights of the network such that the generalization error, i.e. the error
on the test set, is as small as possible. The splitting in disjoint datasets is important
because during training the networks tend to overfit, i.e. to model the training set
down to its last details, even if this turns out to be just noise in the data.

In such a setup, the parameters of the network (w, b) are determined based on the
network’s performance on the validation set. The rationale to using the validation set
as an extra split of data is that the network should not be ‘biased’ in any way towards
the test data. If during training the performance of the network were measured directly
against the test set, its parameters would, in effect, be ‘tuned’ directly to the test set.
This would lead to a non-generalizing network, which might behave differently given a
new set of data from the same underlying distribution.

The best practice recommendation is to use the test set just once at the end of the
training cycle, to report on the results of the network trained on the training set using
the set of parameters that obtained the best performance on the validation set.

What does it mean to train the neural network? Let’s consider a network having the
architecture depicted in Figure 3.3. First a bit of notation: for weights, the superscript
denotes the layer number and the subscript denotes the units that a weight connects:
so w1

12 is a unit on layer 1, which connects unit 1 on the current layer to unit 2 on the
previous layer. For the biases only the index of the layer and the index of the unit in
the layer are specified - so b1

2 is the bias weight corresponding to the second unit of
layer 1.

For the units the superscript identifies the layer while the subscript denotes the
index of the unit on the layer: h2

1 is hidden unit number 1 on layer 2.
Consider a training example, x “ px1, x2q

J with the target value t “ pt1q. The
output of the network in Figure 3.3 for this training example can be obtained by
applying Eq. 3.1 and Eq. 3.2:

• first, compute the activations of the hidden units on layer 1:

a1
1 “ w1

11x1 ` w1
12x2 ` b1

1, for the first hidden unit on the first layer, h1
1, using the

dashed red weights

a1
2 “ w1

21x1 ` w1
22x2 ` b1

2 , for the second hidden unit on the first layer, h1
2, using

the solid blue weights
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Fig. 3.3 Forward pass through a neural network.

• then compute the output of the hidden units on layer 1, using Eq. 3.2:

y1
1 = fpa1

1q; y1
2 = fpa1

2q

• the outputs of the units in the first hidden layer become the inputs of the units
on the second layer, so the activation and the output of the hidden unit in the
second hidden layer, h2

1 can now be computed:

a2
1 = w2

11y
1
1 + w2

12y
1
2 ` b2

1; y2
1 = fpa2

1q

• the final output of the network is completed in a similar step, using the output
of the second hidden layer as the input:

a3
1 = w3

11y
2
1 ` b3

1; y3
1 = fpa3

1q

The stepwise description above can be generalized to the following equations for
computing the activation of a unit in a neural network:

al
j “

ÿ

k

wl
jkyl´1

k ` bl
j (3.8)

and the output of a unit in a neural network:

yl
j “ fpal

jq “ fp
ÿ

k

wl
jkyl´1

k ` bl
jq (3.9)

The procedure described so far is called the forward pass: it starts with the input
values and computes all the activations and the outputs of the units, layer by layer,
until the last layer of the network. The result of the forward pass is y “ py3

1q, the
prediction of the network for the input x “ px1, x2q

J, which should correspond to the
real target value t “ t1.
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The weights of a neural network are usually initialized using small, random values,
e.g. by generating numbers from a Gaussian distribution of mean 0 and standard
deviation ϵ. If the example above was the first training example shown to the neural
network, there’s a big chance that y3

1, the predicted output, is far away from the target
output t “ t1. The error made by the network can be quantified using a cost function,
e.g. the MSE cost function from Eq. 3.3. Ideally, this error should be as small as
possible, for the network to be considered a good predictor. Since the inputs are given
by the training set, the only possibility of improving the predictions of the network
comes from improving the weights of the network.

3.3.1 Optimization with Gradient Descent

Gradient descent is a method for determining what changes should be made to the
weights in order to improve the cost of the network. Imagine a simplified setup where
the cost function J depends only on two weights, w1 and w2. If ∆J denotes the change
in the cost function, the notion of a derivative from calculus can be used to write out
∆J with respect to the weights w1 and w2, as in Eq. 3.10:

∆J «
BJ

Bw1
∆w1 `

BJ

Bw2
∆w2 (3.10)

The derivative of a function is a way to describe the change in a function’s output
as a result of the change in the function’s input values. The goal of the optimization
process is to figure out how to chose ∆w1 and ∆w2, i.e. how to change the current
weights w1 and w2 such that ∆J is negative, meaning that the associated error becomes
smaller. Eq. 3.10 can be rewritten in a vectorial form, where ∆w ” p∆w1, ∆w2q

J is the
vector of changes to the parameters, while ∇J ” p BJ

Bw1
, BJ

Bw2
qJ is the gradient of the

function J , which holds all the partial derivatives BJ
Bw1

, BJ
Bw2

of the function J with
respect to all its parameters w1 and w2.

Eq. 3.10 now becomes

∆J « ∇J ¨∆w (3.11)

By taking

∆w “ ´η∇J (3.12)

where η is a small, positive number called the learning rate and rewriting Eq. 3.11
using Eq. 3.12, the change in the cost function, ∆J , becomes

∆J « ´η∇J ¨∇J “ ´η||∇J ||2 (3.13)

Using the ∆J in Eq. 3.13 will minimize the cost function: ||∇J ||2 is strictly positive,
meaning that overall ∆J is a negative and updating J using ∆J will lower the cost
function. Eq. 3.14 gives the formula for updating the weights. Here, w is the vector
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of parameters at timestep t, and w1 is the vector of parameters at the subsequent
timestep:

w1
“ w´ η∇J (3.14)

Gradient descent is an iterative procedure: the update rule in Eq. 3.14 has to be
applied over and over to minimize J . The learning rate η plays an important role
in the success of the optimization process: it defines the proportion of the gradient
that is taken into consideration at each iteration. The learning rate is usually chosen
empirically for each problem: if it is too small, the minimization process will take many
steps to complete. If the learning rate is too large, an update might lead to a ‘jump’
over the minimum of the cost function, which will start then to increase instead of
decreasing. In practice, the learning rate is often chosen to be a function of time, i.e.
of the number of time steps that the gradient descent procedure has taken. In such a
setup the learning rate starts out large at the beginning of the descent, and becomes
gradually smaller with each time step.

Gradient descent is thus a method of updating the weights of the network in the
direction that improves the cost function. Typical state-of-the-art neural networks,
however, can be made of millions of weights. In such a setup, it is important not only
to know how to update the weights, but also to be able to perform these updates in a
computationally-efficient manner. The cost function J from Eq. 3.3 involves a sum
over all the training examples. In order to learn, the gradient has to be computed
with respect to each of the training examples. However, this could mean that the
minimization algorithm takes a long time to reach a good solution.

In practice, an approximation of the real gradient is usually computed. The
approximation uses only a subset of the training examples, called a mini-batch. The
updates are then performed using this approximation of the gradient. The mini-batch
variant of the algorithm is called stochastic gradient descent (SGD) (Bottou,
2012). In such a setup, the training set is partitioned into mini-batches, where each
training example is randomly assigned to a single mini-batch. A system is said to have
performed an epoch of training if it has done a number of gradient steps equal to the
total number of mini-batches in the training set.

The number of epochs together with the mini-batch size and the learning rate are
called hyperparameters of the network. In contrast, the values w and b that the
cost function J depends on are the parameters of the network. Using algorithms like
gradient descent one can discover good values for the parameters of the neural network.
The hyperparameters, on the other side, are in general chosen empirically, and the
particular choices will have a large impact on the performance of the network.

Stochastic gradient descent gives good results, but might, however, take a long
time to converge - i.e. to find a solution that is close to the minimum value. Several
improvements have been proposed in the literature, offering substantial speedups
compared to the classic algorithm. A variant called AdaGrad (Duchi et al., 2011) will
be used in the experiments described in Chapters 5, 6 and 7.
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3.3.2 Backpropagation

Training a neural network involves computing the gradient of the cost function J with
respect to its parameters, w and b. However, as mentioned before, a neural network can
have millions of parameters. This section describes a method called backpropagation
(Rumelhart et al., 1986a; LeCun et al., 2012), that can efficiently compute the gradient
of such complex functions.

Looking back at the expressions of the activations from the forward pass for the
network in Figure 3.1b, the following patterns can be observed: first, the output is a
function of the activation of the last layer, y3

1 “ fpa3
1q. a3

1, the activation of the last
layer, is a function of the output of the previous layer, a3

1 “ w3
11y

2
1 ` b3

1.
The output of the network could, in consequence, be rewritten as a function of

the activation of the second layer, a2
1, resulting in the equation y3

1 “ fpw3
11fpa

2
1q ` b3

1q.
Another backward step, and the output can be written as y3

1 “ fpw3
11fpw

2
11fpa

1
1q `

w2
12fpa

1
2q ` b2

1q ` b3
1q. So in effect, the computation performed by a neural network is a

composition of functions.
The derivative of a composition of functions can be computed using the chain

rule: the derivative of a composed function, hpxq “ fpgpxqq, is given by the formula
in Eq. 3.15:

h1
pxq “ f 1

pgpxqq ¨ g1
pxq (3.15)

With backpropagation, the architecture of the network is used to compute the error
signal, δ, for each unit of the network. The computation begins from the outputs. For
the output units, the error signal can be computed using the formula

δL
j “

BJ

ByL
j

f 1
paL

j q (3.16)

where f is the activation function of the last layer, indexed with L. If the cost
function is MSE, from Eq. 3.3, its derivative is pyL

j ´ tjq, so the error signal becomes

δL
j “ py

L
j ´ tjqf

1
paL

j q (3.17)

The activation and output of the last layer, aL
j and yL

j , are known - they were
computed in the forward pass. Similarly, the derivative of the activation function,
f 1, is known, so it is easy to compute the value of the derivative for the input aL

j .
Equation 3.17 can be written in a vectorized form, using the Hadamard product, d:

δL
“ pyL

´ tq d f 1
paL
q (3.18)

Once δL is computed, the error signal for the units in the previous layer can be
computed using the formula

δl
j “ ppw

l`1
q

T δl`1
q d f 1

pal
q (3.19)
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Here, pwl`1qT is the matrix of weights on the next layer, and δl`1 is the error signal
that was just computed in the previous step. The left side of the Hadamard product
in Eq. 3.19 effectively propagates backward through the network the error signal from
the previous layer, while the right hand side is again the derivative of the activation
function applied to the activation of the units in the current layer.

This process of propagating the errors back one layer at a time allows the recursive
computation of the error signals for each unit in our network. Once the values for
all δl

ij are computed, the corresponding weight updates can be performed using the
learning rate η, as described in Eq. 3.14.

What makes backpropagation a computationally-efficient algorithm? In a network
with one million weights, a direct computation of the partial derivatives with respect to
each weight would mean computing the cost function, i.e. doing a forward pass through
the network, for each partial derivative and for each example. This would mean
computing the cost function a million times for each example. With backpropagation
all the partial derivatives are computed at the same time, using only one forward
pass and one backward pass, thus making the optimization process substantially more
efficient.

3.3.3 Regularization
Neural networks generally have a large number of parameters, and, as mentioned at
the beginning of Section 3.3, they will generally overfit the training data. Overfitting
comes with the unwanted side-effect of reducing the network capability to generalize,
i.e. to make good predictions on previously unseen data.

One way to reduce overfitting is to increase the amount of training data while
keeping the number of parameters unchanged. Since there are more data points to be
modeled, the network will be less likely to learn insignificant details particular to a
training sample. The cost function is only going to be low if the network makes good
predictions for most of the training data, so the focus has to be on capturing trends in
the data that describe the majority of the training material.

However, getting new training data is, in most supervised learning scenarios, a
costly enterprise, usually involving the effort of trained human annotators. This section
presents other approaches to avoiding overfitting, i.e. other regularization methods:
weight decay, early stopping and dropout.

Weight decay or L2 regularization. The intuition behind L2 regularization is
that the weights of the neural network should remain small. To achieve this goal, the
cost function Jpw, bq presented in Section 3.2 will be updated to incorporate a penalty
for the magnitude of the weights, as shown in Eq. 3.20.

Jregpw, bq “ Jpw, bq `
λ

2N

ÿ

w

w2 (3.20)
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In effect, the two sides of Eq. 3.20 have conflicting goals: the left hand side tries
to improve the unregularized cost function, which could lead to an increase in the
magnitude of the weights. In contrast, the right hand side term seeks to decrease the
weights, and would be 0 when all the weights are 0. The regularization term λ

2N

ř

w w2

favors the solutions to the initial cost function Jpw, bq where the parameters have
small values. The parameter λ controls how aggressive the regularization is: a large
value for λ corresponds to very small weights and possibly larger errors for the initial
cost function. A small value for lambda gives more importance to minimizing the
unregularized cost function.

Early stopping (Prechelt, 1998) is a technique that involves stopping the training
procedure before overfitting has a chance to occur. The idea is to monitor the
generalization error, i.e. the value of the cost function on the validation set. Typically,
the generalization error will be large at the beginning of the training process and will
progressively decrease as the network learns to make better predictions. In keeping
track of the generalization error, one can pinpoint the moment when the generalization
error starts to increase again, i.e. the moment when the network starts overfitting the
training data.

The process is complicated a bit by the fact that the generalization error is not
guaranteed to be strictly decreasing over time: a plot of the generalization error might
show small increases, even when the trend is a generally decreasing one. This is why in
practice the early stopping procedure uses a parameter s. s is the number of successive
epochs that the error is allowed to increase. If the network has an increase/decrease
fluctuation that is smaller than s epochs, than the generalization error is still improving,
so the network should be trained on. If, however, the generalization error increases
steadily over this period of s epochs, this is a signal that overfitting is likely to have
begun. A trade-off that has to be made when choosing s concerns the training time
versus the generalization error: choosing a higher value for s leads to a smaller error,
at the cost of increased training time. Conversely, for a small s the network will train
faster, at the cost of a slightly larger generalization error.

Dropout is a regularization technique introduced by Hinton et al. (2012). The
intuition behind dropout is that the generalization performance of a neural network
can be improved by preventing the co-adaptation of the units. The technique involves
randomly ‘dropping’ hidden units from the network, with a probability of 0.5, each
time a new training example is presented for training. The result is that only 50% of
the hidden units in the network will play a role in the prediction made by the network
for that particular example. The random dropping of the units means, in effect, that
each unit becomes more robust and is able to make better predictions on its own, since
it cannot rely on particular units in the network being active at the same time.

The effect of dropout is comparable to a setup where a prediction is obtained by
averaging predictions from a large number of neural networks, trained individually on
the same problem. The averaged prediction is obtained, however, at a fraction of the
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cost. The dropping of units happens only during training. At test time, all hidden
units are kept but the weights are halved, to compensate for the fact that all of them
are now active.

Srivastava et al. (2014) extend the idea of Hinton et al. (2012) by parametrizing
dropout. p represents the probability that a unit in the network is kept. The probability
is independent for each individual unit. Good values for p are between 0.5 and 0.8 for
hidden units, and between 0.8 and 1 for input units. If dropout with the probability p
is used, the activation and the output of the neural network are computed using the
equations in listing 3.21. At test time, the weights of the network are scaled by the
factor p.

rl
j « Bernoullippq

ỹl
j “ yl

jr
l
j

al
j “

ÿ

k

wl
jkỹl´1

k ` bl
j (3.21)

yl
j “ fpal

jq “ fp
ÿ

k

wl
jkỹl´1

k ` bl
jq

Dropout has proven to be a very effective regularization method for many datasets
from different domains: image recognition (experiments on MNIST, CIFAR-10 and
CIFAR-100, ImageNet), speech processing (TIMIT), text categorization (Reuters), etc.
- for details see Hinton et al. (2012); Srivastava et al. (2014).

3.4 Neural Networks instead of Linear Models

The machine learning and, through extension, the NLP landscape before the intro-
duction of deep learning models revolved mainly around linear models like linear and
logistic regression, or models like support vector machines (Boser et al., 1992; Cortes and
Vapnik, 1995) that can produce non-linear decision boundaries using transformations
of the input space.

The output predicted by a linear regression model is defined by Eq. 3.22, where
x P Rn is an n-dimensional input vector, w P Rn is an n-dimensional weight vector,
and y P R is the prediction of the model for the input x.

y “ wJ
¨ x “

n
ÿ

i“0
wixi (3.22)

The intuition behind Eq. 3.22 is that every component of the feature vector, xi, is
going to contribute to the final prediction y by an amount moderated by the weight wi.
The prediction is thus a linear combination of the initial features and the weights. It is
interesting to note the striking similarity between the formulation of linear regression in
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Eq. 3.22 and the activation of a neural network unit in Eq. 3.1. A neural network with
a single unit and an identity activation function will, in fact, perform linear regression.

Logistic regression can be used for classification. If the output can only belong
to one of two possible classes, y P t0, 1u, a function of the form

ppy “ 1|x; wq “ σpwJ
¨ xq “

1
1` ep´wJ¨xq

(3.23)

can be used to predict the output. Note that the decision boundary of logistic
regression is a line (in 2D) or a hyperplane (in three dimensions and higher). The
logistic function, 1

1`e´x , only helps us map the output of the linear combination of
the input features and the weights onto a probability. If the examples that need to
be classified cannot be well separated using a line/plane, linear models will not be
good predictors for the data. If the data is not linearly separable, the problem can be
sidestepped using transformations of the initial inputs, e.g. by using the polynomial of
degree n in Eq. 3.24:

y “ wJ
¨ x “

n
ÿ

i“0
wix

n
i (3.24)

Notice that the polynomial is still a linear combination in terms of the weights,
but uses the transformed input features. The drawback of this approach is that the
designer of the machine learning system needs to empirically decide which feature
transformations should be added to the model in order to improve its prediction
capability.

With linear models, it is simple to understand the effect of particular input features
on the performance of the machine learning model. By contrast, the composition of
functions typical to a deep neural network is associated with a lack of transparency
with regard to the patterns that the network uses to classify new examples. This means
that even if the predictions made by the system are correct, its more difficult to gain
intuitions about the patterns used by the system used to make the predictions. The
patterns learned by a neural network are not easy to tease out once the training is
complete.

At the same time, it is this very trait of neural networks that makes them such
powerful classifiers: with each new layer of hidden units, the network computes a
new, more abstract version of the initial representation that was given as input. For
example, in the image recognition domain, the visualization of the features learned by
different layers of a (convolutional) neural network shows that the initial layers capture
features that are local to the input - e.g. lines, edges, while subsequent layers build
upon previous layers and capture more global representations - e.g. eyes, ears, shapes
of different animals for the ImageNet data (Zeiler and Fergus, 2014).

This abstraction power of the neural networks gives the machine learning practitioner
the possibility to provide the network with a simple feature representation as input
and to let the network do most of the heavy-lifting in terms of choosing the most
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appropriate feature combinations that would lead to optimal decision boundaries.
When using linear models, the discovery of useful feature combinations was one of the
most time-intensive aspects of improving a machine learning system. The combinations
of features to be added were carefully chosen by inspecting the errors of existing models.
Defining feature combinations that would capture the right aspects of the data and
make the relevant information available to the machine learning model used to be
the task of the practitioner. By contrast, the neural network-based models start off
with all the available features and have the ability to discover on their own the feature
combinations that are useful in the prediction process.

The choice of using neural networks for modeling compound semantics brings with
it the implications typical for such models: if the neural network model is able to
predict the correct semantic relation labels, it is not straightforward to figure out
what sort of patterns it captures and how do these correspond to human intuitions.
However, the aim of this thesis is not the full understanding of compound semantics.
The declared goal is to create computational representations for nominal compounds,
and neural networks seem to be a promising tool for this task.

The results presented in Chapters 5, 6 and 7 are all obtained using neural network
models. The implementations are based on Torch7 (Collobert et al., 2011a), a scientific
computing framework for Lua with an underlying C/CUDA implementation. Torch7
comes with a modular approach to neural networks, and provides a flexible framework
for creating architectures with multiple inputs and outputs. Furthermore, it supports
GPU computation, meaning that matrix multiplication, the most frequent operation
when training neural networks, can be massively parallelized and executed in only a
fraction of the time required when using traditional CPU-based computation.

The only piece of the puzzle that is still missing is how can words be represented in
such a way that neural networks can be of use? The next section will introduce the
basics of feature representation for natural language processing.

3.5 Feature Representation for NLP

Feature representation was illustrated at the beginning of Section 3.2 as using the
characteristics of a house - like its number of rooms, or age - to predict the price of
the house. In this case, the feature representation is a vector. For example the vector
p4, 17.2qJ could serve as a representation for a house with 4 rooms that is a bit over 17
years old.

Words in natural language are written using letters. The written form is a convention,
a system of symbols that serve as pointers to the meaning of words. Machine learning
algorithms like neural networks require numerical representations to work with. Feature
representation for NLP is the task of finding a mapping between natural language
symbols, i.e. words in the case of written language, and real-valued numbers or vectors.
This mapping should not be made at random: if two words have strong semantic
interactions - i.e. they are synonyms (e.g. ‘bush’ and ‘shrub’), they are similar (e.g.

72



3.5 Feature Representation for NLP

‘cat’ and ‘dog’) or related (e.g. ‘lock’ and ‘key’) - the corresponding vectors should
reflect these patterns of interaction. The remainder of this section will introduce two
types of feature representations used in natural language processing, and discuss their
advantages and disadvantages.

3.5.1 One-hot representations
Imagine the task of representing a vocabulary V , containing |V | distinct words.
The one-hot representation or one-hot encoding of the word wi P V is a |V |-
dimensional vector, where all the components are 0 except for the component with
index i, which is equal to 1. Such representations are usually high-dimensional, i.e. the
dimension of the vector is equal to the size of the vocabulary V , and grows linearly
with the number of words in the vocabulary to be represented. One-hot representations
are also sparse, meaning that most of the entries of the vector are zeros (here, in
effect, there is only one entry per word with a non-zero value).

The high dimensionality of such representations can be a problem when using neural
networks, because it leads to an increase in the number of parameters of the network.
Imagine for example a 100,000-dimensional vocabulary, and the words represented using
a one-hot encoding. If the hidden layer has, for example, 1000 hidden neurons, then the
weight matrix corresponding to this layer has 108 weights and 1000 biases, which all
have to be estimated during the training process. This increases the complexity of the
network and leads to increases both in the time needed to train it, and in the number
of training examples required to obtain good estimations for all the parameters.

Although problematic, the high dimensionality is not the most challenging issue
when using one-hot representations for words. The biggest shortcoming of such
representations is their failure to generalize above the individual word level.
The one-hot representations of the words bush and shrub offer no clue about their
similarity. The vectors of the two synonyms are just as arbitrary as the vectors of
any other two words that have no semantic interaction, e.g. shrub and cake. The
similarity between the two vectors can be computed using the dot product, defined
algebraically as:

u ¨ v “
n

ÿ

i“1
uivi “ u1v1 ` u2v2 ` . . .` unvn (3.25)

Intuitively, Eq. 3.25 captures how similar the components of the vector are: every
individual component contributes an item to the sum. If the elements of the two
vectors for a particular component are approx. equal, then they will make a high
contribution to the sum. If, in contrast, the product of the elements of the two vectors
is 0 or negative, it will have a negative impact on the overall sum. The dot product is
highest when the two vectors are the same on every component.

Figure 3.4 illustrates the one hot representations for the words bush, shrub and cake.
The dot products between each vector pair - (bush, shrub), (bush, cake) and (shrub,
cake) can then be computed using the formula in Eq. 3.25. The result is disappointing:

73



Neural Networks for Natural Language Processing

the dot product of the representations of all word pairs equals 0, since each of the
vectors has exactly one non-zero component, and the index of the non-zero component
is different for each of the vectors. This means that one-hot representations cannot
translate the semantic similarities of the words into the vector space: the dot product
of the pair (bush, shrub) is not larger than the one for the pair (shrub, cake), even
if the words in the first pair are more similar. In other words, when using one-hot
representations, each word is an independent entity, and a machine learning algorithm
will not learn anything about how to analyze the word shrub based on training examples
involving a synonym word like bush.

[ 0 0 0 0 0 0 . . . 0 0 0 1 0 ]>ubush

[ 0 1 0 0 0 0 . . . 0 0 0 0 0 ]>vshrub

[ 0 0 1 0 0 0 . . . 0 0 0 0 0 ]>tcake

ubush · vshrub = 0
ubush · tcake = 0
vshrub · tcake = 0

Fig. 3.4 One-hot representations for words. Every word is represented by 1 at a
particular position. The representations of bush and shrub give no clue about the
similarity between the two words.

In the context of statistical language modeling, Bengio et al. (2003) used the phrase
curse of dimensionality to refer to this conundrum: “a word sequence on which the
model will be tested is likely to be different from all the word sequences seen during
training.”

Learning is hopeless if there is no generalization, i.e. if what the model has learned
from a particular training example cannot be applied to a test example that is similar,
but not identical to the previously encountered training example.

Truly effective word representations should not be merely convenient vectorial
representations. They should strive to make available to the learning algorithm all the
different facets of similarity that humans perceive when using words. For example,
what do the words pond, vase, lake and bathtub have in common? They have a strong
semantic affinity for the word water, which they generally containers for. Moreover,
ponds and lakes form a semantic subcluster: both can hold a comparatively larger
volume of water, and are cavities on the surface of the earth. Vase and bathtub can
also be seen as another subcluster: they are man-made artifacts and can be found
in a typical home. A class of representations that has the potential to give rise to
the versatile representations needed for natural language symbols are distributed
representations, which will be introduced in the next subsection.
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3.5.2 Distributed representations

The one-hot representation presented above is a local representation. A separate
index in the vector is required to represent every word in the vocabulary V . That index
takes a non-zero value only for a single word in the vocabulary, and plays a minimal,
passive role in the representations of all the other words. So each index is used exactly
once in the representation of the vocabulary.

Distributed representations (Hinton et al., 1986) are an alternative represen-
tation paradigm, where each word is represented by a vector x with n real-valued
components, (x1, x2 . . . xn)J, xi P R. The ‘meaning’ is given by the configuration
of values in the vector, and is therefore distributed across vector, instead of being
localized in only one of the vector’s components. In this case, each index of the
representation gets reused multiple times and can play a role in the representation of
every one of the words in the vocabulary.

As a result, the typical size of distributed representations is much smaller, since
the size of the representation is no longer tied to the size of the vocabulary. In
practice, distributed representations will typically use vectors having between 50 and
1000 components to represent vocabularies of hundred thousands or millions of words
(Collobert and Weston, 2008; Mikolov et al., 2013a; Pennington et al., 2014). This is
very advantageous when working with neural networks, as it means that the number of
parameters that have to be estimated in order to train a neural network using distributed
representations will be much smaller than when using one-hot representations.

Another advantage of distributed representations becomes evident when the need
arises to represent a new word, which was so far not part of the vocabulary. In a
local representation, each index corresponded to exactly one word. Representing a new
word involves increasing the representation size for all the words, and expanding each
vector with a new component, which will be 0 for all but the newly added word. In
the case of a distributed representation, however, adding a new word means finding an
appropriate configuration using the existing vector components. The adjustments that
need to be made do not affect the size of the vectorial representations, but rather the
patterns of meaning that emerge though the combination of specific values at specific
positions in the representation.

An application that uses distributed representations is described in Rumelhart
et al. (1986b), who model schemata using a constraint satisfaction network. They give
an example of predicting the characteristics and objects in a room using a set of 40
descriptors or microfeatures (ceiling, walls, door, very-small, very-large, stove, sink,
computer, carpet, desk, telephone, etc.). They collect 80 room descriptions from human
participants, and form a network where the weights between the descriptors are set in
a way that mimics the patterns seen in the collected data: if the descriptors appear
together, their corresponding units will be connected via large positive weights; if two
units generally take on different values, they are connected by large negative weights,
and if the values of the units are independent of each other, they are connected via
zero weights. Experiments start with a small set of active descriptors (e.g. oven and
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ceiling), and the network proceeds to update its weights in order to maximize its cost
function: first it adds coffee-cup, then sink and refrigerator, the fact that the rooms
is small, and reaches its maximum fit with all units corresponding to the descriptors
that are typical for a kitchen being active. The cost function is defined in terms of
the set of descriptors for ‘prototypical’ rooms: kitchen, bedroom, bathroom, living room
and office. In such a representation the ‘meaning’ of kitchen is distributed across the
microfeatures, and the activation patterns across microfeatures determine the type of
the room.

An apparent disadvantage of distributed representation is that they tend to blur the
understanding of the emergent meaning patterns. In a local representation, the meaning
attached to a particular index is known, because it has been a priori chosen by deciding
on the word to be represented using that index. Distributed representations, on the
other hand, make it more difficult to label the activation patterns that correspond to
particular meanings. Chapter 4 will go over some interesting ‘patterns of meaning’ that
were observed in the case of distributed word representations created using distributional
methods. For such representations, applying the transformation king - man + woman3

results in a vector close to the vectorial representation of the word queen.
Using distributed representations to model compound semantics is attractive for

several reasons. As seen in the discussion of annotation schemes for compounds in
Chapter 2, compounds with similar constituents tend to be interpreted in a similar
way. For example, the compounds metal cup and plastic glass should be interpreted
in the same way because of the similarity of their components: metal and plastic are
both materials, while cup and glass both have a container sense. If distributional
representations can capture this type of ‘features’ that humans intuitively seem to use
as a base for compounding (e.g. word refers to a material, a time expression, an event,
a living being, to something edible, etc.) than machine learning algorithms using these
representations should be able to infer that the compound-internal relation in plastic
glass is similar to the internal relation found in metal cup.

Furthermore, the fact that distributed representations make possible the representa-
tion of new concepts without the need for increasing the size of the representation make
them a good fit for modeling compounding. Compounding is a productive process in
language, meaning that there will always be newly coined compounds, in need of a
representation that is compatible with the representations of already existing words
(and compounds). Think for example of compounds with the head knife: they appeared
in the language as the original utensil, the knife, was specialized for particular food
items that were routinely cut: e.g. bread knife, cheese knife, vegetable knife, etc. Each
of these compounds is still a knife, and its representation should be able to capture
this marked similarity between the head and the resulting compound. The emerging
meaning patterns have to express both the similarity to the head noun and the shift in
meaning due to the semantic interaction with the modifier noun.

Ideally, the resulting compound representation should be just an adjustment of
the initial representation of the head word, moderated using the representation of the

3using the vectorial representations of the words king, man and woman.
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modifier word. In reality, however, language changes over time, and words that have
appeared via the typical compounding process might at some point become overloaded
with different, generally more abstract senses. This diachronic view of compounding
brings in the possibility that the meaning of the compound has ‘drifted’ relatively
far away from the meanings of its constituents, and as a result the representations of
such ‘drifted’ compounds might, as a result, be quite different from their ‘expected’
representation. This issue will be discussed in more detail in Chapter 5, which is
about creating compositional representations for compounds and in Chapter 6, which is
dedicated entirely to the analysis and representation of such ‘drifted’, non-compositional
compounds. But first Chapter 4 will introduce a series of methods for creating such
distributed representations for words, called distributional word representations.
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Chapter 4

Distributional Word
Representations

“What is that” asked Seldon.
They were standing before a small tray filled with little spheres, each

about two centimeters in diameter.[...] He lifted the sphere cautiously [...]
“What are they”
“Dainties. Raw dainties. For the outside market they’re flavored in

different ways, but here in Mycogen we eat them unflavored - the only way.”
She put one in her mouth and said,“I never have enough” [...] It was

slightly sweet and, for that matter, had an even fainter bitter aftertaste.

- Isaac Asimov, Prelude to Foundation

4.1 Introduction to Distributional Semantics
When reading a book, does a reader always recognize the meaning of every word used
by the author? Or does she always keep a dictionary nearby? Most readers would
answer ‘No’ to both of the previous questions. Not knowing the meaning of a word
while reading a piece of text is just a normal ‘fact of life’.

In fact, the reader might have been in this position just now, when going over the
introductory quote of the chapter, if the meaning of the word dainties, used by Isaac
Asimov in his Prelude to Foundation, was unknown. However, the whole paragraph is
meant to give an intuition about the meaning of the word dainties: they are served
on a tray; can be flavored or unflavored; one can eat them; they have a slightly sweet
taste, and a fainter bitter aftertaste. Based on all this evidence, one can conclude that
dainties are small sphere-shaped things that can be eaten (and presumably taste really
nice)1.

1Truth be told, the reason so many ‘clues’ can be ‘picked up’ from this particular text is the use of
a technique called coreference resolution. This means that the understanding process is not restricted
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This idea that one can identify the meaning of a word by looking at the words
it co-occurs with was introduced by Harris (1954), who considered meaning to be a
function of distribution. Harris (1954) takes the distribution of an element A to be
represented by the sum of all its environments. An environment of the element A
is taken to be the array of all the other elements that co-occur with the element A.
These co-occurring elements, each in a particular position with respect to the target
element A, will, together with A, give rise to a meaningful utterance. The elements
that co-occur with A in a particular position are called the selection of the element A
for that position.

Harris2 further fleshes out the intuition behind the distributional meaning of a word,
in saying that knowing the words that a target word co-occurs with is not enough
to get to the meaning of the word. But, “if we know the meanings of the words
with which the word occurs, we can guess very very closely what the meaning of the
word is.” (from Harris, Bampton Lectures). Harris illustrates this point using the
dictionary as a example. In a dictionary, a word is defined in terms of other words,
and in many cases an actual context of use of the target word is provided. At the same
time, the target word will be part of the explanation of the meaning of other words,
and this dependency between words goes on in a seemingly circular way. Looking up
the meaning of a word in a dictionary is only useful if the meanings of the words that
are used to explain it are already known.

In other words, according to Harris (1954)’s distributional hypothesis, the
meaning of a word can be found by investigating its usage patterns. Similar intuitions
were also presented by Firth (1957), who argued that the meaning of a word can be
understood by looking at its surrounding words, or ‘the company it keeps’ (Firth, 1957).
These proposals make sense because of the way humans use language. The words are
not just used at random, and sentences are not made of uniformly sampled words from
the language’s vocabulary. Language is instead made of word patterns, meaningful
sequences of words, which affect the likelihood of a word following another, already
uttered, word.

In natural language processing, the process of estimating the probability of a
word given an already uttered sequence of words is called probabilistic language
modeling. Probabilistic language modeling is essentially a matter of estimating the
joint probability of a word sequence S, made of n words w1w2 . . . wn, i.e. of computing

P pSq “ P pw1w2 . . . wnq (4.1)

The probability of a word sequence S can be broken down into individual word
probabilities, using the chain rule for probability:

to using only the sentences where the word dainties itself appears. The information in the whole
paragraph is used, including words like little spheres, the sphere, they’re, them, one, it, all of which
refer to dainties. The intuition about the meaning of the word dainties is built up by combining all
the information at hand, both direct and indirect.

2In the Bampton Lectures, Columbia University, 1986, lecture 3.2, http://zelligharris.org.
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P pSq “ P pw1w2 . . . wnq “ P pw1qP pw2|w1qP pw3|w1w2q . . . P pwn|w1w2 . . . wn´1q (4.2)

The formula for the probability of a word sequence illustrates exactly the point
from the paragraph above: an already uttered word will affect the likelihood of the
next word in the sequence. For example, if a sequence starts with the word Humpty,
there’s a very strong likelihood that the following word is Dumpty, given the typical
usage of this sequence. In fact, Brown et al. (1992) estimated, with the help of corpus
data, that the pair Humpty Dumpty occurs together roughly 6,000,000 times more than
one would expect given the individual frequencies of the words Humpty and Dumpty.

The meaning patterns that are known to the users of a language will impact
the new word sequences they produce. The same intuition applies in the case of
compounding: new compounds will not magically appear in the language, out of thin
air. Instead, the choices of language users will be guided by other compounds they
have already encountered, and which use the same or similar constituent words or
describe similar patterns of interaction between the constituents. Therefore, it makes
sense to investigate such distributional representations as a representational method.

This chapter explores different ways of using the distributional hypothesis to
construct useful meaning representations for words. All the approaches presented in
the next sections have a common core: first, the meaning of words is captured in the
form of mathematical vectors. Second, the meaning of all words is represented into
using the same ‘frame of reference’, i.e. in the same vector space. This means that
the meaning of one word can be easily compared to the meaning of another word, using
vector similarity measures. Next, the ‘environments’ of a word - or its contexts, as
they will be called in the next sections - are modeled using written text.

The next sections introduce the notion of context and a way to characterize the
meaning of words in terms of their co-occurrences. The discussion continues with a
discussion about sparse and dense word representations, their properties and methods
for transforming sparse into dense representations.

The last subsections are dedicated to introducing several methods for creating dense
word representations, either via explicit dimensionality reduction (SVD, PCA), by
using neural network models (like Collobert and Weston (2008), skip-gram, CBOW) or
by combining ideas from the explicit dimensionality reduction models with the neural
network ones (H-PCA, GloVe).

The models introduced in these sections will play an important role in the upcoming
chapters. These word representations will serve as the starting point for modeling
compound semantics. Before modeling compounds, syntactic units which are just
above the word level, it’s good to have a solid understanding regarding the creation
of individual word representations. The aim of this chapter is to present the
intuitions behind the different families of models and to describe the interactions
between them.
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There is a vast body of work concerned with creating distributional word repre-
sentations. Early influential techniques like Brown clustering (Brown et al., 1992),
Latent Dirichlet Allocation (LDA) (Blei et al., 2003), ideas on using syntax to define
contexts (Hindle, 1990; Lin, 1998), have all shaped the current distributional semantics
landscape, and it would be impossible to cover in detail all the proposals made in the
literature. This chapter will focus mainly on the techniques that will be used in the
rest of the thesis. For a more detailed overview, the interested reader is referred to the
surveys in Turney and Pantel (2010); Clark (2012); Erk (2012); Goldberg (2017) and
the reference materials mentioned below.

The exposition in this chapter is, unless otherwise stated, based on the chapters
Vector Semantics and Semantics with Dense Vectors from Jurafsky and Martin (2017)3

and on materials from the Stanford lectures in the course CS224d: Deep Learning
for Natural Language Processing, winter 2017, taught by Chris Manning and Richard
Socher4.

4.1.1 Setting the Context
Consider, for example, the task of representing the meanings of the words cucumber,
tomato, chair and table. A first step towards building their vector representations is
to collect sentences from a corpus where these words occur, like the ones in Listing 1
below, which were extracted from the encow14ax corpus (Schäfer, 2015).

(1) a. A cool and delicious marinated cucumber, onion and tomato salad .

b. Also on the menu was home-made tomato soup made from tomatoes grown in the
school’s poly-tunnel.

c. Dill also takes a starring role in this Bulgarian cold cucumber soup recipe .

d. A “Life” magazine happened to be there on a big wooden chair.

e. There was a plain wooden study table opposite the bench and he sat on the chair
next to it .

f. The cook set a bottle, two glasses, and a pie on the table.

The next step is to choose some contexts to represent the meaning of each of the
target words. For simplicity this example will use a two-word symmetric context
- four words in total - for each target word. If the target word is labeled as w, the
four context words considered are w´2, w´1, w`1, and w`2. A negative index, w´k,
indicates that the word is the k-th word before the target word, while a positive index,
w`k, is used to denote the k-th word after the target word. In sentence 1a, for the
target word cucumber, w´2 is delicious, w´1 is marinated, w`1 is onion, and w`2 is the
word and. The boxes in Listing 1 indicate the selected contexts for the target words

3Speech and Language Processing (3rd ed. draft) by Dan Jurafsky and James H. Martin is available
online at https://web.stanford.edu/~jurafsky/slp3/.

4CS224d video lectures available online, see http://cs224d.stanford.edu/ for details.
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cucumber, tomato, chair and table. The context boxes are color-coded with respect to
their target word.

Note that the chosen contexts do not cross sentence boundaries: the word tomato
in sentence 1a has a single word as its right context, and the word table in sentence 1f
has no right context. Two words can share a context: in example 1a the words onion
and appear as right context for cucumber and as a left context for tomato. Punctuation
marks are generally not considered as context candidates. For some applications
contexts can be extracted for word lemmas instead of word forms. In this example,
however, different word forms with a shared lemma have different contexts: the context
for tomato does not include the words around the form tomatoes in sentence 1b.

The choice between using lemmas or word forms when creating distributional
representations depends on the particular application. Syntax-oriented tasks like part-
of-speech tagging might benefit from representing the word forms directly, whereas
more semantic tasks could take advantage of the abstraction level offered by lemmata.
In Chapter 5 the implications of this choice will be taken into consideration when
building representations for German and English noun compounds.

Once the contexts are chosen, the next step in finding a representation for the
target word is to take a look at the distribution of its contexts. Section 4.1.2 describes a
way to summarize this distributional information using the word-context co-occurrence
matrix.

4.1.2 The Word-Context Co-occurrence Matrix

The contexts selected in the previous step can be used to compute the word-context
co-occurrence matrix. This matrix captures the co-occurrence patterns of each
target word with the set of context words. The columns of the co-occurrence
matrix correspond to each of the target words to be represented (four in the example
above: cucumber, tomato, chair and table). The number of rows is equal to the
cardinality of the set of context words (20 in the example above).

Figure 4.1 displays the co-occurrence matrix for the target words cucumber, tomato,
chair and table, using the mini-corpus in Listing 1 and a two-word symmetric context
window. The co-occurrence matrix is populated by counting how many times each
word in the set of context words appears in the context of a target word. For example
the word delicious appears 1 time in the context of the target word cucumber, but 0
times in the context of the target word chair. Similarly, the word wooden appears 1
time in the contexts of chair and table, but never in the contexts of cucumber and
tomato. Another observation is that words with a similar meaning will tend to have
the same words in their context: cucumber and tomato share three context words:
onion, and and soup. A dashed box indicates the common context words for two target
words in Figure 4.1. Conversely, words with little semantic overlap will have few or no
common context words (e.g. tomato and chair share no context words).

The choice of context size will have a large impact on the co-occurrences that will
be gathered. The restricted definition of context in the example above meant that
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some words that could have been relevant for capturing the meaning of the target
word have actually been discarded. An example are the words grown and poly-tunnel
in sentence 1b, which would have made good context words for the word tomato. A
definition of context with a different take on lemmatization would have included the
verb grown, which appears next to tomatoes. A larger context window, of size 5, would
have also included the word poly-tunnel. The choice of context size should generally be
guided by the application foreseen for the word representations. Levy and Goldberg
(2014a) observe that a window size of 5 (symmetrical, using in effect 10 words as
context) is commonly used to capture “broad topical content”, while smaller windows
correspond to “more focused information about the target word”.
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Fig. 4.1 Co-occurrence matrix for the target words cucumber, tomato, chair and table,
using the mini-corpus in Listing 1 and a two-word symmetric context window. Dashed
boxes indicate common context words for two target words.

Another apparent problem is that a good percentage of the initial words in the
sentences seem to be discarded. Remember, however, that a meaning of the word
stands in this circular relationship with the meanings of the other words in its context.
This means that if all the words in a sentence are modelled, and not just the chosen
few, the illustration of context for sentence 1a would look something like Figure 4.2,
and the word at each position would be used as a context for the other words between
k and 2k times, where k is the size of the context window. This analysis suggests
that the most cost-effective way to make use of a given piece of text is to represent
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most (or all) of the words it contains. The neural word representations presented in
Section 4.3.2 use the training text exactly in this way.

A cool and delicious marinated cucumber , onion and tomato salad .

Fig. 4.2 Illustrating a two-word context window for a full sentence. The arrows show
the span of the left and right context for each target word, and are color coded with
respect to the target word. Note that the first word of the sentence only has a right
context, while the last word only has a left context.

4.2 Sparse Vector Representations for Words

Once the word-context co-occurrence matrix is constructed, each target word can be
represented via its corresponding column vector (e.g. the representation for the word
chair is the column vector highlighted in gray in Figure 4.1). The vector representation
of a word w is a vector u P Rn, where n is the cardinality of the set of context words.
Real-world context sizes range from thousands to millions of context words, so this
type of word vectors are high-dimensional. Additionally, as each target word usually
co-occurs only with a small subset of the context words, the vectors are sparse, i.e.
most of their entries are 0.

As mentioned in Chapter 3, Section 3.5.1, the advantage of representing words
as vectors is that vector similarity metrics can be used to assess word similarity. A
popular similarity metric for word vector spaces is the cosine similarity, a metric
that computes the normalized dot product between two vectors5. The cosine similarity
between two n-dimensional vectors u and v can be computed using the formula in
Equation 4.3.

cospu, vq “
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i

d

n
ř
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i

(4.3)

Equation 4.3 can be used to compute the similarities between target words:

5The dot product formulation was presented in Chapter 3, Eq. 3.25.
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cospucucumber, utomatoq “
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The cosine similarity is 1 when the two vectors are identical, 0 when the vectors
are orthogonal (at a right angle) and -1 when the vectors are opposite6. The cosine
similarity between two word vectors can be seen as a measure of context overlap: the
cosine similarity grows with the number of common contexts. High cosine similarity
values correspond to words which occur only with a small number of context words
and share most of the contexts, like it is the case for table and chair, each co-occurring
with 5 and 6 words respectively, out of which 3 occurrences are in common. Low cosine
similarity values are associated with words that share little or no contexts (e.g. tomato
and chair).

Co-occurrence counts provide a simple and intuitive way to construct vector rep-
resentations for words. Their simplicity, however, must be balanced against their
shortcomings. One such shortcoming is that function words such as the, and, on
are frequent co-occurrence partners for most target words. However, the regular co-
occurrence of a target word with a function word will provide less information about
the meaning of the target word than a comparatively less frequent co-occurrence with
a non-function word. Knowing that tomato appears frequently with the and and is
not very useful for representing the meaning of tomato, because so do the majority
of the other target words. However, the fact that tomato co-occurs (albeit with fewer
counts) with salad and soup is more informative, as salad and soup only appear in the
contexts of a small subset of target words.

A measure that is able to overcome this shortcoming is pointwise mutual in-
formation (PMI), proposed by Fano (1961) and adapted to the the use in natural
language processing by Church and Hanks (1990). Church and Hanks (1990) define
the mutual information of two words x and y with the probabilities P pxq and P pyq as:

Ipx, yq “ log2
P px, yq

P pxqP pyq
(4.4)

The intuition behind Equation 4.4 is that one can learn more about the co-occurrence
patterns of the words x and y by comparing the number of times x and y appear
together in a fixed-size context - their joint probability P px, yq - to the occurrence
probabilities of x and y - P pxq and P pyq. If the words x and y have a higher probability
of occurring together than separately pP px, yq ą P pxqP pyqq, their mutual information

6When using count-based co-occurrence matrices, the cosine similarity will only take values between
0 and 1; weighted co-occurrence matrices (introduced in the next sections) allow for negative association
scores between words, and the cosine similarity of such vectors will therefore span the full codomain
of the cosine function, r´1, 1s.
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is positive. If x and y appear together as expected by chance pP px, yq « P pxqP pyqq,
the mutual information is close to 0. The mutual information can also be negative,
when the two words occur together less than expected by chance.

The individual probabilities of the words x and y are estimated using large text
corpora. The probability of a word x in a corpus with N individual tokens is given
by the number of occurrences of x in the corpus, divided by the size of the corpus N .
The joint probability P px, yq can be estimated by counting the number of times the
word x appears together with the word y in a context of fixed size, k, and dividing
this count by the size of the corpus, N .

Coming back to the goal of building word representations, the co-occurrence matrix
in Figure 4.1 can be transformed into a PMI matrix. Following the notation proposed
by Levy et al. (2015a), the co-occurrence matrix can be represented in terms of a set of
target words w P VW , a set of context words c P VC and a set of observed word-context
pairs pw, cq P D. #pw, cq is used to denote the number of times the pair pw, cq occurs
in D. The total number of occurrences of a target word w in any of the contexts is
represented as #pwq “

ř

c1PVC
#pw, c1q, while #pcq “

ř

w1PVW
#pw1, cq represents the

number of times the context c is seen in conjunction with any target word w1. The
PMI can then be computed as in Eq. 4.5:

PMIpw, cq “ log2
P̂ pw, cq

P̂ pwqP̂ pcq
“ log2

#pw, cq ¨
ř

cPVc
#pcq

#pwq ¨#pcq
“ log2

#pw, cq ¨ |D|

#pwq ¨#pcq
(4.5)

Negative estimates can be misleading unless the corpora are extremely large, so in
practice a variant of pointwise mutual information is usually used, positive pointwise
mutual information (PPMI), where all negative PMI values are replaced with 0
(Church and Hanks, 1990; Niwa and Nitta, 1994) - see Eq. 4.6. Applying the PPMI
weighting scheme to the co-occurrence matrix in Figure 4.1 results in the co-occurrence
matrix displayed in Figure 4.3.

PPMIpw, cq “ maxpPMIpw, cq, 0q (4.6)

The word interactions are now painted in a different light using the PPMI weighting:
the one occurrence of delicious and cucumber is assigned a large weight, 1.7548, while
the co-occurrence of the with chair is assigned 0.5849, thus conveying the weaker
association to the function word the, which was, in the example corpus, also a frequent
collocate of table.

The cosine similarity can also be recomputed based on the new PPMI-based word
representations, u⃗p:

cospu⃗pcucumber, u⃗ptomatoq “ 0.1227
cospu⃗pchair, u⃗ptableq “ 0.2306

cospu⃗ptomato, u⃗pchairq “ 0
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The PPMI weighting scheme tends to favor rare contexts: the largest values
associated with each target word in Figure 4.3 (maximum value per column) are
the ones where the context word is associated with only one target word: delicious,
marinated, Bulgarian, cold and recipe for cucumber ; salad, was, home-made and made
for tomato etc. This property makes PPMI assign a disproportionately high weight to
such infrequent contexts, in the detriment of contexts that occur more frequently with
the target word on the basis of a meaningful semantic association. Levy et al. (2015a)
proposed context distribution smoothing as a solution: all the context counts are raised
to the power α before the PMI computation, leading to the new PMI formula listed in
Eq. 4.7.

1.7548 0 0 0

1.7548 0 0 0

0.7548 0.9474 0 0

0.7548 0.9474 0 0

0 1.9475 0 0

0 1.9475 0 0

0 1.9475 0 0

0.7548 0.9474 0 0

0 1.9475 0 0

1.7548 0 0 0

1.7548 0 0 0

1.7548 0 0 0

0 0 2.1699 0

0 0 1.1699 1.1699

0 0 0 2.1699

0 0 0 2.1699
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Fig. 4.3 PPMI-weighted co-occurrence matrix for the target words cucumber, tomato,
chair and table. Maximum PPMI values for every target word (for every column) are
highlighted in red.

PMIαpw, cq “ log2
P pw, cq

P pwqPαpcq
“ log2

#pw, cq ¨
ř

cPVc
#pcqα

#pwq ¨#pcqα
(4.7)

Setting α to 0.75 was proven beneficial both by Levy et al. (2015a) and Mikolov
et al. (2013b). In fact, Levy et al. (2015a) judge this type of context smoothing to be
one of the most consistent ways to improve the resulting word representations.

This section introduced the idea of sparse vector representations for words, as well
as the basic mechanisms for building such representation using contexts extracted
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from large corpora. Although sparse representations are a simple and intuitive way to
create meaning representations for words, they do have some shortcomings. One is
their high-dimensionality, which, as mentioned in Section 3.5.1, can be problematic
when using these representations in a particular learning task, because they lead to an
increase in the number of required parameters.

Another problem associated with sparse vector representations is that they cannot
‘see’ much beyond the actual set of contexts they are trained on. For example, if a
woman describes her latest holiday using the words photo, card, beach, and her husband
uses instead the words picture, postcard and seaside to describe the same holiday, it
might seem that the couple is not providing a meaning for the same word. If holiday1 is
the representation obtained using the woman’s description of the holiday, and holiday2
as the representation obtained using the husband’s description, the two representations
have no words in common, although there seems to be a high similarity between the
descriptions in terms of word pairs: (photo, picture), (card, postcard), (beach, seaside).

The sparse vector representation cannot take advantage of the semantic similarity
between these word pairs. The sparse representation of holiday, obtained using both
descriptions, will make use of all the six words above. Other words will be judged to
be very similar to holiday only if they co-occur, again, with all the six words. However,
this example shows that a good meaning representation should be able to abstract
away from the lexical level, and consider the words that co-occur only with a subset of
the words from a particular theme also to be similar. A word like vacation should be
judged to be similar to holiday even if it only co-occurs with the subset of words, e.g.
photo, postcard and beach.

The next section introduces several ways of enhancing the representational capa-
bilities of sparse vector representations, either directly, via dimensionality reduction,
or indirectly, by using neural networks to process the information provided by word
co-occurrences.

4.3 Dense Word Representations
Dense vector representations, or word embeddings, are the result of embedding
high-dimensional, sparse word representations into a low-dimensional vector space.
The size of a sparse vector representations is given by |VC |, the size of the context
vocabulary, and can, as detailed in Section 4.2, range from thousands to millions of
words. In contrast, dense vector representations reside in a much smaller vector space,
typically ranging from 50 to 1600 dimensions.

4.3.1 Explicit Dimensionality Reduction

The idea of obtaining more compact word representations by applying dimensionality
reduction was initially used in the context of information retrieval by Deerwester
et al. (1990), who entitled their technique Latent Semantic Analysis (LSA). LSA
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involves constructing a term-document matrix, where the term is a word from a
search query and the documents are the text files to be searched.

Translating these terms into the terminology introduced in the previous section,
the term would correspond to the target word to be modelled, whereas a document
represents a chosen context. The entries of the matrix are filled in just as in the case
of the word-context matrix. The term-document matrix is then reduced to a lower
rank approximation using singular value decomposition (SVD).

SVD is a linear algebra operation that can be applied to any rectangular matrix X
of size mˆ n and rank r. Such a matrix X can be factorized into a product of three
matrices: an orthogonal matrix U , a diagonal matrix Σ and (the transpose of) another
orthogonal matrix, V J, as shown in Eq. 4.8:

X
mˆn

“ U
mˆr

Σ
rˆr

V J

rˆn
(4.8)

The matrix Σ contains the singular values of the initial matrix X, from the
largest to the smallest, while the matrices U and V J contain X’s left- and right-
singular vectors. In effect, Σ, U and V J break down the initial information of the
matrix X into linearly independent components. This means that the information
captured by each of these components corresponds to an unique perspective over X’s
content. The dimensionality reduction is obtained by discarding all but the top k
elements of Σ (k ď r). This corresponds to keeping from the original matrix X only
the top k dimensions, which account for most of the variation. The top k elements
of Σ are sufficient to approximate X as X̂k, the matrix of rank k which is the closest
to the original matrix X in the least squares sense, i.e. where ||X ´ X̂k||2 is minimal.
The form of X̂k is given in Eq. 4.9.

X̂k
mˆn

“ Uk
mˆk

Σk
kˆk

V J
k

kˆn

(4.9)

Figure 4.4 illustrates the SVD factorization operation, as well as the process of
approximating X using X̂k. The value of k is generally heuristically defined: it should
be large enough to allow the representations to capture most of the interesting aspects
from the initial co-occurrence data. At the same time, it should be smaller than the
initial rank r of the original X matrix - to allow discarding minor variations that act
as noise, and to obtain a good dimensionality reduction.

The same dimensionality reduction technique can also be applied on the word-
context matrix, and the literature contains several proposals along this line. Schütze
(1992) takes context to be a window of 1000 characters, with the intuition that a few
long words are as good as more short words for representing a particular target word.
The 1000-dimensional space is reduced using SVD to a 97-dimensional space.

An interesting observation is that Schütze (1992) shows that the representations
obtained via SVD are distributed. As discussed in Section 3.5.2, distributed represen-
tations have many advantages over local representations - in particular their robustness
at dealing with partial inputs. Schütze (1992) experiments with a classification task
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Fig. 4.4 Dimensionality reduction using Singular Value Decomposition (SVD); (a)
initial factorization of the matrix X; (b) X̂k is the approximation of X obtained by
zeroing out all but the top k elements of Σ and discarding the corresponding columns
of U and the corresponding rows of V J.

where he uses only parts of the SVD-induced representation, and shows that discarding
parts of the representation does not lead to a marked increase in the error rate. His
experiments suggest that the vector representations obtained via SVD are redundant
enough to allow for such discarding of elements, without this leading to a total loss of
meaning in the remaining representation.

The dimensions resulting after applying SVD no longer have a well-defined meaning.
This was previously not the case for sparse vector representations, where the dimensions
corresponded to the chosen context words. In contrast, the dimensions of dense
representations capture some more abstract aspects of meaning, and there is no general
method for discovering what exactly they capture. The new dimensions abstract
common traits from the initial vector space, and do not rely anymore on particular
words. These new representations are thus able to overcome the representational
problem associated with sparse vector representations: they capture enough similarities
in the data in order to judge words that have only partially overlapping contexts as
being similar.

The dense word representations obtained by applying SVD are, at the same time,
both distributed and distributional. Distributed, because the representation is
spread across the whole vector and does not reside in any particular component of
the vector. Distributional, because the representations are modeled according to the
distributional hypothesis - by computing word usage metrics over large text corpora.
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When using SVD for creating word representations, it is common to represent the
words and the contexts using the formula in Eq. 4.10 (Dinu et al., 2013a). Each word
in the vocabulary VW is represented by a k-dimensional row vector from W , while each
context is represented by a k-dimensional column of the matrix C.

W “ Uk Σk C “ Vk (4.10)

Levy et al. (2015a) showed that weighting the values in the singular value matrix
Σk can improve the quality of the embeddings, and suggest using factorizations like
the one in Eq. 4.11, with pΣkq

0, or like the one in Eq. 4.12, using pΣkq
1
2 .

W “ Uk C “ Vk (4.11)

W “ Uk

a

Σk C “ Vk

a

Σk (4.12)

Explicit dimensionality reduction is one way of obtaining dense vector representa-
tions. The literature on distributional semantics also contains proposals that model
word meaning directly as dense, real-valued vectors. A selection of these proposals will
be covered in the next section.

4.3.2 Implicit Dimensionality Reduction - Neural Word Em-
beddings

The idea of directly creating dense, real-valued distributed word representations using
large collections of texts was introduced by Bengio et al. (2003) in the context of
constructing probabilistic language models. Bengio et al. (2003) proposed a model
where each word (from a fixed vocabulary) is associated with a distributed word feature
vector P Rn. The joint probability function of word sequences is then expressed in
terms of these distributed word feature vectors. The goal of the model is to learn, at
the same time, both the word feature vectors and the parameters of the probability
function. Bengio et al. (2003) use, in their experiments, a vocabulary of 17,000 words,
and feature vectors of size 30, 60 and 100, and are able to prove the superiority of the
new models when compared to smoothed trigram methods.

The intuition behind the model proposed by Bengio et al. (2003) is that similar
words - (cat, dog), (a, the), (room, bedroom), (running, walking) should be assigned
similar representations. Training the model on a word sequence like The cat is walking
in the bedroom will inform the model not only about this particular sentence, but also
about the neighboring ‘cloud’ of similar sentences, like the one in Listing 2, and thus
lead to much better generalization capabilities.

(2) a. The cat is walking in the bedroom
b. A dog was running in a room
c. The cat is running in a room
d. A dog is running in a bedroom
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Bengio et al. (2003) trained the probabilistic language model using a feed-forward
neural network. The word representations are modeled by a linear projection layer (a
lookup table, see below), and the interactions between the words are captured via a
non-linear hidden layer. The network uses a softmax7 output layer, which computes
the probability of the next word given an input sequence, over the whole vocabulary.
This large softmax layer and the accompanying log-likelihood criterion incurred a very
high computational cost, and limited the size of the language models that could be
trained effectively using this approach.

A next step in building neural word embeddings was made by Collobert and
Weston (2008), who used a much cheaper ranking-type criterion to train their word
representations8. It is exactly this ranking-type criterion that made a difference in
practice between the proposal made by Bengio et al. (2003) and the one made by
Collobert and Weston (2008). The criterion involved only a pairwise comparison
between a correct word sequence and its corrupt counterpart. This gave the model
the ability to scale to a much larger vocabulary - 30,000 words - almost double the
vocabulary size used by Bengio et al. (2003).

Collobert and Weston (2008) train a language model using as input a text window
of fixed size and a neural network. The network has to learn to discriminate between
s, the original windows of text that were obtained from the data and sw, corrupted
versions of these windows of text, where the original middle word from s has been
replaced by another word, w, chosen randomly from the vocabulary. E.g. for an
original window of size 5 with the words The cat is walking in, a possible corrupted
window is The cat sky walking in.

The network is then trained to minimize the ranking-type cost presented in Eq. 4.13,
where fpsq is the score assigned by the network described using the function f to the
correct sequence s, and fpswq is the score assigned by the same network to sw, the
corrupted version of s, obtained by replacing the middle word with w, a random word
from the dictionary.

ÿ

sPS

ÿ

wPVC

maxp0, 1´ fpsq ` fpsw
qq (4.13)

The idea behind this cost function is that the neural network f should learn to
assign higher scores to the original sequence s than to the corrupted version sw. It is
easier to see this if Eq. 4.13 is rewritten as in Eq. 4.14:

ÿ

sPS

ÿ

wPVC

maxp0, 1´ pfpsq ´ fpsw
qqq (4.14)

The function in Eq. 4.14 reaches its minimum when the term fpsq ´ fpswq is 1,
meaning that the score for the correct sequence, s, is higher than the score of the

7see Eq. 3.6 and the surrounding discussion for an explanation of softmax.
8However, it’s worth pointing out that even with this cheaper ranking criterion training the word

embeddings took approximately two months - see Collobert et al. (2011b) for details.
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incorrect one, sw, by a margin of 1. If the difference fpsq ´ fpswq is smaller than
the margin 1, say 0.7, then the remaining 0.3 increases the error associated with the
function f . The most unfavorable case, where fpsq ´ fpswq is negative - meaning that
the f is ranking s lower than sw - leads to a penalty term that is larger than 1.

A key ingredient in Collobert and Weston (2008)’s architecture is the lookup
table, LTW , which allows for every word i from a vocabulary VW to be embedded into
a d-dimensional space. The lookup table is illustrated in Fig. 4.5, and its mode of
operation is given by Eq. 4.15,

LTW piq “ Wi (4.15)

where W P Rdˆ|VW | is a matrix of parameters containing the vector representations
of all the words from VW that need to be learned and Wi P Rd, the ith column of
the matrix W , is the representation of the word i from the vocabulary VW . All the
representations are of size d, a hyperparameter of the model that is chosen once by the
user at the beginning of the training process.

A sequence of n words, tw1, w2, . . . , wnu is transformed into a sequence of vectors
tWw1 , Ww2 , . . . , Wwnu by applying the lookup table operation for each of the individual
words in the sequence.

1 2 3 4

· · ·

|VW | − 3|VW | − 2|VW | − 1 |VW |

Fig. 4.5 A lookup table for a vocabulary VW with word embeddings of size d. Highlighted
in red is W3, the vector of the 3rd word of the vocabulary. The real-valued components
of the word representations are presented in this illustration as filled circles.

The architecture proposed by Collobert and Weston (2008) also features convo-
lutional layers. Convolutional layers allow the network to work with sentences of
varying length. A parameter of the convolution is the kernel size (ksz), which defines
the width of the convolution.

The convolution itself is a linear operation parametrized by a weight matrix L P
Rdˆksz and a bias vector b P Rd. It can capture the most relevant aspects of a sentence
by considering all the sequences of kzs words in the sentence.9 The same convolution
matrix is then applied to each of the word sequences. Using a convolutional architecture
the network can make predictions that are based not only on a limited window of
words, but on the information of the whole sentence.

An important contribution of Collobert and Weston (2008) was to show that one
could leverage the power of unlabeled data to train meaningful word representations.
The word representations could then be further fine-tuned for other supervised NLP
tasks, such as POS tagging, chunking, named entity recognition, semantic role labeling

9Considering the most simple case, where the step of the convolution equals 1.
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and for predicting if two words are semantically related (i.e. if they are synonyms,
holonyms, hypernyms, etc.). It is important to note that in such a setup the word
embeddings are mostly trained using the unlabeled data. The annotated data - the
gold standards for all the previously mentioned tasks - is usually several orders of
magnitude smaller than the unlabeled data available and only serves to make the
representations better fit a particular task.

This point was further developed in Collobert et al. (2011b), in their paper entitled
‘Natural Language Processing (almost) from Scratch’. Collobert et al. (2011b) make
a strong point about the effectiveness of the word representation trained on large
amounts of unannotated text on a host of NLP tasks, both syntactic and semantic in
nature. They show that a network trained in a completely supervised manner, using
gold data for the semantic role labeling task is not able to induce a coherent set of
vector representations, where similar words are neighbors of each other. By contrast,
a network trained in a semi-supervised fashion, using large amounts of unlabeled
data and a ranking-type criterion like the one in Eq. 4.13 can give rise to meaningful
word representations, where (some of) the similarities observed in the word space are
preserved in the vector space10.

The word embeddings induced in this way generalize well across tasks, and lead to
results comparable to the state-of-the-art on the respective tasks. However, instead
of relying on the traditional way of engineering features independently for each of
the tasks, the approach using word embeddings achieved results comparable to the
state-of-the-art for all the tasks, using just one common set of features - the word
representations learned in a semi-supervised manner from unlabeled text.

The work done by Collobert and Weston (2008); Collobert et al. (2011b) helped in
switching the focus from building probabilistic language models that learn to predict
the next word to models whose main goal is just to learn good word representations.

The large scale adoption of word embeddings as features for various NLP tasks
came with the public release of word2vec11, a publicly available implementation for
training distributed word representations using very large collections of text. word2vec
was introduced in Mikolov et al. (2013a). It describes two algorithms for estimating
word representations using neural networks: the skip-gram model (skip-gram) and
the continuous bag-of-words model (CBOW).

The two models can be thought of as reflections of each other, since they differ
mostly in what they consider to be the input and what they try to predict as the
output of the network. The skip-gram model predicts context words given the target
word. The CBOW model takes the opposite view and tries to predict the target word
using the surrounding bag-of-words context as input. Figure 4.6 illustrates the input
and the prediction of the two models for the same window of text.

The objective of the skip-gram model is shown in Eq. 4.16. The idea is that given
a sequence of training words w1, w2, w3, . . ., wT , the goal is to learn to predict the m

10Observe, in particular, the difference between the neighbors of the words in Table 5 and Table 6
from Collobert et al. (2011b).

11word2vec archive, https://code.google.com/archive/p/word2vec/.
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word???? ? ? ? ? You shall know a ? by the company it

Fig. 4.6 Illustration of the input and output of the skip-gram and CBOW models, using
a context window of size 4. The target word is highlighted in red, the context words
are colored in teal, and the words that are not part of the current context are black.
The slots marked with a question mark are supposed to be predicted by each of the
models. The example sentence is Firth (1957)’s famous quote, capturing the essence of
distributional semantics.

context words that surround the target word, wt. The context words can be placed
both to its left (j ă 0) and to its right (j ą 0).

JpΘq “ ´ 1
T

T
ÿ

t“1

ÿ

´mďjďm
j‰0

log ppwt`j|wtq (4.16)

In the basic skip-gram formulation ppwt`j|wtq is defined using a softmax, like in
Eq. 4.17,

ppwO|wIq “
exppuJ

wO
vwI
q

ř|VC |

w“1 exppuJ
wvwI

q
(4.17)

where wI is the input word (the target word) and wO is the output word to
be predicted (each one of wI ’s context words in turn). u and v are two vectorial
representations associated to any w P VC

12: uw is the vector representation of the word
w when w is a context word and vw is w’s representation as a target word.

Goldberg and Levy (2014) provide an intuition as to why this dual representation
of w with the two vectors uw and vw makes sense: if one takes any word, e.g. dog, it
is very unlikely that the word dog itself will appear in its own context. When using
a single vector, xdog, the model would assign a low probability to ppdog|dogq, leading
to the dot product xJ

dogxdog to be low, which is not possible (a vector will always be
similar to itself). This problem is solved by having the word be represented by two
separate vectors, one representing the word as the target and the other representing
the word as a context word.

It follows that the model parameters that have to be learned reside in two matrices,
Wtarget P Rdˆ|VC | and Wctx P Rdˆ|VC |, containing the target and the context vectors
of dimensionality d for every word in the vocabulary VC . The elements of these two

12Note that in this model VW and VC coincide, so any of them can be used in the definitions.
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matrices represent in fact Θ, the parameters of the model, whose optimal value have
to be discovered using the objective function in Eq. 4.16.

An important observation is that in the skip-gram formulation, the position of the
content word with respect to the target word does not matter. The only thing that
matters is the identity of the word itself. In the example sentence in Fig. 4.6, given
the target word word, the model just has to predict the identity of the context words
You, shall, know, a, by, the, company and it. The context vectors always come from the
same matrix Wctx. If, say, the word company would occur in another context window
at position t´ 1 (instead of position t` 3, like in Fig. 4.6), it would still be represented
by the same context vector from Wctx.

Another noteworthy detail is that after the training procedure is completed, Wctx,
the matrix of context representations for every w P VC , is discarded, and the words are
represented using only the representations in Wtarget.

Why does this work? Why can such an objective lead to the model learning good
word representations? The intuition here is that the only way to minimize the objective
function is to push the parameters of the network towards configurations where the
words that frequently appear in each other’s context have similar vectors. Moreover,
because the representations are distributed and continuous, the update of one word
vector will in effect have an impact onto the neighbors of the word. Making a particular
word better fit its context makes the whole ‘cloud of words’ around it better fit that
context.

Mikolov et al. (2013c) introduce a test set for assessing the quality of different
sets of word representations. The test set contains analogy questions of the form
‘a is to b as c is to ?’. The relation between the elements of the analogy can be a
syntactic one, i.e. the singular/plural of common words - e.g. year :years law:?, the
base/superlative/comparative forms of adjectives - e.g. good:better rough:?), etc. In
addition, the word representations are also tested using a set of semantic relations,
thus probing the semantic information present in the word representations. Examples
of such analogies are further detailed in Mikolov et al. (2013a). They include relations
like the one between a capital city and its country (e.g. Athens:Greece Oslo:?), between
a country and its currency, or between the masculine and feminine form of particular
concepts (e.g. man:woman king:?). In the case of the semantic relations the system
has to guess the second term of the second pair (i.e. Norway and queen), just like in
the case of the syntactic analogies.

Mikolov et al. (2013c) and Mikolov et al. (2013a) show that the information captured
by the word representations allows this type of analogies to be solved using a simple
vector offset method. The vectors are first normalized to unit norm, and then the
answer vector, y, is computed using the formula in Eq. 4.18.

y “ xb ´ xa ` xc, where the analogy is expressed as a:b c:?pdq (4.18)

The answer vector y is then compared using the cosine similarity measure to all the
vectors of the other words in the vocabulary, and the nearest neighbor xd̂ is returned

97



Distributional Word Representations

as an answer. The analogy test is considered to be correctly resolved if d̂ turns out
to be exactly the fourth element of the analogy, the word d. On a dataset containing
„20,000 analogy questions, the skip-gram model was able to find the correct answer
in „60% of the cases (Mikolov et al., 2013a).

The implications of this result is that some of the relations captured by the
word representations can be expressed in terms of linear vector differences. If one
could separate out these differences, and figure out a general method for picking the
base vectors to apply them to, a concept could then be represented using several
‘characteristics’, i.e. gender (man-woman; woman-man), social status (king-man;
man-king), etc. However, such methods for automatically discovering meaningful
characteristics of distributional word representations are yet to be discovered.

Mikolov et al. (2013b) extend the word2vec formulation and replace the rather
impractical softmax over the whole vocabulary with alternative formulations. The first
one, the hierarchical softmax, had already been described in Mikolov et al. (2013a).
The second one, the negative sampling formulation, is introduced in Mikolov et al.
(2013b) as a more simple alternative to the hierarchical softmax. The intuition behind
negative sampling is that one does not need to update the parameters of all the incorrect
context words at every evaluation step (since this would mean updating most of the
weights in the context matrix). Rather, a fixed number of negative samples are chosen
from a unigram distribution at each evaluation step, such that more frequent words
will be updated more frequently than less frequent words. This has the effect that each
update will impact only a small percentage of the weights in the context matrix, and
thus the training will proceed faster.

Mikolov et al. (2013b) also make an attempt at modeling phrases using the same
approach. Their approach involves automatically identifying phrases in text by scoring
each pair of words using the formula in Eq. 4.19, where δ is a coefficient that prevents
too many phrases made of words with infrequent counts to be created:

scorepwi, wjq “
countpwiwjq ´ δ

countpwiq ˆ countpwjq
(4.19)

The bigrams in the training corpus would be scored multiple times using this
formula, and if above a certain threshold they would be considered to be a phrase
and would be added to the dictionary. The authors mention that using 2-4 passes
over the data with a decreasing threshold they can also pick up longer phrases in the
data. This procedure increases the size of the vocabulary to 3 million items (both
single-token words and phrases). While many of the phrases are names of entities
(e.g. Grand_Hotel_Timeo, Kaiser_Aluminum_Corp, etc.), some of the phrases in
this over-sized vocabulary turn out to be nominal compounds (e.g. glass_carafe,
potato_patties, pear_cider, etc.).
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4.3.3 To Count, or to Predict, that is the Question
The effectiveness of the word representations trained using a neural network model
(Collobert and Weston, 2008; Collobert et al., 2011b; Mikolov et al., 2013a,b) made
it look like by predicting the identity of a word given its context (or of the context
given a word) one can capture similarities of a completely different nature than the
similarities captured using only co-occurrence counts.

An initial claim, made by Baroni et al. (2014), was that the predict vectors were
superior to the count vectors. In their study, Baroni et al. (2014) built count vectors
using the DISSECT toolkit (Dinu et al., 2013a) and experimented with different
weighting schemes (PPMI, Local Mutual Information) and different factorization
algorithms (SVD, Non-negative Matrix Factorization). Their predict vectors were
trained using the CBOW method of word2vec. In their evaluation, the predict vectors
emerge as clear winners across a wide range of semantic tasks.

This claim was, however, disputed in several other papers (Levy et al., 2014; Lebret
and Collobert, 2015a; Levy et al., 2015a), which showed that if the hyperparameters
are carefully tuned for both types of models, the word representations induced using
count methods can be as competitive as the ones obtained by the predictive methods.
Moreover, Levy and Goldberg (2014b) showed that the skip-gram model using k
negative samples performs an implicit factorization of the matrix M , as shown in
Eq. 4.20. The entries of Mij correspond to the dot product between the target
representation of the word i and the context representation of the word j:

Mij “ W i
target ¨W

j
ctx “ v⃗i ¨ u⃗j “ PMIpv⃗i, u⃗jq ´ log k (4.20)

The next sections introduce two alternatives to the prediction-based models, that
rely, however, on some of the intuitions gained from the prediction-based modeling:
the h-pca model introduced by Lebret and Collobert (2014) and the GloVe model
introduced by Pennington et al. (2014).

4.3.4 Hellinger PCA (H-PCA) - PCA-based Dimensionality
Reduction

Lebret and Collobert (2014) propose a method for creating word representation starting
from the word counts in co-occurrence matrix. However, their context definition is
quite different from the contexts proposed before: they work with an asymmetric
context of 1 word. In other words, they consider as context only the word that comes
immediately after the target word.

This restricted definition of context is used to fill in the positions of a co-occurrence
matrix that contains all the words in the training corpus whose frequency is above a
specified threshold. In their experiments the threshold is set at 100, and results in
a vocabulary VW of 178,080 words. In contrast to the word2vec models, the context
is modeled using only a subset of the dictionary words, VC , made of the 10,000 most
frequent words.
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The word co-occurrence matrix X P R|VW |ˆ|VC | is approximated as the matrix
X̂ P R|VW |ˆd, where d ! |VC | is the dimensionality of the word representations, as
chosen by the user. X̂ is the result of a principal component analysis (PCA) of
the initial matrix X.

The idea behind principal component analysis is that the most useful characteristic
of the data is the one that accounts for the most variation. For the data points
illustrated in Figure 4.7, the direction where the data exhibits most variation is the
one corresponding to the red arrow. A second direction of variation that captures most
of the remaining variation in the data is the one corresponding to the green arrow.
These main directions of variation are called the principal components of the data,
and they are orthogonal to each other.

For n dimensional data there will be n principal components. In general, however,
the data will be re-represented using only the top d principal components, where d ! n.
The new representation of the data is thus much more compact, but captures a great
deal of the information that was initially available in the data.

5 0 5

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Fig. 4.7 In illustration of principal component analysis (PCA). The red arrow shows
the direction where the data exhibits the most variation. The green arrow points the
second direction of variation for the given data points.

Just like in the SVD case, the goal of PCA is to find an X̂ such that the difference
to X is minimal. However, Lebret and Collobert (2014) choose to use the Hellinger
distance instead of the Euclidean distance to quantify the error between X and its
approximation X̂. The Hellinger distance of two discrete probability distributions
P “ pp1, . . . , pkq and Q “ pq1, . . . , qkq is defined by Eq. 4.21

HpP, Qq “
1
?

2

g

f

f

e

k
ÿ

i“1
p
?

pi ´
?

qiq
2 (4.21)
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It follows that
?

X should be used instead of X to perform PCA. In the PCA
eigenvalue decomposition formulation13, a symmetric positive semi-definite matrix
R “

?
XJ
?

X, R P R|VW |ˆ|VW | is defined. R can be rewritten as R “ ADAJ, where D
is the diagonal matrix of eigenvalues of R and A is the orthogonal matrix of eigenvectors
of R. It follows that the matrix containing the word embeddings, X̂, can be obtained
by projecting the transformed word distributions from

?
X, on the first d principal

components of the matrix R:

X̂ “
?

XAd (4.22)

where Ad P R|VW |ˆd are the first eigenvectors of the matrix R (Lebret, 2016).
Lebret and Collobert (2014) show that the embeddings obtained via H-PCA are

useful as features for downstream semantic task such as named entity recognition
and sentiment analysis, despite being trained only on one word of context. In a
subsequent set of experiments Lebret and Collobert (2015a) show that count methods
like the H-PCA can produce competitive word embeddings also for solving word analogy
problems, provided the context size is increased to five or ten words of context, as in a
typical word2vec setup. The software package for training H-PCA word representations
is publicly available14.

4.3.5 Global Vectors (GloVe) - Combining Global Matrix Fac-
torization and Local Context Window methods

Creating word representations using the SVD/PCA methods presented in the previous
sections have significant advantages. The co-occurrence information can be gathered
efficiently in one single step, and the co-occurrence counts can then be re-weighted
and transformed into suitable word representations. However, if the size of the
matrix increases, the matrix factorization operation becomes very expensive, and the
factorization has to be redone for every new word that needs a representation.

The neural network-based models - skip-gram, CBOW (Mikolov et al., 2013a) and the
Collobert and Weston (2008) models - learn word representations using a local context
window. While they sidestep the need for a costly matrix factorization operation,
such models require going through every word window in the training data. The word
co-occurrence information is spread out across the corpus, and amount of time needed
to train the word vectors grows with the size of the training corpus.

Pennington et al. (2014) proposed a model that combines the strengths of these
two approaches. The Gobal Vectors (GloVe) model trains on the global word-word
co-occurrence matrix, just like the SVD/PCA models, thus making efficient use of the
statistics. However, the optimization procedure applies to one cell of this matrix at a
time, and does not require factorizing a high-dimensional matrix.

13PCA can be performed using multiple approaches: using eigenvalue decomposition, using SVD,
or using stochastic low-rank approximations. For the other formulations see details in Lebret (2016).

14H-PCA - https://github.com/rlebret/hpca.
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Just like in the skip-gram model, a word w is represented in GloVe using two
separate vectors, one as a context representation (uw) and one as a target representation
(vw). All the word representations are again kept in two matrices Wctx, Wtarget P RdˆVC .
The vocabulary VC is made of the most frequent |VC | words in the training corpus.
The context size is chosen by the user, and can be either symmetric or asymmetric.
The co-occurrence counts are computed once for all the words in the vocabulary. The
matrices Wctx and Wtarget are initialized to small values from a uniform distribution,
and the training proceeds to minimize the cost function in Eq. 4.23.

JpΘq “ 1
2

VC
ÿ

i,j“1
fpPijqpuJ

i ¨ vj ´ log Pijq
2 (4.23)

In effect, the training goes over all pairs of words that actually co-occur (it trains
only on the non-zero entries of the co-occurrence matrix). For each word pair it
minimizes the squared distance between the dot product of the word vectors and
the log of the co-occurrence probability of the two words. The function reaches its
minimum when the dot product uJ

i vj is equal to the logarithm of the co-occurrence
probability of the two words. The function fpPijq is a weighting function, whose form
is given by Eq. 4.24, and whose main purpose is to down-weight the very frequent
counts. This step is needed because very frequent words do not inform the model as
much as less frequent words do. E.g. the fact that a word like cat co-occurs with the
and in is less informative than the fact that cat co-occurs with a comparatively less
frequent word like running. α “ 3{4 was found to be a beneficial setting for smoothing
the counts, just like in the case of the word2vec model (Mikolov et al., 2013a).

fpxq “

#

px{xmaxq
α ifx ă xmax

1 otherwise.
(4.24)

GloVe differs from the word2vec models in that instead of updating each co-
occurrence count independently, it captures all the co-occurrences once, at the beginning
of the training procedure, and then proceeds to perform local updates on the global
counts. Updates are performed once for all occurrences of a pair of words, thus making
much better use of the statistics of the corpora. The cost function in Eq. 4.23 is
optimized using AdaGrad (Duchi et al., 2011). At the end of the training procedure
the matrices Wctx and Wtarget are summed up. The vectorial representation of the
word w is the component-wise sum of its context and target vectors, uw ` vw.

The vectors produced by the GloVe model exhibit the same type of meaningful
substructure that is beneficial for solving analogy questions (e.g. the king-man+woman
« woman analogy). Evaluation on different datasets, both in terms of word analogy
and word similarity showed that the GloVe vectors perform better across the board
than vectors obtained using any of the previously proposed methods, and that the
GloVe vectors are particularly suited for semantic tasks (Pennington et al., 2014).
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The GloVe15 word representations will be used extensively in the machine learn-
ing experiments presented in Chapter 5, 6 and 7. Their effectiveness on semantic
tasks makes them a particularly good candidate for capturing the compound-internal
semantics.

15The GloVe software package for training new word representations, as well as pre-trained word
embeddings for English can be downloaded from the project’s website, https://nlp.stanford.edu/
projects/glove/.
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Chapter 5

The Mathematics of Composition

Generalstaatsverordnetenversammlungen.
Altertumswissenschaften.

Kinderbewahrungsanstalten.
Unabhängigkeitserklärungen.

Wiederherstellungsbestrebungen.
Waffenstillstandsverhandlungen.

[...] when one of these grand mountain ranges goes stretching across
the printed page, it adorns and ennobles that literary landscape - but at
the same time it is a great distress to the new student, for it blocks up his
way; he cannot crawl under it, or climb over it, or tunnel through it. So he
resorts to the dictionary for help, but there is no help there. The dictionary
must draw the line somewhere - so it leaves this sort of words out. And
it is right, because these long things are hardly legitimate words, but are
rather combinations of words [...]

- Mark Twain, The Awful German Language

5.1 A Case for Composition
Vector space models of language like the ones presented in Chapter 4 create good
representations for the simplex words of a language. Each word from a fixed-sized
dictionary is assigned an n-dimensional, real-valued vector which encodes a mixture of
its syntactic and semantic characteristics. They can provide vectors for representing
individual words like computer, software, programmer, developer, etc.

But how should a compound like software developer be represented? From a
semantic perspective, a software developer is similar to a programmer, a developer and
a coder. The ideal representation is one that makes possible the comparison between
compounds and simplex words with similar meaning.

Another argument for using compatible representations for simplex words and
compounds is that many English compounds exhibit regular differences in spelling. The
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same ‘unit of meaning’ can be written as two separate words (dress code), contiguously
(dresscode) or with a dash (dress-code). The spelling of the word, should, however, have
minimal impact on its semantic representation. The idea introduced in this chapter
is that in the context of vector space models of language, a compound should be
represented by an n-dimensional, real-valued vector, just like a simplex word.

A natural choice for building such n-dimensional compound representations is to use
the exact same mechanisms that are used for creating representations for simplex words:
compile a list with all the compounds to be represented, append it to the dictionary of
the language model containing only simplex words and train a new, compound-aware
language model. This approach was proposed by Mikolov et al. (2013b), and resulted in
good representations being trained both for individual words and for phrases, including
some noun-noun compounds. The problem, however, is that adding word combinations
quickly expands the size of the dictionary. A large vocabulary increases the time, the
computational resources and amount of text needed for training language models.

Moreover, due to the productivity of the compounding process, such models will
have data sparsity problems. For example, Baroni et al. (2002) analyzed the 28 million
words German APA news corpus and discovered that compounds account for 47% of
the word types but only 7% of the overall token count, with 83% of compounds having
a corpus frequency of 5 or lower. Language models are at a loss when trying to produce
meaningful representations for such infrequent words.

A different way of tackling the problem of creating vector representations for
compounds is to find ways to combine the representations of the constituent words.
The meaning of a compound often involves combining some aspect or aspects of the
meanings of its constituents. From the computational perspective, if a compound
is infrequent then it would be difficult to directly create a good representation for
it. However, there is a good chance that the compound’s constituents are frequent
enough to have meaningful vector representations. The idea introduced in this chapter
is to use the representations of the compound’s constituents to build a meaningful
representation for the compound itself.

This alternative way of building compound representations involves finding methods
for composing the representations of the compound’s constituents. Example of
possible composition functions are addition and multiplication: in both cases, if u
is the vector representation of software and v is the vector representation of developer,
the meaning of software developer can be represented as the vector p, obtained using
component-wise vector addition or multiplication from u and v, as illustrated in
Figure 5.1.

This representation technique assumes that compounds are compositional, i.e.
that the meaning of a compound can be derived from the meaning of its constituent
words. This is an obvious simplification of the compounding process as it takes place
in natural language. The discussion in Chapter 2 provided numerous examples of
compound-internal semantic relation which connect the two constituents of a compound.
In contrast, composition models like addition or multiplication take a much simplified
view. The composition function operates only on the constituents and does not
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[ 0.5 0.3 0.1 0.02 0.08 ]>usoftware

[ 0.01 0.4 0.3 0.09 0.2 ]>vdeveloper

[ 0.51 0.7 0.4 0.11 0.28 ]>

[ 0.005 0.12 0.03 0.0018 0.016 ]>

psoftware developer = faddition(usoftware,vdeveloper) = usoftware+vdeveloper =

psoftware developer = fmultiplication(usoftware,vdeveloper) = usoftware � vdeveloper =

Fig. 5.1 Addition and multiplication as composition functions for vector representations.

model the implicit compound-internal semantic relation. Despite these shortcomings,
composition models are a tractable way to create meaningful representations for all
the compounds that have been or will be coined by the speakers of a language. Libben
(2006) gives an illustrative example of the potential generative capabilities of the
compounding process: if the dictionary of a speaker contains N “ 100 simplex words,
with no restrictions on how the words should be combined, and taking into account
differences in semantics that stem from the differences in word order (e.g. houseboat is
different from boathouse), then the speaker is able to create N !

pN´2q! “ pN´1q˚N “ 9900
new compounds from the 100 initial simplex words. Even if in reality not all possible
word combinations are used as compounds, the compositional process seems like the
most promising approach for dealing with such a rapid increase in vocabulary size.

It would then be convenient to equip the vector space model with a composition
function able to construct a composed representation for software developer from
the representations of software and developer. The composed representation should
ideally be indistinguishable from its observed representation, i.e. the representation
learned directly by the language model if the compound were part of the dictionary.

There are, however, compounds for which the compositional approach is unsuited. A
language will also have ‘icebergs’, compounds whose meaning started up compositionally
but ‘froze’ as the language evolved. A good example of this kind is Eisbergsalat ‘iceberg
salad’, a particular type of salad whose name stems apparently from it being shipped
by train across America inside large ice blocks at the beginning of the 20th century1.
From a meaning perspective such compounds are closer to a simplex word than to a
compound: the English speaker of the 21st century will most likely be unaware of the
original meaning, but will easily identify the particular head of salad this compound
refers to. Such non-compositional compounds will be studied in more detail in
Chapter 6.

This chapter introduces, in Section 5.2, several composition models that have been
proposed in the literature. Section 5.3 describes the process of creating evaluation
datasets for German. Section 5.4 presents the evaluation criteria and the results
for German and introduces two new composition models. Section 5.5 presents the
results of the composition models on the English compounds composition dataset. The
German and English results are compared to those in other compositionality studies in
Section 5.6, and a summary of the main results is presented in Section 5.7.

1https://de.wikipedia.org/wiki/Eisbergsalat, last accessed 19 June 2018.
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5.2 Introducing Composition Models

A common view of natural language regards it as being inherently compositional.
Words are combined to obtain phrases, which in turn can be combined to create
sentences. The composition continues to the paragraph, section and document levels.
It is this defining trait of human language, its compositionality, that enables humans
to produce and to understand the potentially infinite number of utterances of a human
language.

Gottlob Frege (1848-1925) is credited with phrasing this intuition in the form of a
principle, known as the Principle of Compositionality: “The meaning of the whole is a
function of the meaning of the parts and their mode of combination.” (Dowty et al.,
1981:8)

The adoption of the distributional vectors (described in Chapter 4) as a proxy for
the meaning of individual words - in other words, having a “meaning of the parts” -
encouraged researchers to focus their attention on finding composition models which
could act as the “mode of combination”.

For compounds, the idea of looking for a “mode of combination” translates to
finding a composition function f which takes as input two n-dimensional distributional
representations, one for each of the two constituents. The constituent representations,
ucorpus, vcorpus P Rn, are learned using a language model and a support corpus. The
result of applying f to the constituent representations is another n-dimensional repre-
sentation for the compound, pcomposed P Rn. The idea can be written more formally as
in Eq. 5.1:

pcomposed
“ fpucorpus, vcorpus

q (5.1)

An additional vector to be considered is pcorpus P Rn, the observed representation
of the compound that was learned from the support corpus. pcorpus can be thought of
as a ‘gold standard’ for the composed representation pcomposed. Ideally, the application
of the composition function f to the constituent vectors ucorpus and vcorpus should
result in a composed representation, pcomposed, that encodes the syntactic and semantic
characteristics captured by the corpus-induced representation of that compound, pcorpus.

Modeling compound composition can be seen as one of the more simple composition
types: it requires only modeling the modification of the head by the modifier. Even in
the case of multi-token compounds, a representation can be obtained by recursively
combining the immediate constituents using the same composition function. The only
prerequisite is that the internal syntactic structure of the compound has to be available
- Henrich and Hinrichs (2010) present several ways to automatically derive the necessary
splitting information.

The remainder of this section will introduce several composition functions proposed
in the literature, which will be evaluated on the task of creating representations for
German and English compounds in Sections 5.4 and 5.5, respectively.
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5.2.1 Composition Models in the Literature

Some of the first comprehensive studies of composition using distributional models of
semantics were proposed by Mitchell and Lapata (2008, 2010), who focus on the family
of composition functions described by Eq. 5.2:

p “ fpu, v, R, Kq (5.2)

Mitchell and Lapata (2008, 2010) take the meaning of a two-component phrase p
to be the result of applying a composition function f , which has yet to be defined, to
the components of the phrase represented by the vectors u and v. In its most general
form, the composition function must also consider the impact of the syntactic relation
R between u and v, as well as that of the background knowledge K.

Mitchell and Lapata (2008, 2010) enlist the WordNet (Fellbaum, 1998) as a possible
source for the background knowledge K, but focus on studying the mechanism of
composition without the influence of background knowledge.

In the case of noun compound composition a useful window into the background
knowledge would be the types of semantic relations that the two components are
most likely to enter, of the type described in Chapter 2. The lack of extensive
datasets annotated with such information makes it impractical to integrate this type
of information in the composition models presented in this thesis, leading to the
background knowledge component K of Eq. 5.2 being discarded. However, as such
annotations become available, they should provide valuable input signals for composition
models.

Compounds are nominal phrases, so the syntactic relation R is in this case fixed.
The order in which the constituents are considered is also fixed: the vector u always
refers to the first constituent - the modifier - and the vector v always refers to the
second constituent - the head. It follows that the syntactic relation R in Eq. 5.2 can
also be discarded, leading to the more simple formula in Eq. 5.3:

p “ fpu, vq (5.3)

Another restriction imposed on the function f is that p, the composed representation,
should be of the same dimensionality as the input vectors u and v. This ensures that
the composed representations of compounds can be compared to the representations
of simplex words. The results presented in this chapter focus exclusively on the class
of composition functions that takes as inputs two vectors of dimensionality n and
composes them into another vector of dimensionality n.

5.2.2 Linear Composition Functions

A first class of composition functions introduced in Mitchell and Lapata (2008, 2010)
are linear composition functions. The general form of a linear composition function
is given in Eq. 5.4: the composed representation p is the result of adding the vectors u
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and v, where the contribution of each vector is controlled by the matrices A and B.
Several composition functions can be derived from Eq. 5.4.

p “ Au`Bv (5.4)

Head Equating A with the zero matrix 0 results in a composition function where the
head constituent contributes all its information while the modifier brings no information
(Eq. 5.5). This type of composition will henceforth be referred to as head composition.

p “ v (5.5)

Modifier Equating B with 0 results in a composed representation that is determined
in its entirety by the representation of the modifier (Eq. 5.6). This model will henceforth
be called modifier composition.

p “ u (5.6)

The two models in Eq. 5.5 and 5.6 admittedly discard a substantial amount of
information, since they only consider one of the two constituents of the compound.
This same property, however, makes them interesting baselines that other models can
be compared to. Models that underperform the head or the modifier composition
can hardly be considered good composition models.

Addition Replacing A and B with the identity matrix I, results in the formula for
component-wise vector addition (Eq. 5.7). The vector addition function has the
drawback that both vectors contribute equally to the composed representation, making
the composition process symmetric. A symmetric composition function is unable to
take into account the differences in meaning that stem from differences in word order:
the compounds car factory and factory car will be given the same vector representation,
even though one is a type of factory and the other a type of car.

p “ u` v; pi “ ui ` vi, i P 1, . . . , n (5.7)

Multiplication Another symmetric operation is multiplication. In this case each
component of the vector u is multiplied with the corresponding component of the
vector v. The expression of this composition function is given in Eq. 5.8.

p “ ud v; pi “ ui ¨ vi, i P 1, . . . , n (5.8)

Weighted Addition One way to introduce asymmetry in the addition function is
to make A and B 1ˆ 1 matrices and then consider only their scalar counterpart. The
composition function where two scalars λ, β P R adjust the influence of u and v is
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called weighted addition (Eq. 5.9). weighted addition is the first example of a
parametric composition function: the optimal values for λ and β can be learned
using a set of training examples. All previous functions - head composition, modifier
composition, addition and multiplication - are non-parametric, i.e. they cannot
be improved via training. The next sections will provide evidence to the fact that
even if parametric models are usually more complex, they generally perform better as
composition functions than the non-parametric models.

p “ λu` βv (5.9)

The linear composition functions presented so far were all introduced in Mitchell
and Lapata (2008, 2010). Other examples of linear composition functions in the
literature are the lexical function model and the full additive model, which will
be introduced next.

Lexical Function was introduced by Baroni and Zamparelli (2010)2 as a composition
function for adjective-noun phrases. In a phrase like red car, the adjective red modifies
the noun car to produce another car which has the attribute ‘color’ set to red. Baroni
and Zamparelli (2010) modeled this type of interaction by representing the noun as
a vector v P Rn and the adjective as a matrix Au P Rnˆn. The full form of the
composition function is given in Eq. 5.10.

p “ Auv (5.10)

lexical function is another example of a parametric function. The noun vectors
are considered to be given. The model needs to estimate an n ˆ n matrix for every
adjective. For commonly used values of n “ 300 dimensions, one matrix will have
300ˆ 300 “ 90, 000 parameters. Estimating the parameters for a small dictionary of
10,000 adjectives would require the model to estimate 900,000,000 parameters. This
increase in the number of parameters makes the model potentially prone to data
sparseness issues.

Originally applied by Baroni and Zamparelli (2010) to adjective-noun phrases, the
lexical function model can be easily applied to other two-component phrases. In
the case of compound composition, the vectors of the head constituent is considered to
be given and the model has to estimate a matrix for each modifier. The same matrix
is reused for different compounds with the same modifier (e.g. a single matrix will be
used to model water, the common modifier of water bed, water bird and water pipe).

lexical function is again a special case of the general linear composition function
from Eq. 5.4, where the matrix A is set to 0. The matrix B is kept and renamed to Au.
A different matrix Au P Rnˆn is used for each of the individual modifiers in the modifier
dictionary, DM . Each Au matrix is initialized to I`N p0, 1e´ 4q - that is, the identity

2The initial name used by Baroni and Zamparelli (2010) for this composition function was
adjective-specific linear map (alm). The name was changed by the authors to lexical
function in a later paper, Dinu et al. (2013b).

111



The Mathematics of Composition

matrix plus some noise from a normal distribution of mean 0 and standard deviation
1e ´ 4. This initialization ensures that at the beginning of the training process the
result of the composition is approximately equal to the vector of the second component,
v. The Au matrices are updated during training, such that the composition better
matches the vector corresponding to the adjective-noun combination. If the training
data does not include any examples of a particular modifier r, its matrix Ar will not
be updated and will remain close to the identity matrix it was initialized with. In such
cases the composed representation is the same as the head representation.

Of particular importance is the fact that the matrices Au are estimated from the
training data and have no connection with the modifier vector, u. The modification
matrix is learned from scratch, without trying to leverage any of the information
already learned by the language model in the form of the vector u.

An extension of the lexical function composition model has been proposed by
Bride et al. (2015), where the composition uses a third order tensor3, A P Rnˆnˆn. In
the case of adjective-noun composition, the tensor A is first (left) multiplied using the
adjective vector and then using the noun vector. The resulting n-dimensional vector
is the representation of the phrase. The advantage of the generalized lexical function
is that it trains a single tensor for all the adjective-noun phrases, not an individual
modification matrix for every adjective like in the case of the lexical function model.
The experiments in Bride et al. (2015) show that the performance of the extended
function is on par with the one of lexical function. That is why the experiments in
this chapter will focus on the evaluation of the originally proposed lexical function
composition model.

Full Additive Another parametric composition model, full additive, was intro-
duced independently by Guevara (2010, 2011) (who calls it a partial least squares
regression composition model) and by Zanzotto et al. (2010) (in their work this model
is called the estimated additive model). Full additive is a direct interpretation of
the general linear composition function from Eq. 5.4: the vectors u and v P Rn corre-
sponding to the two constituents are multiplied via two square matrices A, B P Rnˆn.
A and B are the same for every u and v. This means that during training the model
has to estimate only the parameters in two nˆn matrices. The full additive model
has a constant number of parameters with respect to the size of the vocabulary.

5.2.3 Non-linear Composition Functions

Linear composition models produce composed representations that are linear combi-
nations of the initial constituent representations. An alternative class of composition
functions that were proposed in the literature are the non-linear composition func-

3The idea of using a third order tensor as a composition function has been also proposed by
Mitchell and Lapata (2008, 2010). However, the earlier work does not test such models, since they
require large-scale parameter estimation, impossible without a substantial amount of training data.
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tions. These functions use non-linear transformations to expand the representation
capabilities of composition functions.

Dilation Mitchell and Lapata (2010) introduce dilation, a composition function
that is quadratic with respect to the modifier vector u. The intuition behind dilation
is that one can decompose the head vector v in two vectors, one parallel and one
orthogonal to u. The parallel component is then stretched by a factor λ, while the
orthogonal component remains unchanged. This operation results in a variant of the
head vector v that has been modified to emphasize the contribution of the modifier
vector u. The dilation model targets specifically the idea that the composition operation
might ‘preselect’ some aspects of the meanings of the constituents. An example given
by Mitchell and Lapata (2010) are combinations of the adjective good, which ‘preselects’
different aspects of the words neighbor and lawyer when combined with them: a good
lawyer and a good neighbor differ in the aspects they select in judging the ‘goodness’ of
the modified noun. The mathematical formulation of dilation is given by Eq. 5.11.

p “ pu ¨ uqv` pλ´ 1qpu ¨ vqu (5.11)

Matrix Socher et al. (2010) introduce a non-linear composition model where the
constituent vectors u, v P Rn are first concatenated into a vector ru; vs P R2n and then
multiplied via a matrix W P Rnˆ2n. The result of the multiplication is an n-dimensional
vector, which is passed as a final step through a non-linear function g - the element-wise
hyperbolic tangent tanh in the case of Socher et al. (2010). The parameter matrix W
has to be estimated during the training process and serves as a combination matrix for
all the possible input vectors u and v. Since this composition function is implemented
via a neural network, a bias term b P Rn is added after the multiplication of the
matrix W with the vector concatenation ru; vs. The complete form of this composition
function, henceforth the matrix composition function, is given in Eq. 5.12.

p “ gpWru; vs ` bq (5.12)

Mathematically, W performs a linear transformation (Strang, 2016:401) of the
concatenated inputs vector, ru, vs. A transformation T is linear if it preserves addition
and scalar multiplication: (i) Tpu`vq “ Tpuq`rTspvq and (ii) Tpcvq “ cTpvq, where
u, v P Rn and c P R. Examples of linear transformations are rotation by an angle around
the origin, reflection about the origin, scaling with respect to the origin etc. However,
adding the bias vector b to the result of the linear transformation shifts (or translates)
the entire result, making Wru; vs ` b an affine transformation(Strang, 2016:402),
which not preserve the origin of the coordinate system. Finally, applying a nonlinearity
g like tanh makes the whole matrix composition a non-linear transformation of
the input vectors.

It’s worth noting that there is a close relation between the full additive and
the matrix composition models. The full additive model can be rewritten as in
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Eq. 5.13. This equation shows that the matrix model is, in effect, the full additive
model with an added bias term and a nonlinearity.

p “ Au`Bv “ rA; Bsru; vs “ Wru; vs (5.13)

Full Lexical Socher et al. (2012) introduce a more general composition model that
subsumes the matrix composition function, the lexical function as well as the full
additive model. Each constituent is modeled via two components: an n-dimensional
vector which captures the meaning of the constituent and an nˆn modification matrix
which captures how one constituent modifies the meaning of the other constituent it
combines with.

During the composition process the vectors u and v of the two constituents are
multiplied by the modifier matrix corresponding to the other constituent, Av and
Au P Rnˆn. The resulting vectors Avu and Auv are concatenated and multiplied by a
matrix W P Rnˆ2n. The result is passed through a non-linearity g, just like in the case
of the matrix model.

Socher et al. (2012) call the model MV-RNN, but Dinu et al. (2013b) name it
the full lexical composition function, a name that will be used for the rest of the
discussion in this chapter. The full form of the full lexical model, including the
bias terms as in the case of the matrix model, is given in Eq. 5.14.

p “ gpWrVu; Uvs ` bq (5.14)

Each of the components of the fulllex model aims at capturing different aspects
of the composition. The individual word matrices Au, Av capture the composition
effects that are particular for every word. The word matrices do not depend on the
position of the word, i.e. if the word is the first or the second one in the phrase. Only
one matrix is trained for each word from the dictionary containing all unique modifiers
and heads, DMH . The global matrix W captures more general, word-independent
aspects of the composition.

The matrix model is a special case of the full lexical model where the word-
specific matrices U, V are all replaced by identity matrices. This is, in fact, also
the way the full lexical model is initialized: each individual word matrix is set
to I ` N p0, 1e ´ 4q. In effect, the full lexical model starts off from the same
point as the matrix model. Its advantage, however, is the possibility to fine-tune the
composition process for each word individually, instead of relying only on the general
composition performed using the matrix W and the bias vector b.

Full lexical is similar to lexical function in that at training time it estimates
a modification matrix for every word in the dictionary. The number of parameters is
therefore dependent on the size of the dictionary. This again makes data sparseness an
issue that needs to be taken into account when training the model.

Table 5.1 gives examples of composing two vectors using the ten composition
functions presented in this section. The parametric composition functions have their
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(d) multiplication: p “ u d v
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(e) weighted addition: p “ λu ` βv
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(f) lexical function: p “ Auv

A u B v p
¨

˚

˚

˚

˝

0.1 0.1 0.0 0.5 0.0
´0.2 0.3 ´0.4 0.2 0.3

0.4 0.1 ´0.6 0.4 0.7
0.2 0.5 ´1.1 0.1 ´0.4
0.8 0.0 0.1 0.9 ´1.2

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

1
3
2
1
0

˛

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

0.4 0.4 0.2 0.5 0.1
´1.3 0.1 0.4 ´1.4 0.3

0.6 0.3 0.0 0.1 0.6
0.1 0.6 ´0.1 ´0.2 ´0.5

´0.3 0.0 ´0.2 0.8 0.2

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

3
2

´3
6
1

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

5.4
´12.9

3.5
´0.3

6.6

˛

‹

‹

‹

‚

(g) full additive: p “ Au ` Bv
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(h) matrix: gpWru; vs ` bq, where g is the identity function, fpxq “ x
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(i) full lexical: gpWrAvu; Auvs ` bq; g is the identity function; the terms Avu and Auv
are obtained as shown in example 5.1f, lexical function

Table 5.1 Illustrative examples for the composition functions presented in Section 5.2.
The parameters to be estimated in each case are highlighted in red. The input to all
the composition functions are the 5-dimensional vectors u and v. The result of the
composition is another 5-dimensional vector p.
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parameters highlighted in red, to emphasize what needs to be estimated during the
training process of each individual model.

Other composition models. Although the idea of creating compositional distribu-
tional representations is relatively new, several approaches to composition have been
proposed in the literature. Comprehensively testing all the existing proposals is outside
the scope of this work. The focus here will be on the ten composition models presented
above, which are diverse enough to make this analysis a useful starting point. The
next paragraphs sketch the main ideas behind other composition models, which will,
however, not be implemented or further evaluated in this thesis.

Coecke et al. (2010) introduces a compositional framework where the compositional
process is driven by syntax. The model can be used to define composition models for
different constructions, i.e. a transitive verb with its subject and object, an adjective
that modifies a noun, etc. The main intuition is that each word can participate in the
composition process either as an argument or as a function. In the previous examples,
the verb is the function that is applied to its arguments, the subject and the object. The
verb is therefore represented by a third order tensor (P Rnˆnˆn), and its arguments by
vectors P Rn. Similarly, the adjective is a function applied to the noun. The adjective is
represented by a second order tensor (a matrix, P Rnˆn), while the noun is represented
by a vector. The framework is evaluated in Grefenstette and Sadrzadeh (2011), and
obtains similar results to Mitchell and Lapata (2008) on the dataset introduced in
Mitchell and Lapata (2008). Clark (2012) makes the observation that Coecke et al.
(2010)’s framework can be seen as an extension of Baroni and Zamparelli (2010) that
covers ‘all functional types, not just adjectives’. The lexical function composition
introduced by Baroni and Zamparelli (2010) and presented in Eq. 5.10 is one of the
models that will be tested throughout this chapter.

Socher et al. (2013b) also propose a recursive composition model, targeted at
learning phrase and sentence representations. Their model, the Recursive Neural
Tensor Network (RNTN), is an extension of Socher et al. (2010) matrix model, where
the representations of the constituents are allowed to interact not only through a matrix,
but also through a third order tensor. This allows for a larger set of interactions between
the two constituent vectors. The new model obtains state-of-the-art results at predicting
sentiment labels on a supervised dataset. It has to be noted, however, that this model
works well only with short word representations (25 to 35 dimensions, as reported
by Socher et al. (2013b)). Moreover, the individual word representations are learned
via the supervised task, which ensures that the word and phrase representations are
compatible. It is unclear if the model would work as well when using pre-trained word
representations - the authors only report results where the word representations are
learned together with the composition.

Learning dedicated word representations for phrase composition is also the main
idea introduced in Lebret and Collobert (2015b). Here, the authors train word and
phrase representations using a joint architecture. The idea is to take the probability
distributions of target words (using 10,000 context words) and construct their low-
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dimensional representation using an autoencoder. The phrase representation is a linear
combination of the representations of its constituents - the constituent representations
are added together to form the phrase representation. The joint training encourages the
autoencoder to find an encoding function that also lends itself easily to addition-based
composition.

Lebret and Collobert (2015b) show that the phrase representations are competitive
when compared to GloVe or word2vec-induced representations. The word representa-
tions, however, fall short when compared to their GloVe and word2vec counterparts
(trained on the same corpus with similar hyperparameters and vocabulary). The
authors hypothesize that the lower performance of the word embeddings might be due
to the limit of 10,000 context words, and argue that the word embeddings might be
improved by using more context words.

Another frequent combination is that of composition models and parsing. Such
models were proposed, among others, in Socher et al. (2010), Socher et al. (2013a),
Legrand and Collobert (2015). In such settings the composition models are trained
using the supervised signals provided by annotated treebanks. The proposals differ,
however, when it comes to how they approach composition.

Socher et al. (2010) applies the composition function to word pairs. The word pair
to be collapsed next is chosen either greedily, or using a sentence-optimized strategy.
After composition a word pair is collapsed into a single node, represented using the
composed representation. The pairwise composition followed by collapsing is applied
until a representation for the whole sentence is obtained.

Legrand and Collobert (2015) use a matrix composition function, similar to the
Socher et al. (2010)’s matrix model. However, since phrases have variable length, they
train a separate composition matrix for every phrase length from 1 to 7. This means
that a noun-noun combination, or an adjective-noun phrase, or an adverb-adjective
combination will be combined using the composition function for phrases of length 2.
This type of modeling might suffer from being too general - a single matrix might not
be enough to model the modification patterns in these different phrase types.

Socher et al. (2013a)’s proposal lies at the opposite end of the spectrum: several
composition functions are defined using discrete syntactic categories extracted from
a probabilistic context-free grammar (PCFG). The composition function to be used
depends on the syntactic categories of the phrase constituents. In their model Socher
et al. (2013a) report training „900 composition matrices in a standard parsing setup
using the Wall Street Journal corpus. Although theoretically appealing, the sparsity
of the training data might make it difficult to train each composition matrix in an
effective manner.
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5.3 Constructing Datasets for Evaluating Compo-
sition Models

Several of the composition models presented in Section 5.2 were used in the literature for
a diverse set of compositional phenomena: Baroni and Zamparelli (2010) investigated
the composition of adjective-noun phrases, Kisselew et al. (2015) and Lazaridou et al.
(2013) focused on compositional representations of morphologically complex words in
German and English respectively, Dinu et al. (2013b) evaluated composition models
on intransitive sentences, adjective-noun phrases and determiner phrases.

The next sections present an evaluation of the different composition models on the
task of building composed representations for German and English compound words.
Since most of these models are parametric, training examples are necessary for learning
the optimal parameter values.

Previous studies like Guevara (2010, 2011), Baroni and Zamparelli (2010), Dinu
et al. (2013b) use a common procedure for creating evaluation datasets for composition
functions. First, a set of word pairs to be modeled is gathered - these could be adjective-
noun, determiner-noun, noun-noun combinations, etc. A large support corpus is then
used to construct distributional representations for the word pairs, as well as for the
individual words in each pair. Continuous, distributed representations for individual
words can be constructed using any of the approaches presented in Chapter 4.

Deriving representations for English word pairs requires an additional preprocessing
step: all the corpus occurrences of the word pairs of interest must be linked with
the underscore character ‘_’. This tricks the tokenizer into treating each pair as a
single token, thus making it possible to record the co-occurrence statistics of the word
pairs using the same distributional methods one would use for recording individual
word statistics. The tokenization trick will be used in constructing representations for
English noun compounds in Section 5.5.2, given that English compounds are generally
written as separate words.

German compounds have a strategic advantage for this study: they are generally
written as a contiguous word, irrespective of how many constituents they have. For
example the English compound ‘apple tree’ translates into the German compound
Apfelbaum with the head Baum ‘tree’ and the modifier Apfel ‘apple’. Because the
German compounds are written as a single word, the representations for the compound
and its constituents can be directly learned, without the need for the tokenization trick
described above.

5.3.1 German Compounds Dataset for Compositionality Tests
The German compounds used in the experiments are a subset of the 54759 compounds
available in GermaNet 9.04. The compounds in the list were automatically split into
the immediate constituents (Henrich and Hinrichs, 2011): a two-part compound

4http://www.sfs.uni-tuebingen.de/GermaNet/documents/compounds/split_compounds_from_GermaNet9.0.txt
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like Apfelbaum ‘apple tree’ would be split into Apfel ‘apple’ and Baum ‘tree’, while a
compound made of multiple tokens, like Basketballschuh ‘basketball shoe’ would be
split once, into its immediate constituents Basketball ‘basketball’ and Schuh ‘shoe’. Of
course, it is possible that the compound Basketball is part of the dataset, in which case
another entry in the list would then be Basketball together with its constituents Basket
‘basket’ and Ball ‘ball’. All the splitting decisions were manually post-corrected.

Each entry in the list is a triple of the form (compound, modifier, head). The entries
in the list were filtered, keeping only those where all three words have a minimum
frequency of 500 in the support corpus used to create the vector space representations
(the support corpus for creating vector representations for German words will be
introduced in Section 5.3.2). The reason for the filtering step is that a ‘well-learned’
representation, based on a sufficiently large number of contexts, should allow for a
more accurate reconstruction than a representation based only on a few contexts.

The filtered dataset contains 34497 entries. This dataset was randomized and
partitioned into train, test and dev splits according to the 70-20-10 rule, containing
24147, 6901 and 3449 entries respectively. The dataset contains 8580 unique modifiers
and heads, and a dictionary of 41732 unique words. In some cases compounds are the
constituents of larger compounds. 1345 compounds appear as the modifier or head of
another compound.

Henrich and Hinrichs (2011) estimate that nominal compounds make up 95% of
the GermaNet compounds. However, according to the GermaNet definition, nominal
compounds are only required to have a noun as the head, i.e. as the second constituent.
The part of speech restriction does not apply for the modifier (the first constituent
of a noun), which means that nominal compounds from GermaNet can also have as
modifiers adjectives, verb, adverbs, etc. Table 5.2 presents a detailed overview of the
word class statistics5 on the filtered dataset. The table includes the percentages of
every modifier category (see last column).

Three subtypes of compounds can be identified in this dataset. The most frequent
case, covering 93.59% of the data, is when the compound is identified in GermaNet as
having only one word class for the modifier, for example having a noun as a modifier
like in Kaffeebohne ‘coffee bean’. The remaining of the data is split in two subcategories.
One where the modifier can be either of two word classes, which encompasses 3.69% of
the data, and one where the modifier has no word class - a subtype covering 2.72% of
the data.

Modifiers with two word classes can exhibit different types of indeterminacy:
noun/verb, adjective/noun and adjective/verb. An example is Tanzschuh ’dance shoe’,
where the modifier can be either the noun Tanz ‘dance’ or the verb tanzen ‘to dance’.
It is interesting to note that for some of these compounds it is impossible to establish
what the correct word class of the modifier is - both are equally likely and the choice
of word class does not lead to a shift in the meaning of the compound.

5The initial word list did not contain any part-of-speech information, so the information about
the actual part-of-speech of every compound constituent was obtained from the database files of
GermaNet release 9.0.
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Modifier Example dev test train category % total %

No word class Biogas (bio + Gas) ‘biogas’ 104 187 649 - 2.72%

Noun Kaffeebohne (Kaffee + Bohne) ‘coffee bean’ 2,655 5,410 18,796 83.20%
Adjective Gutschein (gut ‘good’ + Schein ‘bill, note’) ‘voucher’ 266 500 1,822 8.02%
Verb Brennholz (brennen ‘to burn’ + Holz ‘wood’)

‘burning wood’
213 389 1,403 6.21%

Preposition Untertitel (unter ‘under’ + Titel ‘title’) ‘subtitle’ 48 96 345 1.51%
Adverb Nichtexistenz (nicht + Existenz) ‘non-existence’ 23 47 174 0.76%
Particle Selbstentzündung (selbst + Entzündung) ‘autoignition’ 16 14 62 0.28%
Pronoun Allheilmittel (alles + Heilmittel) ‘universal remedy’ 0 2 4 0.02%

One word class 3,221 6,458 22,606 - 93.59%

Noun/Verb Tanzschuh (Tanz ‘dance’/tanzen ‘to dance’ + Schuh)
‘dance shoe’

121 252 870 97.72%

Adjective/Noun Veterinärmedizin (veterinär ‘veterinary’/
Veterinär ‘veterinarian’ + Medizin) ‘veterinary medicine’

3 3 12 1.42%

Adjective/Verb Kühlsystem (kühl ‘cold’/kühlen ‘to cool’ + System)
‘cooling system’

0 1 10 0.86%

Two word classes 124 256 892 - 3.69%

Total 3449 6901 24147 - 100%

Table 5.2 Statistics for the German dataset used for compounding experiments. The
last column lists the percentage of a particular subtype with respect to the whole
dataset (34497 compounds). The next to last column lists the percentages within a
particular category.

The subset of compounds where the modifier does not have a word class consists
of compounds where the modifier is part of a small class of morphemes that cannot
appear as individual words - also known as bound morphemes (Henrich and Hinrichs,
2011). An example of this class is the compound Himbeere ‘raspberry’, where the head
Beere ‘berry’ can appear independently, but the modifier Him- does not carry meaning
on its own.

The availability of word class information in GermaNet makes it possible to asses
composition models using two datasets: a mixed dataset, containing all the 34497
nominal compounds obtained after the filtering step and a more specialized nn-only
dataset, containing only the compounds marked as having a single noun as modifier.
Compounds that are clearly marked in GermaNet as having a noun as a modifier
represent a total of 77.86% of the mixed compound dataset. The data splits created
for the mixed dataset were reused to extract a noun-noun compounds dataset, by
discarding the compounds whose modifier was something else than a single noun.

The nn-only compound dataset contains 26861 noun-noun compounds, whose dev,
test and train partitions contain 2655, 5410 and 18796 compounds respectively (see
Table 5.2, second row). There are 7131 unique modifiers and heads, and the dictionary,
i.e. the total number of constituents and compounds, has 33241 unique entries. 751
compounds act as the head or modifier of another compound. The average number of
compounds with the same modifier is 5.48, with a minimum of 1, a median of 2, and a
maximum of 198 (the word Land ‘land’ is the most frequently used modifier in the
nn-only dataset). The average number of compounds sharing the same head is 5.88,
with a minimum of 1, a median of 2 and a maximum of 146 (the word Haus ‘house’ is
the most frequent head word in the dataset).

The experiments in Sections 5.4.3 through 5.4.6 report the results of training and
testing composition models both on the nn-only and on the mixed dataset.
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Table 5.3 lists some entries of the nn-only dataset. An entry specifies the lemmas
of the modifier, of the head and of the compound. Many compounds in German have
linking elements (see compounds in Table 5.3 where the last column is not empty)6.
Given that linking elements do not play a role in the semantics of the compound
(Fleischer and Barz, 2012:186), the composition models presented in this thesis will
only operate on the lemmatized versions of the compound and its constituents.

The dataset contains the lowercased versions of the compound and its constituents.
This decision was prompted by practical reasons, as training a language model using
the properly-cased version of the constituents would lead to a substantial increase in
the size of the vocabulary.

Modifier lemma Head lemma Compound lemma Linking element

Kunst ‘art’ Galerie ‘gallery’ Kunstgalerie ‘art gallery’
Ende ‘end’ Gerät ‘device’ Endgerät ‘terminal device’ - e
Hund ‘dog’ Steuer ‘tax’ Hundesteuer ‘dog tax’ + e
Ostern ‘Easter’ Tag ‘day’ Ostertag ‘Easter day’ - n
Experte ‘expert’ Kommission ‘committee’ Expertenkommission ‘commission of experts’ + n
Verkehr ‘traffic’ Sprache ‘language’ Verkehrssprache ‘interlingua’ + s
Stern ‘star’ Himmel ‘sky’ Sternenhimmel ‘spangled sky’ + en
Rind ‘cow’ Zucht ‘rearing’ Rinderzucht ‘cattle rearing’ + er
Gesetz ‘law’ Text ‘text’ Gesetzestext ‘legal text’ + es
Glaube ‘belief’ Artikel ‘article’ Glaubensartikel ‘article of belief’ + ns
Herz ‘heart’ Angelegenheit ‘matter’ Herzensangelegenheit ‘matter of heart’ + ens

Table 5.3 Examples of compounds from the nn-only dataset. The selection of linking
elements is based on the selection in Henrich and Hinrichs (2011). The + sign indicates
that the linking element is inserted between the modifier and the head. The - sign
indicates that the element is removed from the right end of the modifier.

5.3.2 Word Representations for German
Four vector space language models for German were trained, with 50, 100, 200 and
300 dimensions respectively. The training was performed using the GloVe package
(Pennington et al., 2014) and a 10 billion token raw-text corpus extracted from the
DECOW14AX corpus (Schäfer, 2015). The corpus was pre-processed in a similar
way to the one described in Collobert et al. (2011b): all the words were lowercased,
punctuation was removed and each number was replaced by the string ’NUMBER’
(irrespective of how many digits it had). The training corpus is not lemmatized -
constituent/compound representations are based exclusively on the appearances of the
respective word forms in the corpus.

Although using the originally-cased corpus or using a fully lemmatized corpus are
interesting alternatives for creating word representations, they will not be pursued
in this thesis. The focus here is on testing the performance of different composition
models using the same word representations.

The used vocabulary had 1,029,270 (1M) words, and contained all the words with
a minimum frequency of 100 (the full vocabulary had 50M unique words). Each
model was trained for 15 iterations using GloVe’s default training parameters, the only

6The selection of linking elements is based on the list mentioned in Henrich and Hinrichs (2011).

121



The Mathematics of Composition

modification being the use of a symmetric context when constructing the co-occurrence
matrix (10 words to the left and to the right of the target word).

5.4 Evaluating Composition Models
The experiments in this section will focus on the ten composition models described in
Section 5.2. Table 5.4 gives an overview of the names of these composition function, as
they will be used in the remainder of this chapter, and reiterates their mathematical for-
mulation. The ten composition models in Table 5.4 were implemented using the Torch7
library (Collobert et al., 2011a), whose nngraph module allows for an easy creation of
different architectures. All models are trained using the CosineEmbeddingCriterion.
The optimization uses mini-batch Adagrad (Duchi et al., 2011).

The models are trained using early stopping (Prechelt, 1998) with a patience of 5
epochs. The last column in Table 5.4 lists the initialization method for the parameters
of the model (where needed). Initial tests on the dev set showed that initializing
parameters from a normal distribution of mean 0 and standard deviation 1e ´ 4,
N p0, 1e´ 4q leads to good results for all models. The initialization method will remain
fixed throughout the experiments described in this chapter.

Composition Model Short name Formula Initialization

head head p “ v none
modifier modifier p “ u none
addition addition p “ u ` v none
multiplication mul p “ u d v none
weighted addition w_addition p “ λu ` βv λ, β P N p0, 1e ´ 4q

lexical function lexfunc p “ Auv Aw: I ` N p0, 1e ´ 4q

full additive fulladd p “ W1u ` W2v W1, W2: N p0, 1e ´ 4q; no biases

dilation dilation p “ pu ¨ uqv ` pλ ´ 1qpu ¨ vqu λ P N p0, 1e ´ 4q

matrix matrix p “ gpWru; vs ` bq W: N p0, 1e ´ 4q

full lexical fulllex p “ gpWrAvu; Auvs ` bq Aw: I ` N p0, 1e ´ 4q

W: N p0, 1e ´ 4q

Table 5.4 Existing composition functions to be evaluated in this chapter. u and v are
the vector representations of the modifier and the head respectively. p is the composed
representation of the compound, the result of applying a composition model to the
constituent representations.

lexfunc and fulllex use lookup tables to train the individual word matrices,
Aw. Each individual word matrix was initialized to the identity matrix I plus a small
amount of noise from a normal distribution, N p0, 1e´ 4q. This type of initialization
was proposed by Socher et al. (2012) and allows the model to use the original vectors
initially (Iv “ v), and to navigate away from the identity matrix only when the training
data provides enough evidence.

matrix and fulllex are reimplementations of the models used in Socher et al.
(2010, 2012). The existing implementations were part of a more complex recursive
architecture aimed at constructing representations for full sentences, and thus not
directly reusable for the compound analysis task described here.
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Also, note that although implemented using neural networks, some of the weight
matrices were not defined using a bias term. The implementations in this thesis were
kept as close as possible to the originally proposed functions: i.e. lexfunc and fulladd
do not have a bias term, whereas matrix and fulllex do feature a separate bias vector
(b). The formulas in Table 5.4 present the exact mathematical formulation that was
implemented for each of the models.

Different implementations for composition functions are different with respect to
the way the composition process affects the input word vectors. In Socher et al. (2010,
2012) the input vectors are fine-tuned by the composition process and this might indeed
result in a better composition. However, it might also make it more difficult to apply
the learned composition functions to compounds whose constituents were not part of
the training data.

In contrast, Mitchell and Lapata (2010); Baroni and Zamparelli (2010); Zanzotto
et al. (2010); Guevara (2010); Dinu et al. (2013b) all opt for studying composition
without modifying the input vectors. When creating compound representations, the
composition models are expected to work well with constituents they have not been
trained on. Fine-tuning the initial representation for the training compounds can make
it more difficult for the composition models to perform well on unseen compounds.
This is why the implementations in this thesis belong to the second camp: all the
composition models keep the input vectors fixed during the composition process.

5.4.1 Evaluation Criteria

Evaluating composition models essentially amounts to comparing the observed com-
pound representations, obtained using distributional methods, to the composed
representations obtained through composition.

Intuitively, a good composed representation should be among the nearest neighbors
of the corresponding observed representation. A composition model is judged to
perform well if it builds good composed representations for a large number of previously
unseen compounds, i.e. the dev and test set compounds. This intuition is presented
visually in Figure 5.2: composition models work well when the composed representations
(displayed using orange filled circles) are close to the observed representations (displayed
using blue unfilled circles) of the same compounds. Here the composed representation
of Apfelbaum ‘apple tree’, marked with an orange filled circle, is close to the observed
representation of Apfelbaum, which is marked with a blue unfilled circle. The composed
representation also ‘fits’ the neighborhood of the observed representation: its neighbors
are the head Baum ‘tree’, as well as other fruit trees like Kirschbaum ‘cherry tree’. At
the same time the representation of the compound Apfelbaum is considerably further
away from the representation of its modifier Apfel ‘apple’ and other similar concepts
like Birne ‘pear’ and Kirsch ‘cherry’.

The performance of the composition models will be evaluated using two methods:
(i) the cosine distance between the composed and the corresponding observed vectors

123



The Mathematics of Composition

Apfel

Kirsch

Birne

observed
composed

observed

composed

Baum

Apfelbaum

Kirschbaum

Apfelbaum

Fig. 5.2 Word representations in an idealized 2-dimensional vector space. Composition
models work well when the composed representations (displayed with orange filled
circles) are close to the observed representations (displayed with blue unfilled circles)
of the same compounds.

and (ii) a modified version of the rank evaluation proposed by Baroni and Zamparelli
(2010).

Cosine distance The cosine distance is based on the cosine similarity, defined in
Eq. 4.3 (the formula is repeated, for convenience, in Eq. 5.15). The cosine similarity
measures the angle between two vectors: if the vectors are parallel, the angle is 0˝, and
its cosine is 1. Perpendicular vectors have an angle of 90˝, whose cosine is 0. Opposite
vectors have an angle of 180˝ and a cosine of -1. The cosine similarity is defined as the
inner product of two vectors, divided by the norm (or length) of the two vectors.

cosine_similarity : cospu, vq “
u ¨ v

∥u∥2 ∥v∥2
“ u ¨ v, if ∥u∥2 “ ∥v∥2 “ 1 (5.15)

The range of the cosine similarity is therefore the interval r´1, 1s. The cosine
similarity is transformed into a distance metric (allowing only positive values) by
subtracting it from 1. Although the result is not a proper metric (Chanwimalueang
and Mandic, 2017), it has, in practice been extensively used to quantify the similarity
of word vectors. The mathematical formulation of the cosine distance is given in
Eq. 5.16. The cosine distance is 0 when the angle between the vectors is 0˝, 1 when
the angle is 90˝, and 2 when the angle between the vectors is 180˝, as illustrated in
Fig. 5.3.

cosine_distance : 1 ´ cospu, vq “ 1 ´
u ¨ v

∥u∥2 ∥v∥2
“ 1 ´ u ¨ v, if ∥u∥2 “ ∥v∥2 “ 1 (5.16)

Jcosine_distance, the mean cosine distance between the composed (ccomposed) and
observed (ccorpus) representations, can be computed for a set of |C| compounds using
the formula in Eq. 5.17:

Jcosine_distance “
1
|C|

|C|
ÿ

i“1
1´ cospccomposed, ccorpus

q (5.17)
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~u

~v

similar vectors
angle is 0◦

cosine similarity is 1
cosine distance is 0

~u

~v

orthogonal vectors
angle is 90◦

cosine similarity is 0
cosine distance is 1

~u

~v

opposite vectors
angle is 180◦

cosine similarity is -1
cosine distance is 2

Fig. 5.3 Vector similarity and cosine distance: the smaller the angle between the vectors
the smaller the cosine distance and therefore the measured error.

The cosine distance is used as an optimization criterion in training the composition
models in this thesis, using the implementation in CosineEmbeddingCriterion.7

Rank evaluation The rank evaluation idea was introduced by Baroni and Zamparelli
(2010). The intuition is that one can estimate the quality of a composition model
by computing, for each composed vector in the test set, the cosine similarity to all
the observed vectors (both of individual words and of compounds) and recording the
position of the corresponding observed representation is the cosine-ordered list.

cosine similarity

Apfelbaum ‘apple tree’

Baum ‘tree’

Apfelbaum ‘apple tree’

Kirschbaum ‘cherry tree’

. . .

. . .

Apfel ‘apple’

Birne ‘pear’

. . .

Eselsbrücke ‘mnemonic’

Löwenzahn ‘dandelion’

0.87
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0.85

. . .

. . .

0.62

0.60

. . .

0.21

0.15

rank 2

(a)

test compound rank

Telefonkabel ‘telephone cable’

Exportanteil ‘export share’

Schlossturm ‘castle tower’

. . .

Hundekuchen ‘dog biscuit’

Vorplatz ‘courtyard’

Sitzheizung ‘seat heating’

. . .

Weisheitszahn ‘wisdom tooth’

Musikstunde ‘music lesson’

. . .

Maulwurf ‘mole’

Milchmädchen ‘milkmaid’

1

1

1

1
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. . .
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Fig. 5.4 Rank evaluation as proposed by Baroni and Zamparelli (2010). (a): Each
composed representation is compared to all observed representations in terms of cosine
similarity. The rank assigned to the composed representation is given by the position
of the corresponding observed representation in the cosine-ordered list. (b): Quartile
computation for the ranks of the test set compounds.

7https://github.com/torch/nn/blob/master/doc/criterion.md#nn.CosineEmbeddingCriterion
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Fig. 5.4a illustrates the Baroni and Zamparelli (2010) rank computation process
for the compound Apfelbaum ‘apple tree’. Filled orange dots are used to illustrate
composed vectors. Unfilled blue dots are used to represent the original, corpus-based
vectors. The cosine similarity is computed between the composed representation of
Apfelbaum and all the observed representations. In this case, the original representation
of the compound Apfelbaum is on position 2 in the ordered list, therefore the composed
representation is considered to have rank 2.

The best possible result is when the observed representation is the nearest neighbor
of the composed representation. This situation corresponds to assigning the rank 1 to
the composed vector. The cut-off rank 1000 is assigned to all the representations with
ranks above 1000 (1K).

The evaluation on a whole test set involves first computing the rank for each
composed representation, as shown above. The list of ranks is then sorted, and the first,
second and third quartiles (Q1, Q2/median, Q3) are computed. Fig. 5.4b illustrates
the quartile computation process.

First, the median value is used to separate the ordered rank list in two halves. The
median of a list of numbers is the middle value if there is an odd number of elements
in the list, and the mean of the two middle values otherwise. E.g. the median of [1,
2, 3, 4, 5] is 3, and the median of [1, 2, 3, 4] is 2.5. The median is saved as the Q2
value, and the list is split in two halves. If the list had an odd number of elements, the
median value is not included in any of the halves. Q1 and Q3 are then computed as
the median values of the resulting sublists, each containing half of the initial data.8

A Q1 value of 2 means that the first 25% of the data was only assigned ranks 1 and
2. Similarly, Q2 and Q3 refer to the ranks assigned to the first 50% and 75% of data,
respectively. For the example test dataset sketched in Fig. 5.4b, Q1=2, Q2=13 and
Q3=81.

Target-centric rank evaluation The results reported in Dima (2015), Dima (2016)
use Baroni and Zamparelli (2010)’s rank evaluation as described above. However,
reporting also the average cosine distance between the composed and the observed
representations of the test compounds pointed to some shortcomings of the rank
computation. Because the rank is computed based on the similarity to the composed
representation, the reference representation is going to change from one composition
model to the other (or from one variant of a composition model to the next). This
makes it possible for the ranks to show improvements even in cases where the cosine
similarity is worse.

Fig. 5.5a illustrates a case where such an outcome is possible. The solid blue lines
depict the original vectors and the dashed orange lines depict the composed vectors.
A first composed vector for Apfelbaum, p1, is closer to the original vector for Baum,
v , than of the original vector for Apfelbaum, u, and is assigned therefore the rank 2.
At a later moment, a variant of the composition model creates the composed vector

8The quartile computation procedure described in more detail: https://en.wikipedia.org/wiki/
Quartile#Method_1, last accessed 18 April 2018.
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p2, which is, in terms of cosine similarity, further away from the original vector for
Apfelbaum, u. However, because the composed vector is taken as reference when
computing the cosine similarity, p2 gets assigned the rank 1, as it is the closes vector
to u.

u

Apfelbaumv

Baum

p1

Apfelbaum (rank 2)

p2

Apfelbaum (rank 1)

(a)

Apfelbaum 0.88

cosine similarity

Apfelbaum ‘apple tree’

Baum ‘tree’

Kirschbaum ‘cherry tree’

. . .

. . .

Baumstamm ‘tree trunk’

Apfel ‘apple’

. . .

Schneebesen ‘whisk’

Bilderbuch ‘picture book’

1

0.97

0.89

0.86

. . .

0.67

0.65

. . .

0.23

0.18

rank 3

(b)

Fig. 5.5 (a) Problem in the Baroni and Zamparelli (2010) evaluation: p1, a composed
vector that is closer to its original u is ranked worse that p2, a composed vector that
is further away from the original u because the vector of reference is the composed
vector, which changes from one model to another; (b) The vector of reference is the
observed representation of each compound. The composed representations created by
each composition model are compared against the other vectors in the vector space,
and ranked according to the same frame of reference.

The evaluation can be improved by always taking as a reference the original vector
of the word. As the illustration in Fig. 5.5b, the cosine similarity is computed this time
between the original vector for Apfelbaum and all the other original vectors from the
vocabulary. Composed representations are assigned a rank based on their position with
respect to this list. Referring back to Fig. 5.5a, the new, target-centric evaluation will
correctly assign a better rank to p1, which is closer to the original representation of
Apfelbaum, and a worse rank to p2, which is further away in terms of cosine similarity.

In the next sections the new, target-centric rank evaluation and the cosine distance
are going to be used to asses the performance of composition models. The evaluation
metrics will serve both for identifying the best hyperparameter settings for the compo-
sition models, as well as for comparing the results of different composition models on
several benchmark test sets.

5.4.2 The Impact of Embedding Normalization
Several researchers (Ó Séaghdha, 2008; Baroni and Zamparelli, 2010; Levy et al., 2015a)
have pointed out that the efficiency of systems that use distributed word representations
depends in a great measure of some seemingly trivial preprocessing choices. One such
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choice is whether normalization should be applied to the initial word space, and if
yes, what is the best normalization procedure to use.

Normalizing a vector u “ px, yqJ is done by dividing each of its components by
the length of the vector. The length of a vector u is typically denoted as ∥u∥2 and is
computed using the formula in Eq. 5.18. The length of the vector is also known as the
Euclidean norm or the L2 norm of a vector.

∥u∥2 “
a

x2 ` y2 (5.18)

A normalized version of u can therefore be computed using Eq. 5.19. The normalized
vector û is a unit vector, that is, its length is equal to 1.

û “
u

∥u∥2
(5.19)

Normalization has several advantages when building machine learning models.
Consider, for example, using a vector whose components are (30, 40), and another
vector whose components are (3, 4). The two vectors differ in their magnitude, but have
the same orientation. However, because of the difference in magnitude, finding a set of
parameters that works well with both vectors can prove difficult. When normalized to
unit norm, however, both vectors will be the same: (3

5 , 4
5). This makes finding a set of

parameters that will give good results for many of the input vectors a much easier task.
Existing research using as input distributional representations points towards a

beneficial effect of normalization: Ó Séaghdha (2008) reports a four point improvement
in the results using an L2 linear kernel when using L2 normalization of the input
vectors. Baroni and Zamparelli (2010) obtain the best results for the addition compo-
sition model when using a normalized word space, and mention that “non-normalized
addition was also tried, but it did not work nearly as well as the normalized variant”.
However, Baroni and Zamparelli (2010) do not provide any numbers comparing the
performance of normalized vs. non-normalized representations. Levy et al. (2015a)
take the normalization method to be one of the hyperparameters of a model using
word embeddings. They perform preliminary experiments using four L2-normalization
types: none, row, column and both row and column. Again, they do not report any
numbers, but specify that the best results were obtained using L2 row normalization
of the word spaces, which they go on to use in their other experiments.

This section explores two ways of normalizing the input word embeddings for the
composition task: L2 row normalization and L2 column normalization. Furthermore,
the results using some form of normalization are contrasted against using the raw, not
normalized input vectors. L2 row normalization means making each individual word
vector have a unit norm. L2 column normalization translates to having each component
of the vector space be normalized to unit norm across the vector representations of all
the words in the dataset dictionary (33241 entries).

Table 5.5 displays the results of the ten composition models evaluated on the dev
split of the nn-only dataset. The models use the 50-dimensional embeddings. All
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parametric models are optimized with AdaGrad, using a batch size of 100 items. The
learning rate was chosen separately for each model, by trying out from three different
options: η P 0.001, 0.01, 0.1. Table B.1 in Appendix B gives a detailed overview of the
results of each model using the different learning rates and different normalization
types. Most models perform at their best with a learning rate η “ 0.01. The dilation
model is the only one that performs decidedly better when using a higher learning
rate (η “ 0.1). The three different normalization setups - no normalization, L2 row
normalization (L2-row) and L2 column normalization (L2-col) - are compared using
the best performing learning rate for each model.

Comp. Model η none L2-row L2-col

Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d

mul 0.01 1K 1K 1K 0.9627 1K 1K 1K 0.9627 1K 1K 1K 0.9619
modifier 0.01 356 1K 1K 0.6923 356 1K 1K 0.6923 342 1K 1K 0.6869
head 0.01 65 480 1K 0.5912 65 480 1K 0.5912 59 433 1K 0.5820
addition 0.01 67 377 1K 0.5731 64 356 1K 0.5712 59 335 1K 0.5615
dilation 0.1 50 371 1K 0.5734 50 371 1K 0.5734 44 330 1K 0.5632
w_addition 0.01 52 325 1K 0.5627 50 322 1K 0.5615 45 288 1K 0.5509
lexfunc 0.01 7 44 377 0.4524 7 44 377 0.4524 7 45 374 0.4514
fulladd 0.01 4 11 49 0.3677 3 11 49 0.3678 4 11 49 0.3696
matrix 0.01 3 10 46 0.3649 3 10 46 0.3649 3 11 49 0.3674
fulllex 0.01 2 6 30 0.3384 2 6 30 0.3379 3 8 36 0.3475

Table 5.5 Results on the dev split of the nn-only dataset, using 50-dimensional
embeddings. Row normalization works better with models that have a large number of
parameters (underlined). In contrast, models with no or few parameters have better
results when using column normalization.

The two normalization types display an interesting dichotomy: models that have
a large number of parameters (underlined) work better with row normalized inputs,
whereas the ones with few or no parameters work better with column-normalized inputs.
A possible explanation for why this might be the case is that the models with no or
few parameters benefit from the column normalization step, as this ensures that the
individual dimensions of the input representations carry a more consistent meaning
across the whole word representation space.

Another observation is that there is, in general, little difference between using the
L2-row normalized input vectors and the raw vectors, for most parametric composition
models. A likely reason for this result is the use of the cosine distance as the optimization
objective. The cosine distance is based on the cosine similarity, which is defined as the
dot product of the normalized vectors. When using raw (un-normalized) vectors the
composition models have to perform an implicit normalization in order to minimize
the loss.

Although normalization did not bring large improvements in the current experi-
mental setup, machine learning best practices recommend the use of normalized inputs
to learning algorithms, for the reasons explained above. Therefore, the experiments
that follow all use L2-row normalized vector spaces for the highly parametric models
(underlined), and L2-col normalization for the other models.
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5.4.3 Results on the German nn-only composition dataset
The ten composition models described in Section 5.2 were evaluated using word
representations of increasing size - 50, 100, 200 and 300 dimensions (described in
Section 5.3.2). All models are trained on the train split. Results are reported both
on the dev and on the test split. The models are considered to generalize well if the
results on the unseen test dataset are comparable to those obtained on the dev set,
which was used to choose the model hyperparameters.

During the training procedure each model is trained on the train set and tested
on the dev set. The training procedure stops when the error on the dev set starts
increasing, using an early stopping procedure (described in detail in Section 3.3.3). The
intuition behind this procedure is that a good model can be obtained by monitoring
the error on the dev set and stopping the training as soon as the dev error constantly
increases for a number of epochs. In the experiments described here the increase is
allowed for 5 consecutive epochs, after which the last model, saved before these 5
epochs, is returned as the best model.

The best model, which has only ‘seen’ the train and the dev splits during its
training phase is then tested on the test split. Because the test split was kept
completely separate during the training procedure, the error obtained on the test split
- the generalization error - is indicative of the model’s generalization capabilities.

Model Dro 50d 100d 200d 300d

Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d

de
v

mul 0 1K 1K 1K 0.9619 1K 1K 1K 0.9769 1K 1K 1K 0.9944 1K 1K 1K 0.9974
modifier 0 342 1K 1K 0.6869 113 797 1K 0.7060 75 506 1K 0.7457 62 393 1K 0.7630
head 0 59 433 1K 0.5820 24 157 1K 0.6142 19 112 736 0.6688 16 83 561 0.6911
addition 0 59 335 1K 0.5615 18 88 447 0.5778 14 57 272 0.6337 11 41 181 0.6558
dilation 0 44 330 1K 0.5632 16 102 700 0.5899 13 67 427 0.6445 10 50 312 0.6673
w_addition 0 45 288 1K 0.5509 16 77 410 0.5704 12 52 250 0.6278 10 36 181 0.6505
lexfunc 0.5 5 32 246 0.4350 4 18 140 0.5019 3 11 69 0.5503 3 9 53 0.5787
fulladd 0 3 11 49 0.3678 2 6 19 0.4258 2 4 10 0.4783 2 3 8 0.5057
matrix 0 3 10 46 0.3649 2 6 18 0.4241 2 4 10 0.4767 2 3 8 0.5037
fulllex 0.25 2 6 27 0.3317 2 4 13 0.3980 2 3 9 0.4642 2 3 7 0.4993

te
st

mul 0 1K 1K 1K 0.9610 1K 1K 1K 0.9787 1K 1K 1K 0.9969 1K 1K 1K 0.9999
modifier 0 319 1K 1K 0.6875 120 760.5 1K 0.7070 77 491 1K 0.7468 60 375 1K 0.7645
head 0 61 451 1K 0.5813 23 162.5 1K 0.6134 18 111 736 0.6688 16 83 548 0.6912
addition 0 64 325.5 1K 0.5620 18 82 432 0.5776 14 55 276 0.6341 11 40.5 191 0.6565
dilation 0 49 330.5 1K 0.5625 17 98 660 0.5894 13 67 438 0.6450 11 49 319 0.6679
w_addition 0 48 279 1K 0.5510 15 73 401 0.5698 12 48.5 256 0.6280 10 36 180 0.6509
lexfunc 0.5 5 27 253 0.4318 4 16 162 0.4996 3 10 73 0.5482 3 8 56 0.5771
fulladd 0 3 10 45 0.3663 2 6 19 0.4262 2 4 10 0.4778 2 3 8 0.5055
matrix 0 3 10 42 0.3635 2 6 19 0.4243 2 4 10 0.4763 2 3 7 0.5034
fulllex 0.25 2 6 24 0.3311 2 4 12 0.3973 2 3 9 0.4623 2 3 7 0.4982

Table 5.6 Quartiles for the 2655 composed representations of the dev split and the
5410 composed representations of the test split of the nn-only dataset, ranked with
respect to the observed representations. Using cosine distance criterion.

Table 5.6 presents the evaluation results on the dev and test splits of the nn-only
dataset. The best result for each model across the different dimension input vectors
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is marked in bold. A first observation that can be made is that the performance of
composition models increases with the dimensionality of the input vectors. One model
makes an exception: the multiplication model, mul, which is consistently the worst
performing model on every dimension.

Model Formula d=50 d=100 d=200 d=300
mul - 0 0 0 0
modifier - 0 0 0 0
head - 0 0 0 0
dilation λ 1 1 1 1
addition - 0 0 0 0
w_addition λ, β 2 2 2 2
lexfunc d2 ˆ |V | 17,827,500 71,310,000 285,240,000 641,790,000
fulladd d2 ˆ 2 5,000 20,000 80,000 180,000
matrix d ˆ 2d ` d 5,050 20,100 80,200 180,300
fulllex d2 ˆ |V | ` d2 ˆ 2 ` d 17,832,550 71,330,100 285,320,200 641,970,300

Table 5.7 Number of trainable parameters for each model and for each dimensionality
of the input word embeddings on the nn-only dataset. Vocabulary size |V | “ 7, 131.
d is the dimensionality of the input embeddings (one of 50, 100, 200 and 300).

The positive impact of using higher-dimensional input representations can be
consistently observed, even for models where the number of parameters is quadratic
with respect to the size of the input word embeddings (e.g. lexfunc, fulllex).
Table 5.7 displays, for comparison, the number of parameters for each of the 10
composition models for each input dimensionality. However, the improvements brought
about by increasing the dimensionality of the input vectors do eventually flatten out:
the improvements of the models using 200 and 300 dimensional inputs are comparatively
smaller than the ones between the modes using 50 and 100 dimensional inputs.

Models with a large number of parameters are easily prone to overfitting - i.e.
learning unimportant details about the training data at the expense of performing well
on the test data. To reduce overfitting a dropout layer was added to the composition
models with a high number of parameters. For fulladd and matrix the dropout layer
was added to the W1, W2/W matrices. For lexfunc and fulllex dropout was added
to the lookup table. Several dropout rates were tested for each model: 0, 0.25, 0.5
and 0.75. The dropout rate is the number of units that get discarded from the layer
- i.e. a dropout rate of 0.25 means 25% of the units are discarded and 75% of the
units are kept. The experiments showed that the fulladd and matrix models do not
benefit from the addition of dropout. However, the lexfunc and fulllex models do
show a marked improvement when using dropout, with the best dropout rate being
0.5 for lexfunc and 0.25 for fulllex. The results in Table 5.6 show the results of the
model with the best hyperparameters in each case. The results using all the different
hyperparameters are available in Appendix B, Table B.2. As before, models other than
dilation use a learning rate of 0.01. dilation uses a learning rate of 0.1.
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The remainder of this section analyses in more detail the results of each of the ten
composition models. Appendix C contains tables with example neighbors. For each
composition model, a sample of 12 compounds was extracted from the test set: four of
the highest ranking compounds, four middle-ranking and four low-ranking compounds.
The nearest neighbors are computed for each of the sample compounds, using the
composed vector as a representation. The representations are obtained using the best
performing model, indicated in bold in Table 5.6. The neighbors are searched for in
the observed vector space. The cosine similarity is listed next to each neighbor. The
examples are in lowercase German, as in the dataset. Due to space considerations, only
the examples referred to in this section’s text are glossed with their English translation.

head For many compounds, the referent of the whole is, in many cases, of the same
semantic type as the referent of the head, e.g. an Apfelbaum ‘apple tree’ is a type
of Baum ‘tree’. This is why the head model is used as a strong baseline for the
compound composition task.

Table C.1 contains a set of examples extracted from the results of the head model
on the test dataset. It features three groups of four compounds assigned the best
rank (1), the middle rank (83) and the cut-off rank (1000). E.g. Wasserstrahl ‘jet of
water’, Teilprivatisierung ‘partial privatization’, Rechnungsbetrag ‘invoice amount’ and
Körpergewicht ‘bodyweight’ are all assigned the best rank, 1; Malteserkreuz ‘Maltese
cross’ and the other compounds on the second row are assigned the middle rank 83;
and Schlagzahl lit. ‘strike count’, ‘the number of times the paddle hits the water in an
interval of one minute’ and the other compounds on the third row are assigned the
cut-off rank 1000.

The head model does not learn any parameters, it just uses a normalized version
of the corpus-based head word representation as the compound representation. The
examples show that the compounds for which this model works well tend to be very
close in meaning to their head word or even used interchangeably with it. 125 test
compounds are assigned the rank 1 by the head model, with an average cosine similarity
of 0.59580. Overall, the results of the head composition model are, unsurprisingly,
not impressive. They show that it is difficult to model the semantics of a compound
without taking into account the contribution of the modifier.

modifier A second baseline is the modifier model, where the normalized represen-
tation of the modifier is used to represent the compound. According to the results in
Table 5.6, the modifier baseline performs worse than the head baseline: the modifier
model obtains on the test compounds an average cosine distance of 0.7645, compared
to the 0.6912 average obtained by the head model. This suggests that the head repre-
sentation is a better fallback representation to use when a compound representation is
unavailable. Table C.2 shows examples of neighbours for compounds represented via
their modifier vector.

Only 32 compounds are assigned rank 1 using the modifier model - a significant
decrease from the 125 in the case of the head model. The average similarity of the
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rank 1 compounds is 0.58728. The modifier representation is, in general, a poor
approximation for the compound representation. E.g. for a compound like Stadtvilla
‘urban villa’, the representation of the modifier Stadt ‘town’ is almost perpendicular to
the original representation of the compound ‘Stadtvilla’, with a cosine similarity of
0.08773. This makes it totally unfit as a representation for the compound - a fact also
confirmed by the low rank assigned to it - 1000.

mul The mul composition function is by far the worst performing model on all input
dimensions. The results in Table 5.6 show that the mul composition model is unable to
produce good compound representations. The average cosine distance on all dimensions
is close to 1 for all input dimensionalities, corresponding to an average cosine similarity
that is close to 0. This means that in the majority of cases the composed vector is
perpendicular to the observed representation of the compound. The multiplicative
model performs significantly worse than both the head and the modifier baselines.

Table C.3 shows, on the first row, the best composed representations obtained using
the mul model. The ranks assigned to the best compositions produced by the mul model
- 105, 106, 306, 307 - speak for the poor quality of these composed representations.

However, this result is surprising, considering the good performance of the multi-
plicative model reported by Mitchell and Lapata (2008), Mitchell and Lapata (2010)
and Blacoe and Lapata (2012), where the multiplicative model using a simple semantic
space emerged as the best performer for noun-noun combinations.

Is important to note, however, the different evaluation methodology used in those
studies. Mitchell and Lapata (2010) work with pairs of phrases (phrase1, phrase2),
where phrase1 is ’worda wordb’ and phrase2 is ’wordc wordd’. Mitchell and Lapata
(2010) build composed representations for each phrase, using multiplication as a
composition model. Then they compute the cosine similarity between the two phrase
representations. The cosine similarity is then correlated with the average human rating
concerning the similarity of the two phrases (with values between 1 - low similarity -
and 7 - high similarity), using Spearman’s rank correlation coefficient ρ.

Notice that by using this evaluation measure, these studies never compare a com-
posed representation to an observed representation. Their goal is not to re-embed the
composed phrase into the vector space where the constituent representations reside.
As long as the composition function captures enough about the semantics of the two
words to make it useful for the rank correlation computation, it is considered to be a
satisfactory composition function.

This difference in goals and evaluation measures also explains why the two assess-
ments of element-wise multiplication as a possible composition function are so different.
If the goal is just to compare the similarity between two composed representations,
the mul composition function is a good candidate. If the goal is to create composed
representations that fit into the original vector space, mul is not a competitive choice.

addition The addition model outperforms, according to the results in Table 5.6,
both the head and the modifier baselines. Although the additive composition is
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symmetric, i.e. will produce the same representation for ‘car factory’ and ‘factory car’,
this vector combination outperforms the use of either one of the constituent vectors
alone.

Table C.5 illustrates some nearest neighbors of the composed representations
produced by the addition model. The average cosine for the 76 compounds in the
test set that are assigned rank 1 using the addition composition model is 0.56764.

dilation is the first parametric composition model to be evaluated. It scores,
according to the results in Table 5.6, better than the head and modifier baselines on
all input dimensions. Moreover, it achieves better results than the addition model,
a performance due to the asymmetric treatment of the two input vectors. dilation
achieves the best rank 1 for 123 compounds from the test set, with an average cosine
of 0.57343. The learned value for λ as a result of the training phase is 1.9306. Table C.4
illustrates some of the nearest neighbors of the composed representations created using
the dilation model.

w_addition The weighted addition model outperforms the baselines and the addition
model across all input dimensions, according to the results in Table 5.6. It has two
parameters, λ and β, which control the contribution of each of the input representations
to the resulting composed representations. As a result of the training process, λ and β
are assigned values which correspond to the modifier vector contributing 37.5% and
the head vector contributing 62.5% of the information, respectively (for the best model
using 300-dimensional input representations). The compound representation is thus
a linear combination of the modifier and head representations where the head has a
considerably larger contribution than the modifier. This two-parameter model outper-
forms the dilation model, which had a single tunable parameter. The examples in
Table C.6 feature neighbors of compound representations obtained using w_addition.
91 compounds obtain the rank 1, with an average cosine similarity value of 0.55654.

The results of the w_addition model suggest that when a compound representation
is not available, using a weighted combination of the head and modifier vectors as a
back-off representation is better than using only the head representation, or than using
an unweighted additive combination of the head and modifier representations.

lexfunc The lexical function model is the first model in Table 5.6 to have a sizable
number of parameters. The number of parameters is given by the formula pdˆdqˆ |V |,
where d is the size of the input embeddings and |V | is the size of the vocabulary. The
model trains a separate modifier matrix for each word in the vocabulary, while at the
same time discarding the corpus-learned modifier vector. This approach turns out
to work better than any of the previous models, and as a result the lexfunc model
is the first model to consistently produce composed representations ranked with the
best possible rank, 1. Despite the large number of parameters, the performance of the
lexfunc model shows improvements even when using 300-dimensional input vectors.
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Fig. 5.6 Learning curves for the lexfunc model. X axis: the number of training epochs;
Y axis: the loss of the model. (a) no dropout; (b) no dropout vs. 0.5 dropout on the
weights in the lookup table. Dropout makes the model generalize better, leading to
better results on the test set.

The increased number of parameters, however, makes lexfunc quickly overfit the
training data, as shown by the learning curves of the model in Fig. 5.6a. The dashed
orange line represents the loss of the model on the train set, while the solid blue line
at the top of the figure represents the loss on the dev set. A model is said to overfit
when there is a large difference between the train and the dev loss, as is the case here.

To compensate for overfitting, the dev subset was used to experiment with differ-
ent dropout rates between 0 and 0.75, in 0.25 increments. The dropout technique,
introduced in Section 3.3.3, involves randomly zeroing out or ‘dropping’ some of the
network weights, with probability p, each time a new training example is presented
for training. This has the effect of preventing the co-adaptation of units - i.e. units
should not rely on all their inputs when computing the activation, but should instead
be robust to missing inputs. As the results in Appendix B, Table B.2 show, lexfunc
performs better when using dropout. Its performance peaks when using a dropout rate
of 0.5 on the lookup table.

As the learning curves in Fig. 5.6b show, using dropout makes the model generalize
better, leading to better results on the test set. The dev error with a 0.5 dropout -
the dot-dash green line - goes lower than the solid blue line, which was the dev error
without any dropout. Adding dropout also decreases the gap between the dev and the
train error (the dot-dash green line vs. the dotted red line). The benefits of dropout
come at the expense of the larger number of epochs needed for the model to converge,
as can be seen in Fig. 5.6b.

Table C.7 contains nearest neighbors for composed representations obtained with
lexfunc. On the test set the lexfunc model achieves the maximum rank 1 for 651
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words. These representations have an average cosine similarity of 0.59182 to their
respective observed representations.

fulladd The full additive model has far fewer parameters than the lexfunc model.
It trains only two matrices of size dˆ d, which are used to transform the head and the
modifier input representations. The fulladd composition model using 300-dimensional
input representations obtains very good results in terms of quartiles: 2 - 3 - 8, surpassing
the result of the lexfunc model. The median rank 3 means that fulladd creates
meaningful composed representations for more than half of the test set compounds.
This is because in many cases synonyms, spelling variants or other forms of the word (e.g.
plurals) can turn out to be closer to the original representation. For most compounds,
obtaining a rank ď 5 means that the composed vector is actually a meaningful, useful
representation of that concept. 1193 of the test compounds representations composed
using fulladd are assigned rank 1, with an average cosine similarity of 0.55958 to
their corresponding observed representations.

As the examples in Table C.8 show, the composed representations obtain good
ranks when the neighborhood of the original compound representation is homogeneous,
as is the case for the compounds on the first two rows. Compounds with high ranks
from the last row have, in contrast, a much ‘looser’ neighborhood. The composed
representation of the compound Pechstein ‘pitchstone’ signals a problem related to
the process of creating distributed representations for common nouns. The word
Pechstein turns out to be very often in the support corpus the last name of a public
person. The proper name sense overtakes the common noun sense in the observed
representation: the neighbors of the observed representation of Pechstein contain the
words Dopingfall ‘doping case’ and Weltcup ‘world cup’. Pechstein turns out to be the
family name of Claudia Pechstein, a renown German speed skater. This means that
the representation created by the distributional model is not the representation of the
compound Pechstein meaning ‘pitchstone’, but the representation of the proper name
Pechstein. The gold representation provided to the composition model is therefore
incorrect, and the composition model cannot, starting from the representations of the
words Pech ‘pitch’ and Stein ‘stone’ arrive at the this named entity representation.

Such problems could be avoided by using a named-entity annotated support corpus
for creating representations: words that are part of named entities should be represented
separately from words with identical spelling that are not part of a named entity. This
idea, however, will not be further explored in this thesis.

As for the lexfunc model, different dropout rates were tested. The results in
Appendix B, Table B.2 show that fulladd does not benefit from dropout: the model
performs optimally with a 0 dropout rate. This is to be expected, given that fulladd
has only 0.00028% of the number of parameters in lexfunc (cf. Table 5.7).

matrix The matrix model obtains its best ranks, 2-3-7, using 300-dimensional inputs.
Table C.9 illustrates the neighborhoods of the composed representations created using
the matrix model. 1217 of the test compounds are assigned the highest rank 1, and
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are at an average cosine distance of 0.56108 from their observed representations. As in
the case of the fulladd model, using dropout did not improve the performance of the
model (see Appendix B, Table B.2).

The matrix model is the first to use a nonlinearity in its formulation. Experiments
on the dev set showed similar performance when not using the nonlinearity: for 50
dimensional input vectors, the cosine distance loss was 0.3649, exactly the same as
when using a nonlinearity, while the quartiles showed minors fluctuations: 3 - 10 - 47
(without nonlinearity) vs. 3 - 10 - 46 (with nonlinearity).

fulllex The full lexical composition function obtains the best results on the nn-only
test compounds using the 300-dimensional input vectors: 2 - 3 - 7, and a cosine distance
of 0.5016, as reported in Table 5.6. 1099 compounds are assigned the best rank, 1, with
an average cosine similarity of 0.56269. fulllex outperforms lexfunc model, although
the two functions have a similar number of parameters.9 However, while lexfunc
discards the initial modifier vector, fulllex uses both the modifier and the head
vectors. This suggests that composition models should make use of all the information
made available by the language model, and not discard any vectors.

Similar to lexfunc, fulllex also benefits from the use of dropout. The results in
Appendix B, Table B.2 show that fulllex performs at its best with a 0.25 dropout
rate applied to the lookup table. As in the case of the matrix, removing the outer
nonlinearity did not affect the performance of the model. Table C.10 shows the
neighbors of a selection of compound representations obtained using the fulllex
composition model.

Overview Figure 5.7 shows the ranks from Table 5.6 as a box-and-whiskers plot.
For each model, the orange line marks the median rank, the lower edge of the box
marks the first quartile (Q1), and the top edge marks the third quartile (Q3). The
length of the box is the interquartile range, IQR = Q1 - Q3. The lines connected to the
boxes are the lower and upper whiskers, computed as Q1 - 1.5 * IQR, and Q3 + 1.5 *
IQR. The green circles show the rank outliers, which fall outside the interval covered
by the lower and upper whiskers.

Figure 5.8 is another visualization of the results from Table 5.6. It plots the
ordered test set ranks for each composition model. The figure uses the results of the
300-dimensional models all composition functions. The dotted green vertical lines are
visual markers for 25%, 50% and 75% of the test data. As mentioned before, a good
composed representation generally has the rank ď5 (see the horizontal red line labeled
‘rank 5’). The visualization of a perfect composition model would be a flat line close to
rank 5 for all the examples in the test set. This, however, is not the case with any of
the tested models. The best performing models, fulladd, matrix and fulllex assign
ranks ď 5 to 66.9%, 67.4% and 68.8% of the test data, respectively. All the models

9Modulo the matrix transformation of fulllex, with d2 ˆ 2 ` d parameters which stands only for
a small fraction of the total number of parameters, d2 ˆ |V | ` d2 ˆ 2 ` d.
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Fig. 5.7 Box plots of the test set ranks for the ten composition models (results from
Table 5.6). The orange line is the median. The green circles depict the outliers.

produce representations assigned the cut-off rank 1000 - see the flat line at the top of
the figure.

Figure 5.8 allows for an easy, visual estimation of the performance of each model:
the multiplication (mul) is by far the worst performer, with most of the representations
assigned rank 1000. The next best model is modifier, which shows a quite sizable
improvement over mul, and is one of the baselines. The stronger head baseline is
again visibly better than the modifier baseline, and the dilation model performs
a bit better than it. Another improvement is brought about by the addition and
w_addition models, which perform very similar with the weighted addition model
obtaining slightly better results. The lexical function model (lexfunc) is only able to
outperform the baseline and the additive models, despite its large number of parameters.
The best results are obtained by the fulladd, matrix and fulllex models, whose
performance is very close.

The close performance of these three models, despite the large difference in number
of parameters between fulllex and the fulladd/matrix models, invites the following
questions: is a single linear/affine transformation, like the one in fulladd/matrix,
all that is needed for composing representations? Why does the additional matrix
for every word in the vocabulary bring so little in fulllex’s case? Is it the lack of
data to train a full matrix for many of the words? Or the increase in the number of
parameters?

The next sections introduce two new composition approaches that address the
questions posed above. The mask models, presented in Section 5.4.4, tailor the compo-
sition individually for each word, like fulllex, but use less parameters. Section 5.4.5
introduces multimatrix, a composition model that tackles both the lack of sufficient
data for many examples, as well as the parameter problem of fulllex.
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5.4.4 The mask models

The mask models are based on the idea that when a word w enters a composition
process, there is some variation in its meaning depending on whether it is the first or
the second element of the composition. Take, for instance, the compounds company car
and car factory. In company car, car has its primary denotation, that of a ‘vehicle’. In
contrast, in the compound car factory, what matters more is the car ’s ‘product’ aspect,
the fact that it is an ‘artifact produced in a factory’. A good representation of the word
car should encode both aspects: a car is a ‘vehicle’ and it is also an ‘artifact’. Likewise,
a good composition model should be able to select from the constituent representations
those aspects that are relevant for a particular composition.

The composition model is given the possibility to accommodate these meaning
variations by training, for each word in the dictionary, two masks: one for the case
when it is the first word in the composition process, and one for when it is the second
word.

The masks of the word w represented by u P Rn, are two vectors u1, u2 P Rn. Each
time w is the first word in the composition process, it is represented as the element-wise
multiplication of the vector u and its modifier mask u1, ud u1. When w is the second
word in the composition, it is represented by the element-wise multiplication of u and
its head mask u2, ud u2, as illustrated in Figure 5.9.

ucar vfactory0.2 0.5 0.8 1.3 0.2 0.7 1.1 0.1 0.8 0.5

��
0.5 0.8 0.4 0.3 0.1 0.1 0.8 0.9 0.5 0.3u′

car v′′
factory

0.1 0.4 0.3 0.4 0.0 0.0 0.9 0.1 0.4 0.1

ucar � u′
car vfactory � v′′

factory

0.1 1.3 0.4 0.8 0.1 0.2 1.0 0.5 1.3 0.1

+ W

ucar � u′
car + vfactory � v′′

factory g(W[ucar � u′
car;vfactory � v′′

factory] + b)

Fig. 5.9 The mask model representation for the compound car factory. u1 is the mask
used when the word is on the first position (car factory). v2 is the mask used to modify
the representation v of the word in the second position (car factory). If the word car
would instead be in the second position (as in company car), it would be represented
by ud u2 . Similarly, if the word factory would be in the first position (as in factory
car), it would be represented by vd v1.
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The mask vectors are initialized with a vector of all ones, 1 P Rn, and estimated
with the help of the training data.10 It is important to note that the initial vector
representations, u and v, remain fixed during the learning process. The learning process
only affects the mask vectors. The composed representation of a compound like car
factory is obtained by combining the masked representations of the two constituents,
ucar d u1

car and vfactory d v2
factory. The way in which the masked representations are

combined leads to two variants of the model:
(i) p “ u d u1 ` v d v2, called addmask, where the masked representations are

combined via component-wise addition, and
(ii) p “ gpWrud u1; vd v2s ` bq, called wmask, where the masked representations

are combined via a global matrix W P Rnˆ2n and a nonlinearity g “ tanh.
Training the mask models entails estimating modifier and head masks for every word

in the vocabulary V . The two masks to be learned for every word can be written as
two matrices WM , WH P Rdˆ|V|, where d is the size of the initial word representations.
The masks of the word wi P V are the ith rows in WM and WH . The masks for all
vocabulary words are estimated using lookup tables11 (Collobert et al., 2011b), which
map matrix indices to the corresponding row vectors.

The masked representation of the modifier is obtained by first feeding the index
of the word to LTWM

, the modifier lookup table, to obtain the modifier mask, and
then multiplying the modifier mask with the initial representation of the modifier.
The masked representation of the head is obtained in a similar manner via a lookup
operation in LTWH

, the head lookup table. The addmask and wmask models differ only
in the composition method used after the masking process: the masked representations
are directly added together in the case of addmask and are passed through a composition
matrix W P Rnˆ2n and a nonlinearity g in the case of wmask.

WM and WH are initialized with all ones and are modified via backpropagation
during the training process. The ‘all ones’ initialization ensures that at the beginning
of the training phase the composition function is being fed the initial modifier and
head representations. As a consequence, at the beginning of the training process
the addmask model behaves just like the addition model, whereas the wmask model
behaves initially like the matrix model.

In terms of number of parameters, the mask models compare favorably to the
fulllex model, as illustrated by the model sizes listed in Table 5.8. Even though the
mask models estimate more parameters than the simple matrix model, the number
of parameters is still linear in the size of the vocabulary. Because the masks are only
d-dimensional instead of being dˆ d dimensional, there are two orders of magnitude
fewer parameters to train than in the case of the fulllex model. Also, note that the
fulllex model trains a single modification matrix for each word, irrespective of its
position in the composition, whereas the mask models train two separate vector masks,
one for each position.

10Experiments in initializing the vectors with 1 P Rn plus Gaussian noise did not show improvements
over the simple initialization with ones.

11introduced in Chapter 4, see esp. Eq. 4.15.
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Composition Formula d=50 d=100 d=200 d=300
addmask d ˆ |V | ˆ 2 713,100 1,426,200 2,852,400 4,278,600
wmask d ˆ |V | ˆ 2 ` d ˆ 2d ` d 718,150 1,446,300 2,932,600 4,458,900

matrix d ˆ 2d ` d 5,050 20,100 80,200 180,300
fulllex d2 ˆ |V | ` d ˆ 2d ` d 17,832,550 71,330,100 285,320,200 641,970,300

Table 5.8 Number of trainable parameters for each model and for each dimensionality
of the input word embeddings on the nn-only dataset. Vocabulary size |V | “ 7, 131.

Table 5.9 displays the results of the mask models on the dev and test splits of the
nn-only dataset. The wmask model systematically outperforms the addmask model
on every input dimension, showing that performing an affine transformation on the
masked representations an then applying a non-linearity is preferable to just adding
the masked representations together.

Model Dro 50d 100d 200d 300d

Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d

de
v addmask 0.5 3 8 43 0.3508 2 5 19 0.4138 2 4 12 0.4724 2 3 8 0.5025

wmask 0.25 2 5 20 0.3224 2 3 10 0.3867 1 3 6 0.4454 1 2 5 0.4776

te
st addmask 0.5 3 7 37 0.3479 2 5 17 0.4107 2 4 10 0.4697 2 3 8 0.5005

wmask 0.25 2 5 19 0.3213 2 3 10 0.3851 1 3 6 0.4437 1 2 5 0.4763

Table 5.9 Quartiles for the 2655 composed representations of the dev split and the
5410 composed representations of the test split of the nn-only dataset, ranked with
respect to the observed representations. Using cosine distance criterion. Lower ranks
are better. Best rank is 1. Both models use a learning rate η “ 0.1, dropout 0.5 for
addmask and 0.25 for wmask. A tanh nonlinearity is used for wmask.

addmask Table C.11 shows sample neighborhoods of the representations created by
the addmask composition model. Rank 1 is achieved for 1243 compounds in the test
set, with an average cosine similarity of 0.58511. A rank ď5 is obtained for 67.5% of
the test data. Comparing to the results in Table 5.6, the addmask model performs
on par with the fulladd and the matrix models, but is outperformed by the fulllex
model. The addmask model benefits from the addition of a 0.5 dropout layer on the
masked representations, as can be seen from the results in Table B.2 in Appendix B.

wmask obtains the best results so far in terms of ranks assigned to the 25%, 50% and
75% percent of the test data: 1 - 2 - 5. It achieves the best rank 1 for 1657 of the test
dataset compounds, with an average cosine similarity of 0.58349. 75.7% of the test
compounds receive a meaningful representation with a rank ď 5 when using the wmask
composition model. Table C.12 lists neighbors of the wmask-composed representations.
The use of a 0.25 dropout rate improves the performance of the model. Comparative
results using different dropout rates can be seen in Table B.2 in Appendix B.
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The mask models have the advantage of being computationally cheaper than models
like lexfunc and fulllex. They train only 2n parameters for each word in the
vocabulary and manage to strike a balance and learn a dedicated representation for
each constituent with less parameters. Moreover, the mask models are able to use the
information extracted from the corpus (as vector representations) for both the head
and the modifier. This is in contrast to lexfunc, where the modifier representation (a
matrix) is estimated solely on the basis of the training data.

The wmask model is able to outperform fulllex while using only a fraction of the
latter’s number of parameters. However, although smaller, the number of parameters
is still dependent on the number of words in the vocabulary, and can become unman-
ageable for large vocabularies. The mask models do not address fulllex’s curse of
dimensionality problem (Bengio et al., 2003): the masks are still trained for each
word individually, and a customized composition is only available for those constituents
that occur in the train set on their respective positions. For all other words, the
composition defaults to the matrix model, and does not benefit from the masking
process.

5.4.5 The multimatrix model

What if instead of training a matrix or mask vector to modify each individual constituent
one could leverage the fact that similar words have similar vectors and learn to compose
related words the same way? Take for example the compound Wacholderbeerensaft
‘juniper berries juice’. It is an infrequent compound - it only occurs once in the 10
billion tokens support corpus described in Section 5.3.2. Despite its low frequency, a
human has no problem understanding that this compound refers to the juice pressed
out of the juniper berries, even when juniper berries are not a typical berry. This
insight comes from the numerous other berries that can be pressed into juice that were
previously encountered, a pattern that seems to make sense in this situation as well.
The capacity to generalize from previously encountered examples to new but similar
examples is key to creating meaningful composed representations for the majority of
the existing and newly coined compounds.

The multimatrix model offers a scalable solution to the problem of providing input-
specific compositions for the majority of the compounds in the vocabulary, even if they
do not occur in the training data. The idea is to perform multiple affine transformations
of the input vectors u and v P Rd, each resulting in an d-dimensional composed vector
pk. k, the number of transformations to be performed, is a hyperparameter of the
model. These k affine transformations are parametrized by Wi P Rdˆ2d and bi P Rd,
i P r1, ks. The resulting composed representations pi, i P r1, ks are concatenated and
passed through a nonlinearity g. After that another affine transformation, parametrized
by W P Rdˆkd and b P Rd, is applied. The end result is a composed representation of
size d. The mathematical formulation of the multimatrix composition model is given
by Eq. 5.20:
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p “ WgprW1ru; vs ` b1; . . . ; Wkru; vs ` bksq ` b (5.20)

The first layer of transformations provides the premises for the input representations
to be combined in multiple ways. This broadens the spectrum of combinations that
the two constituents can be part of. The transformations in the first layer are also
responsible for the name of the new model, multimatrix. Each of these transformations
can be thought of as single a matrix model, and the full layer as performing, in parallel,
multiple matrix-like compositions.

The second layer combines the k transformations obtained in the first layer into a
single composed representation. The objective of being near to the corpus-observed
representation of the compound can only be fulfilled by picking the most relevant parts
from all the available transformations of the inputs.

The remainder of the section provides details about the hyperparameter values
and how they were chosen. The results of the different hyperparameter tests for the
multimatrix model are available in Appendix B, Table B.3.

The nonlinearity between the two layers of transformations plays an important
role. Without it, the model is reduced to performing only linear combinations of the
input representations. If the nonlinearity is removed from Eq. 5.20 and the equation
is rewritten as in Eq. 5.21, one can observe that the multimatrix model would
become just another matrix model, where W 1 is the matrix obtained after multiplying
WrW1; . . . ; Wks. This is because matrix multiplication is an associative operation, so
WprW1; . . . ; Wksru; vsq is the same as pWrW1; . . . ; Wksqru; vs.

p “ WprW1; . . . ; Wksru; vs ` rb1; . . . ; bksq ` b
“ WrW1; . . . ; Wksru; vs `Wrb1; . . . ; bks ` b
“ W1

ru; vs `Wrb1; . . . ; bks ` b
(5.21)

The best performing nonlinearity on the nn-only dataset is the rectified linear unit
- ReLU (Glorot et al., 2011), introduced in Section 3.1. The form of the function is
reiterated in Eq. 5.22.

gpxq “ maxp0, xq (5.22)

Experiments using gpxq “ x, the identity function, and gpxq “ tanhpxq gave
markedly worse results. The model performed relatively well using the parametric
PReLU nonlinearity, gpxq “ maxp0, xq ` a minp0, xq, both when using the same a for
all inputs dimension or one a per input dimension.

The model has a fairly large number of parameters: kpd ˆ 2d ` dq for the first
layer of transformations and dˆ kd` d for the second layer. k values between 40 and
140, in increments of 20, were tested, and the best performance on the nn-only dev
set was obtained using 120 transformation matrices. This is a drastic reduction in
parameter size when compared to fulllex, which required a separate matrix for each
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word in the vocabulary. Table 5.10 shows the comparative number of parameters for
the multimatrix model, the two mask models, the matrix model and the fulllex
model. As the table shows, for |V | “7131 and k “ 120 the number of parameters in the
multimatrix model is just 0.05% of the number of parameters in the fulllex model,
independent of the input vector size d. This means that even if working with larger
vocabularies - that are likely to need more transformation matrices - the multimatrix
model will remain competitive in terms of parameter requirements. Compared to
the mask models, multimatrix does require a larger parameter set. The increase
in parameter size, however, is a reasonable trade-off when taking into account the
improvement in generalization capabilities of the multimatrix model.

Composition Formula d=50 d=100 d=200 d=300
multimatrix kpd ˆ 2d ` dq ` d ˆ kd ` d 906,050 3,612,100 14,424,200 32,436,300

addmask d ˆ |V | ˆ 2 713,100 1,426,200 2,852,400 4,278,600
wmask d ˆ |V | ˆ 2 ` d ˆ 2d ` d 718,150 1,446,300 2,932,600 4,458,900

matrix d ˆ 2d ` d 5,050 20,100 80,200 180,300
fulllex d2 ˆ |V | ` d ˆ 2d ` d 17,832,550 71,330,100 285,320,200 641,970,300

Table 5.10 Number of trainable parameters for each model and for each dimensionality
of the input word embeddings on the nn-only dataset. Figures for vocabulary size
|V | “ 7, 131 and k “ 120.

The number of parameters was also the motivation for running a number of
experiments focused on the effect of dropout. Dropout is applied to the concatenated
outputs resulting from the first layer of transformations. With no dropout, the loss of
the model on the dev set with 50 dimensional inputs is 0.3282. Dropout values from
0 to 0.75 in 0.25 increments were applied, and the best results on the same dev set,
0.3102, was obtained using a dropout rate of 0.75. This means that 75% of the weights
of the concatenated vector were randomly set to 0 for each training example.

The optimization was performed using AdaGrad, just like in the case of the other
models. The learning rates 0.001, 0.01 and 0.1 were tested, with 0.1 providing the best
results, which are presented in Table 5.11.

Model 50d 100d 200d 300d

Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d

dev multimatrix 2 4 15 0.3102 1 3 7 0.3659 1 2 5 0.4190 1 2 4 0.4488

test multimatrix 2 4 14 0.3098 1 3 7 0.3654 1 2 4 0.4185 1 2 4 0.4483

Table 5.11 Quartiles for the 2655 composed representations of the dev split and
the 5410 composed representations of the test split of the nn-only dataset, ranked
with respect to the observed representations. Using cosine distance criterion. Lower
ranks are better. Best rank is 1. Using a learning rate η “ 0.1, dropout 0.75, 120
transformation matrices, ReLU nonlinearity.
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2165 of the 5410 representations in the test set are assigned rank 1 when us-
ing multimatrix composed representations. 81.8% of all the test instances receive
meaningful representations, assigned a rank ď5. Table C.13 shows neighbors of the
representations created by the multimatrix model for a sample of the test compounds.

inst fulladd matrix lexfunc fulllex addmask wmask multimatrix

145 test modifier P train as head 24 21 368 34 79 19 21
410 test modifier R train 21 19 390 27 46 14 11

146 test head P train as modifier 24 22 98 46 59 27 23
358 test head R train 44 42 122 44 77 37 30

Table 5.12 Analysing the composition performance in difficult cases from the nn-only
dataset. Showing the mean rank assigned by different composition models to four
subsets of the test data: test compounds where the modifier occurs in the train
data only on the head position (first row); test compounds where the modifier does
not occur in the train data (second row); test compounds where the head occurs in
train only as modifier (third row); test compounds where the head does not occur in
train (last row). Models without the global matrix composition (lexfunc, addmask)
perform the worst. Models using only global composition matrices (fulladd, matrix)
have a surprisingly good and stable performance. Models that use global matrices and
word-specific transformations (fulllex and wmask) perform in some scenarios worse
than the ones using only global matrices. However, using per-word masks works better
for unknown words than when using per word matrices (wmask outperforms fulllex
in all cases). Using shared transformations (multimatrix) produces the best average
ranks in the majority of cases.

Ideally composition models should produce good representations also in cases where
the head or the modifier is not part of the compounds in the training data. This is a
difficult setup for models that rely on transformations tailored for each word in the
vocabulary, because they will regress to defaults for part of the input.

The performance of the composition models under such circumstances was assessed
on four subsets of the test data: (i) 145 compounds where the modifier appears
in train only as a head. Such an example is Tortenboden ‘cake base’, where the
modifier Torte ‘cake’ appears in train only as the head of the compounds Erdbeertorte
‘strawberry cake’ and Sachertorte ‘Sacher cake’; (ii) 410 test compounds where the
modifier is never part of the train compounds; (iii, iv) similarly, 146 and 358 test
compounds where the head appears only in a modifier position and where the head is
not a constituent of the train compounds, respectively.

Table 5.12 displays the mean rank on these subsets for each of the seven best
performing models. A surprising result is the relatively good performance of the
fulladd and matrix models, which use only global composition matrices. These
models perform better in these particular evaluation scenarios than the fulllex and
addmask models. The lexfunc model is clearly disadvantaged in such low data regimes,
particularly when the modifier information is missing. The performance of the wmask
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compared to the addmask model speaks again for the importance of using a global
combination matrix over a simple additive combination of the input representations.
wmask outperforming fulllex speaks for a better decoupling between the vector masks
and the global composition matrix, leading to a better performance in such cases.

The multimatrix model obtains the best mean ranks when the modifier or head is
completely unavailable in the training data. It behaves slightly worse than wmask if
the modifier is available as a head (21 vs. 19), showing that positional information
captured by wmask can make a difference in such cases. multimatrix ranks a bit under
the matrix model (23 vs. 22) when the head is only seen as a modifier during training.
The model copes better with unknown modifiers than with unknown heads.

The evaluation up to this point focused exclusively on the performance of the
composition models on the very homogeneous nn-only dataset. The next section
presents the results of the composition models on the mixed German dataset, where
the composition models will have to deal with a more diverse set of possible compound
modifiers.

5.4.6 Results on the German mixed composition dataset

As mentioned in Section 5.3.1, the nn-only dataset used in the previous sections is
a filtered version of the larger mixed dataset, containing all the nominal compounds
in GermaNet release 9.0. In the mixed dataset the part-of-speech restrictions are
somewhat relaxed: the head of the compound must be a noun as before, but the
modifier can be something other than a noun (e.g. an adjective, a verb, etc. - see full
list with examples in Table 5.2). Dima (2015) reports results for the twelve composition
models on the mixed dataset, and the interested reader is referred to the paper for more
details. The goal of this section is to establish if the more diverse training material has
any impact on learning composed representations for noun-noun compounds.

The experiments in this section will use the train and dev splits of the mixed
dataset to build composition models and will be tested on the test portion of the
nn-only dataset. This is possible because the train, test and dev portions of the
mixed dataset are supersets of the train, test and dev portions of the nn-only
dataset. This setup makes it possible to directly compare the results in the previous
section to the results to be reported here.

The question this section seeks to answer is: which training material leads to an
overall better composition model - the clean, noun-noun only data in the nn-only
dataset, or the mixed one? Since the nn-only represents 77.86% of the mixed dataset,
its results are useful for understanding the impact of training with noisy data. The
nine parametric composition models presented in the previous sections were tested
in this new setup, using the best performing 300-dimensional input vectors for each
model. The non-parametric models are not influenced by the quality or amount of
training data, therefore their performance will not change if the training set is changed.

Table 5.13 reports the results obtained by the parametric composition models in this
new setup on the right, and the results previously obtained by the models when training
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Composition nn_only 300d mixed 300d

Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d

dilation 11 49 319 0.6679 12 57 375 0.6662
w_addition 10 36 180 0.6509 12 44 229 0.6516

lexfunc 3 8 56 0.5771 3 9 66 0.5767
fulladd 2 3 8 0.5055 2 3 9 0.5044
matrix 2 3 7 0.5034 2 3 9 0.5030

fulllex 2 3 7 0.4982 2 3 8 0.4927
addmask 2 3 8 0.5005 2 3 9 0.4965

wmask 1 2 5 0.4763 1 2 6 0.4730
multimatrix 1 2 4 0.4483 1 2 4 0.4442

Table 5.13 Quartiles for the 5410 composed representations of the test split of the
nn-only dataset, using models trained on the nn-only training data (left) and mixed
dataset training data (right). Using 300-dimensional input representations in both
cases. Most models work best when trained on the smaller but more homogeneous
training data in the nn-only dataset. multimatrix is the only model that seems to
benefit from the additional data, despite its noisiness.

on the nn-only data. The comparison reveals an interesting pattern: all composition
models other than multimatrix perform better when trained on the smaller but more
homogeneous nn-only data. Additional data acts as noise when it is not of the same
type. The fact that the mixed training data contains additional compounds where the
modifiers are something else than a noun turns out to have a detrimental effect on
the ability of the composition models to produce good composed representations. The
effect is larger for models with less parameters (dilation, w_addition) and smaller
for the models with more parameters. The multimatrix model is the only one that
seems to benefit from the additional training data, obtaining a small improvement in
cosine distance when trained on the mixed dataset training data.

This investigation pointed out a shortcoming of the current analysis: if a compound
is marked by GermaNet as having two modifiers (e.g. Tanzschuh ‘dance shoe’ has both
the noun Tanz ‘dance’ and the verb tanzen ‘to dance’), it is likely that the composition
process would benefit from using the information captured by the distributional model
in both the nominal and the verbal form. The meaning of the compound is likely to
contain aspects from both word forms, and by excluding any of them the composition
has less information to work with.

A similar intuition applies for morphologically-derived forms. The semantics of a
compound like Fabrikarbeiter, ‘factory worker’, where the head Arbeiter ‘worker’ is
derived from the verb arbeiten ‘to work’, depends directly on the semantics of the
verb. The modifier fills in an argument of the verb - in this case the location where
the activity specified by the verb takes place.

Obtaining better composed representations might hinge on finding ways to provide
the automatic composition process with the same information that a person processing
a compound has access to. The input of the composition function should not be limited
to the modifier and head, but should include, where available, additional information -
like verbs or adjectives with the same lexical root as the modifier and the head.
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5.5 Composition Models evaluated on English Com-
pounds

The results in this section expand on the results in Dima (2016), which focused
on the fulladd and matrix models, by testing all the thirteen composition models
presented in the previous section. The English compounds dataset used here is the
same as in Dima (2016). The evaluation methodology, however, is no longer based on
the composition-centric approach from Baroni and Zamparelli (2010), but uses the
target-centric approach described in Section 5.4.1.

5.5.1 English Compositionality Dataset (en-comcom)

The english compositionality dataset containing compounds, code name en-comcom,
was constructed from two existing compound datasets and a selection of the nominal
compounds in the WordNet database. The first existing compound dataset was
described in Tratz (2011) and contains 19158 compounds12. The second existing
compound dataset was proposed in Ó Séaghdha (2008) and contains 1443 compounds13.

Additional compounds were collected from the WordNet 3.1 database files (Fellbaum,
1998)14, more specifically from the noun database file data.noun. The WordNet
compound collection process involved 3 steps: (i) collecting all candidate compounds,
i.e. words that contained an underscore or a dash (e.g. abstract_entity, self-service); (ii)
filtering out candidates that included numbers or dots, or had more than 2 constituents;
(iii) filtering out candidates where either one of the constituents had a part-of-speech
tag that was different from noun or verb.

The part-of-speech tagging of the candidate compounds was performed using the
spaCy Python library for natural language processing15. The reason for allowing both
noun and verb as accepted part-of-speech tags was that given the extremely limited
context available when POS-tagging a compound, the tagger would frequently label as
verb multi-sense words that were actually nouns in the given context (e.g. eye drop,
where drop was tagged as a verb).

The downside of this automatic POS-tagging step is that some non-compounds
also slipped in, e.g. ’do_nothing’ or ’co_op’. A visual inspection showed that there
were not many cases of this type, but as a result the WordNet data is noisier than the
German nn-only dataset. As the difference in the results on the German nn-only and
mixed datasets showed, noisy data can have a negative impact on the performance of
composition models. However, the unavailability of a large scale hand tagged compounds
corpus makes such automatic approaches the only viable solution to gathering enough

12The dataset is part of the semantically-enriched parser described in Tratz (2011) which can be
obtained from http://www.isi.edu/publications/licensed-sw/fanseparser/

13Available at http://www.cl.cam.ac.uk/~do242/Resources/1443_Compounds.tar.gz
14Available at http://wordnetcode.princeton.edu/wn3.1.dict.tar.gz
15https://spacy.io/
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data for training composition models. The final compound list extracted from WordNet
3.1 contained 18775 compounds.

The compounds collected from all three resources were combined into one list. The
list was de-duplicated and filtered for capitalized compounds (the Tratz (2011) dataset
contained a small amount of person names). A final filtering step removed all the
compounds where either of the two constituents of the compound or the compound
itself did not have a minimum frequency of 100 in the support corpus. As in the case
of the German dataset, the frequency filtering step was motivated by the assumption
that the compositional process can be better modeled using ‘well-learned’ word vectors,
derived from a reasonable number of contexts.

The final en-comcom dataset contains 27220 compounds, formed through the
combination of 5335 modifiers and 4761 heads. The set of unique modifiers and
heads contains 7646 words, with 2450 being used both as modifiers and as heads. The
dictionary for the final dataset contains therefore 34866 unique words. The dataset
was partitioned again into train, test and dev splits containing 19054, 5444 and 2722
compounds respectively.

5.5.2 Word Representations for English

The process of creating English word representations for compositionality experiments
is similar to the one used for creating German word representations. The support
corpus was obtained by concatenating the raw text from the ENCOW14AX corpus
(Schäfer, 2015) and the pre-processed 2014 English Wikipedia dump described and
made available in Müller and Schütze (2015). A preprocessing step similar to the one
described in Müller and Schütze (2015) was applied to the concatenated corpus: the
text was lower-cased and the digits were replaces with 0s.

An additional preprocessing step was necessary for creating compound represen-
tations. The initial corpus was recoded such that the two-part compounds in the
en-comcom dataset would be considered a single token. The recoding process involved
replacing all the different spelling variants of a compound - written as two separate
words, contiguously or with a dash (as in dress code, dresscode or dress-code), as well
as their respective plural forms (dress codes, dresscodes, dress-codes) with an artificial
underscore-based form (e.g. dress_code). However, the plural first constituents were
not modified (i.e. savings account). Also, the spelling variation which is the result of
different spelling standards as in color scheme (American English) and colour scheme
(British English) was left in place. The result was a 9 billion words raw-text corpus
with a corresponding vocabulary containing 424,014 words (both simplex words and
compounds) with minimum frequency 100 (the full vocabulary had 16M words).

The raw-text corpus was the basis for training word representations in 4 different
sizes (50, 100, 200 and 300 dimensions) with the GloVe package (Pennington et al.,
2014). Each model was trained for 15 iterations using a 10-word symmetric context for
constructing the co-occurrence matrix.
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5.5.3 Embedding Normalization

This section reports on the results obtained on the en-comcom dev subset using the
three normalization setups previously explored for German. The three setups are: none
- use the vectors space as produced by GloVe, without any normalization; L2-row -
normalize each word vector to unit norm; L2-col - normalize each column of the whole
vector space to unit norm.

Table 5.14 displays results using input representations of size 50 and the cosine
distance as a training criterion. The learning rate used for each model is listed in the
column titled η. The best learning rate was chosen for each model individually (either
0.01 or 0.1). The results with different learning rates for each model are available in
Appendix B, Table B.4.

Comp. Model η none L2-row L2-col

Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d

mul - 1K 1K 1K 0.9343 1K 1K 1K 0.9343 1K 1K 1K 0.9629
modifier - 237 1K 1K 0.7262 237 1K 1K 0.7262 159 1K 1K 0.6836
head - 276 1K 1K 0.7302 276 1K 1K 0.7302 168 1K 1K 0.6805
addition - 137 1K 1K 0.6888 131 1K 1K 0.6870 68 886 1K 0.6252
dilation 0.1 174 1K 1K 0.7023 174 1K 1K 0.7023 88 1K 1K 0.6462
w_addition 0.1 136 1K 1K 0.6888 132 1K 1K 0.6870 67 864 1K 0.6251
lexfunc 0.1 5 39 913 0.4634 5 39 913 0.4634 5 40 908 0.4574
fulladd 0.01 3 13 93 0.3727 3 13 95 0.3733 3 14 105 0.3787
matrix 0.01 3 11 74 0.3617 3 11 75 0.3636 3 12 77 0.3694
fulllex 0.01 2 6 55 0.3330 2 5 53 0.3337 2 7 78 0.3488
addmask 0.1 3 12 203 0.3849 3 12 208 0.3859 3 13 208 0.3834
wmask 0.1 2 8 64 0.3487 2 6 47 0.3360 2 7 51 0.3394
multimatrix 0.1 2 6 46 0.3364 2 6 44 0.3357 2 7 56 0.3459

Table 5.14 Results on the dev split of the en-comcom dataset, using 50 dimensional
embeddings and different normalization variants. Column normalization works best
for models with no or few parameters. Models with more parameters (underlined)
behave similarly under the three normalization setups, with slightly worse results in
the column normalization case.

As in the case of the German experiments, the non-parametric composition functions
(head, modifier, addition and mul) and the models with few parameters (w_addition,
dilation) work best with the column-normalized embedding space, L2-col, and
perform visibly worse with the other normalization variants. The explanation for these
results is that these models have no or little ability to influence how the input vectors
are transformed into the composed representation. However, they can gain information
from the column-wise normalization, which makes it easier to compare the information
coming from different vectors on the same input dimension .

For models with a larger number of parameters (underlined in Table 5.14) there is
little difference between using the raw vectors space (the none setup) and the one using
unit vectors (the L2-row setup). Using the column-normalized space L2-col makes
these models have, in general, weaker results.
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The experiments reported in the rest of this section will use the L2-col nor-
malization for the no/low parametric models and L2-row for the models with more
parameters.

5.5.4 Results on the English Compositionality Dataset
Table 5.15 displays the results of the thirteen composition models that were previously
evaluated on German. As an overall observation, comparing to the results on the
German nn-only dataset in Table 5.6, the majority of models obtain markedly worse
ranks on the English dataset. The performance of the model might be affected by
several factors: (i) the en-comcom dataset is, as previously mentioned, more noisy
because of the automatic filtering step; (ii) en-comcom’s size may be an issue: because
it is smaller, there is less data available for training the composition models. However,
the fact that non-parametric models also have worse results, is an argument in favor of
the noisy data explanation.

Composition 50d 100d 200d 300d

Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d

de
v

mul 1K 1K 1K 0.9629 1K 1K 1K 0.9999 1K 1K 1K 1.0024 1K 1K 1K 1.0045
head 168 1K 1K 0.6805 85 1K 1K 0.7095 62 825 1K 0.7497 47 611 1K 0.7554
modifier 159 1K 1K 0.6836 78 1K 1K 0.7109 52 748.5 1K 0.7446 37 495 1K 0.7505
dilation 88 1K 1K 0.6462 45 604.5 1K 0.6734 29 369.5 1K 0.7144 22 235 1K 0.7197
addition 68 886 1K 0.6252 32 332.5 1K 0.6502 22 177 1K 0.6900 15 102.5 1K 0.6921
w_addition 67 864 1K 0.6251 31 328 1K 0.6501 21 177 1K 0.6900 15 103 1K 0.6921
lexfunc 5 39 915 0.4635 4 24.5 623 0.5162 3 18 474 0.5669 3 15 453 0.5935
addmask 2 10 164 0.3770 2 5 57 0.4217 1 4 27 0.4653 1 3 18 0.4877
fulladd 3 13 95 0.3733 2 6 34 0.4173 2 4 14 0.4581 2 3 10 0.4786
matrix 3 11 75 0.3636 2 6 28 0.4077 2 4 12 0.4488 1 3 9 0.4699
wmask 2 6 47 0.3360 2 4 19 0.3870 1 3 10 0.4347 1 3 8 0.4617
fulllex 2 5 38 0.3228 1 3 16 0.3707 1 2 8 0.4213 1 2 7 0.4501
multimatrix 2 5 31 0.3215 1 3 10 0.3609 1 2 5 0.4009 1 2 5 0.4241

te
st

mul 1K 1K 1K 0.9633 1K 1K 1K 0.9972 1K 1K 1K 0.9989 1K 1K 1K 1.0040
head 167 1K 1K 0.6727 86.5 1K 1K 0.7034 56 674 1K 0.7420 41 450 1K 0.7479
modifier 175 1K 1K 0.6851 88 1K 1K 0.7129 54 738.5 1K 0.7460 40 471 1K 0.7504
dilation 91 1K 1K 0.6400 44 540.5 1K 0.6689 28 294 1K 0.7082 20 187 1K 0.7133
addition 67 789 1K 0.6211 32 322 1K 0.6473 20 169 1K 0.6860 14 100 1K 0.6873
w_addition 68 782 1K 0.6209 31.5 320.5 1K 0.6472 20 169 1K 0.6860 14 100 1K 0.6872
lexfunc 4 35 701 0.4551 3 20 472 0.5098 3 15 322.5 0.5600 3 14 301 0.5882
addmask 2 9 118 0.3730 2 5 46 0.4196 1 4 21 0.4627 1 3 15 0.4849
fullladd 3 13 86.5 0.3714 2 6 30 0.4175 2 4 13 0.4579 1 3 9 0.4785
matrix 3 11 66 0.3632 2 6 24 0.4094 2 3 11 0.4500 1 3 8 0.4710
wmask 2 6 40 0.3342 1 4 17 0.3866 1 3 8 0.4342 1 3 7 0.4615
fulllex 2 5 33 0.3214 1 3 13 0.3692 1 2 8 0.4214 1 2 7 0.4508
multimatrix 2 5 29 0.3220 1 3 11 0.3637 1 2 5 0.4042 1 2 5 0.4269

Table 5.15 Quartiles for the 2722 composed representations of the dev split and the
5444 composed representations of the test split of the en-comcom dataset, ranked
with respect to the observed representations. Best result for each model (across the
different input dimensionalities) is marked in bold.

The two baseline models, head and the modifier, obtain modest results. What
is striking, however, is that the modifier baseline comfortably outperforms the head
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baseline. This suggests that in the case of English compounds there is a majority
of cases in which the modifier representation carries more information that the head
representation. Tables C.14 and C.15 in Appendix C present nearest neighbors obtained
using the representations created by the head and the modifier models. 60 words
obtain rank 1 using the head representation, with an average cosine similarity of
0.57150. Although its overall results are better, in the modifier representation case
only 55 words obtain rank 1, with an average cosine similarity of 0.59314.

The multiplicative model, mul is, as in the German case, the worst performing
model. Table C.16 presents the nearest neighbors obtained for compounds using the mul
composed representation. Again, the cosine distance between these representations and
the original representations is very low, meaning that the multiplicative representations
integrate poorly into the original vector space.

The addition and w_addition models obtain almost the same results on the
en-comcom dataset. It follows that a simple addition model is, for English compounds,
the best alternative for a composition model when training data is not available.
Perhaps unsurprisingly, the addition model is also the default choice when it comes
to representing a larger phrase, or even a sentence or paragraph (Roth and Woodsend,
2014; Hermann and Blunsom, 2014). Tables C.18 and C.19 present the nearest neighbors
when using addition and w_addition. Both models obtain the best rank for 74 test
compounds, with an average cosine similarity between the observed and the composed
representation of 0.5893.

dilation obtains, as in the German compounds case, modest results, and only
manages to outperform the baseline models. Example neighbors are presented in
Table C.17. 81 words are assigned rank 1, with an average cosine similarity between
the observed and the composed representation of 0.59594.

Training a matrix for each word leads to a jump in the performance: 612 com-
pounds are assigned rank 1 when using lexfunc composed representations, with an
average cosine similarity of 0.61611. fulllex assigns the best rank to 1881 composed
representations, with an average cosine similarity of 0.63913. The benefits of using both
the head and the modifier representations and a matrix to combine them can be clearly
seen in fulllex’s case: lexfunc test quartiles for the best model are 3-14-301, while
the corresponding quartiles for fulllex are 1-2-7. Tables C.20 and C.21 illustrate
the nearest neighbors of the representations created by these composition models for
English compounds.

fulladd and matrix obtain, as expected, results similar to each other. They
manage to outperform the lexfunc model, despite the per-word matrix trained by
lexfunc. These models show that reusing the same composition matrix for different
words can lead to a better generalization performance than when the model learns to
compose each modifier using an independent, per-word matrix. 1455 words are assigned
the rank 1 using the fulladd representations, with an average cosine similarity of
0.60495. With the matrix model 1523 words achieve the best rank, with an average
cosine of 0.60690. Example neighborhoods for the fulladd and matrix representations
can be seen in Tables C.22 and C.23, respectively.
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The mask models are overtaken by several models on the en-comcom dataset.
addmask’s results are weaker than the ones of the simple fulladd and matrix models.
wmask performs better than fulladd/matrix, but is outperformed by fulllex and
multimatrix. The average cosine between the 1529 addmask representations assigned
the rank 1 and the corresponding original representations is 0.63038. In the case of
wmask, the 1724 word vectors assigned the rank 1 have an average cosine similarity of
0.62752 to the observed vectors. Neighbors of the addmask/wmask representations are
presented in Tables C.24/C.25.

The best result on the en-comcom dataset is obtained by the multimatrix model:
its quartiles on the test subset are 1-2-5. As the quartiles show, over 75% (in
fact 78.03%) of the test data receives a good representation with rank ď5 using
multimatrix. 2389 out of the 5444 test compounds receive the best rank 1, with an
average cosine similarity of 0.6546. Notice that the average cosine similarity value
obtained by multimatrix is the largest obtained by any of the models.

inst fulladd matrix lexfunc fulllex addmask wmask multimatrix

144 test modifier P train as head 59 44 622 52 291 62 65
436 test modifier R train 101 58 626 86 251 86 67

194 test head P train as modifier 85 67 287 83 271 74 83
370 test head R train 143 76 335 89 273 119 94

Table 5.16 Analysing the composition performance in difficult cases from the en-comcom
dataset. Showing the mean rank assigned by different composition models to four
subsets of the test data: test compounds where the modifier occurs in the train data
only on the head position (first row); test compounds where the modifier does not
occur in the train data (second row); test compounds where the head occurs in train
only as modifier (third row); test compounds where the head does not occur in train
(last row).

As in the German dataset case, four subsets of challenging data were extracted
from the en-comcom test compounds: (i) compounds where the modifier only occurs
as a head in train; (ii) compounds whose modifier does not appear in train; (iii)
compounds where the head can only be found in the modifier position in the train
data and (iv) compounds where the head never appears in the train data (neither as
head, nor as modifier).

Table 5.16 displays the average rank of the seven best performing composition
models. The ranks are much higher than the average ranks for German on the same
type of data. The reason for this increase in average rank may be the noisier dataset,
which seems to make it more difficult for all models to operate with less data. The
most consistent results are given by the matrix model. lexfunc and addmask, models
without a matrix-like component, obtain extremely bad ranks.

There is a subset of compounds for which composition models fail to produce a
representation that is close to the original representation. A look at the compounds
assigned high ranks by the best performing model, 300-dimensional multimatrix,
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reveals several patters: they can be highly technical terms (e.g. plant names like
spring_beauty, rose_hip, medical terms thyroid_cartilage, cross_section, names of
instruments walkie_talkie, terms like head_start, test_bed, safety_net), named entities
(e.g. borscht_belt - the nickname for past summer resorts in the Catskill Mountains,
NY; wonder_woman and iron_man, names of comics superheroes; half_nelson, the
name of a movie), loan words (e.g. modus_operandi, ‘mode of operating’, from Latin;
foie_gras ‘fat liver’, from French) or lexicalized forms such as whistle_blower - informer
of illegal activities; mother_tongue - native language, silver_lining - a hopeful stance
on a bad situation.

For all of these compounds, the compositional approach fails, and the reasons why
vary from one example to the other. For some - like the medical terms - the ability of the
composition models might be improved by training on additional compounds from the
medical domain. The named entities should ideally be isolated before the composition
step. For most of the remaining compounds, however, the best approach might be just
to know that they have a specialized meaning, and to store the learned representation
directly and do not attempt to obtain it compositionally from the meanings of the
constituents. In some cases the surrounding context might be needed to decide if one
should use the compositional or the learned representation, e.g. spring_beauty might,
in particular contexts, refer to something else than the plant.

Finding ways to best represent both compositional and non-compositional com-
pounds with the help of integrative composition models is the objective of the experi-
ments described in the next chapter.

5.6 Comparing to Other Compositionality Studies

Other studies have investigated the possibility of building composed representations,
both above and below the word level. They cover, inter alia, the composition of
adjective-noun phrases like vast amount (Mitchell and Lapata, 2010; Guevara, 2010;
Dinu et al., 2013b), of intransitive verbs and their subjects - skin glows (Mitchell and
Lapata, 2008; Dinu et al., 2013b), of transitive verbs and their direct objects - buy
land (Mitchell and Lapata, 2010), of determiner phrases like no home or two opponents
(Bernardi et al., 2013; Dinu et al., 2013b) and of noun-noun combinations like telephone
number (Mitchell and Lapata, 2010). Moreover, a number of studies investigated the
use of composition models for modeling several morphological derivation patterns in
English, e.g. re- + build Ñ rebuild, from Lazaridou et al. (2013)) and German (e.g.
taub ‘deaf’ + -heit Ñ Taubheit ‘deafness’, from Padó et al. (2016).

An important factor to consider in all these studies is how the composition models
are evaluated. As mentioned before in the discussion of the results of the multiplicative
model in Section 5.4.3, studies like Mitchell and Lapata (2008, 2010); Blacoe and
Lapata (2012) compare two composed representations using cosine similarity and then
correlate the cosine similarity with human similarity judgments. Although this type of
evaluation can be revealing from a cognitive perspective, the use of human judgments
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limits its potential because of the high cost of obtaining the manual annotations. This
evaluation will judge a composition model to work well even if the resulting composed
representations are incomparable with the original representations of the constituents.

Another popular evaluation metric is comparing the composed representation of
a word combination with the representation of a single word with a similar sense.
Evaluations of this type compare for example close interaction to contact (Zanzotto
et al., 2010) or heavy particle to baryon (Dinu et al., 2013b). However, this setup makes
it difficult to figure out when the composition model fails because of its own inability to
model composition, and when does it fail because of the approximate semantic match
between the word combination and the single-word target.

The evaluation methodology used in this thesis, a modified version of the evaluation
originally proposed by Guevara (2010) and Baroni and Zamparelli (2010), builds the
same type of distributional representations for the constituents of a phrase and for the
phrase itself. The quality of the composition is then judged by comparing the original
representation of the phrase to the composed representation. This type of setup has
the advantage that new training material can easily be created, without the need for
expensive human annotations. Moreover, this type of evaluation inherently leads to
composed representations that are compatible with the original representations of the
constituent words, while avoiding the possible ambiguities related to the approximate
matching between a word combination and its single word correspondent.

In the experiments on adjective-noun (AN) composition in Guevara (2010), the
fulladd model is found to be superior to component-wise addition and multiplication.
Guevara (2010) reports that the composed representations build by the fulladd model
have the observed representation in its top-10 list of neighbors in 57.6% of the test
cases. Noteworthy in Guevara (2010)’s evaluation is an additional setup where the
composition is evaluated not only with respect to the target representation itself, but
also with respect to its 10 nearest neighbors Such a training/evaluation setup would
promote even further the idea that the compositionally build representation should
‘fit’ the neighborhood of the observed representation. Investigating the benefits of this
alternative training/evaluation setup is, however, left for future work.

Baroni and Zamparelli (2010) use a rank-based evaluation to judge the performance
of the lexfunc model, while also comparing to the additive and mul models. The
study uses a large adjective-noun English dataset. However, the dataset contains
only 36 target adjectives to be modeled, albeit with a large number of adjective-
noun combinations for each individual adjective (734 combinations on average). The
composition model is trained using a leave-one-out policy, where the composed vector
of a particular combination is estimated using as training all the vectors of the other
combinations with the same adjective. In their study lexfunc obtains better results
than the additive and mul models, obtaining the quartiles 17-170-ě1K.
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5.7 Compositional Models - Main Results

This chapter presented an empirical evaluation of several composition models for
the task of creating word representations for noun-noun compounds, starting from
the representations of their constituents. Another dimension of the study concerned
the cross-lingual investigation of how composition models work for the same type of
construction in two different languages, German and English. This section summarizes
the main results of the chapter.

A main take-away point is that parametric composition models consistently out-
perform non-parametric ones. This result is a strong indicator that whenever training
data is available it is better to train a dedicated, parametric composition model than
to use, for example, a simple addition model.

Models with no or few parameters (head, modifier, addition, mul, w_addition,
dilation) perform better when using L2 column normalization. Using no normalization
or L2 row normalization works better with models that have a large number of
parameters (lexfunc, fulladd, matrix, fulllex,addmask, wmask, multimatrix) -
see Sections 5.4.2 and 5.5.3 for details.

The two baseline models, head and modifier, have a mediocre performance. The
head model clearly outperforms the modifier model on the German datasets, but is
outperformed by the modifier model on the English dataset (details in Section 5.5.4).

addition outperforms the head and modifier baselines; however, its main dis-
advantage is that it does not take into account the position of the constituents -
compounds like car factory and factory car will receive the same representation using
the addition model. mul is the worse composition model, its composed representations
are incompatible with the original vector space both for the German and for the English
compounds (Sections 5.4.3 and 5.5.4).

The experiments in Section 5.4.6 showed that the cleaner nn-only training set,
containing only noun-noun compounds, leads to better results than using a larger but
more diverse mixed dataset, where the modifiers could also be verbs, adjectives, etc. It
follows that when building a composition dataset it is advisable to isolate a particular
construction and build composition models that target that construction in particular.

The newly introduced mask models, addmask and wmask, obtain competitive results
both the German and the English datasets. This confirms the intuition - already
presented for the lexfunc and the fulllex models - that training dedicated components
for each word can lead to better composed representations. Training two vectors for
each modifier and head instead of two matrices makes the mask models use only a
fraction of the corresponding lex models (lexfunc/fulllex) - see Section 5.4.4.

Both the mask and the lex models use a modeling idea that is potentially detrimental
for composition: the individual treatment of constituents (building separate matrices
or masks for each) might lead to a loss in generalization behavior. In contrast, the
fulladd/matrix models are at the opposite end of the spectrum, with a one-size-fits-all
approach where a single matrix is expected to account for all the possible composition
typologies. Ideally, composition models should aim for a middle point, where the
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composition would abstract away from the individual word level but specialize for
frequently encountered semantic composition patterns.

The proposed multimatrix model satisfies exactly these requirements, and leads to
a significant improvement over the other models for both the German and the English
dataset. It uses a set of affine transformations to compose the two inputs in different
ways, which are then integrated into a single composed vector via a nonlinearity and
another affine transformation.
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Chapter 6

The Challenge of
Non-Compositional Compounds

Dass Zitronenfalter keine Zitronen falten, Kammerjäger keine Kam-
mern jagen, Landstreicher keine Land streichen, Briefschlitze keine Briefe
schlitzen und Heckenschützen keine Hecke schützen wissen wir natürlich -
aber woher eigentlich?

- Verena Klos, Komposition und Kompositionalität

6.1 Identifying Non-Compositional Compounds
When the process of creating the meaning of the compound involves combining (some
parts of) the meanings of its modifier and head, the newly coined complex word
is considered to be compositional. In such cases the meaning of the constituents
contributes directly to the meaning of the compound. Lexicalization, on the other
hand, describes non-compositional cases where the meaning of one of the constituents
deviates from the meaning they are usually associated with. In fully lexicalized cases
the meaning of the compound simply does not match the compositional meaning that
could be derived from the meaning of the constituent words.

Take for example the compound Löwenzahn ‘dandelion’, lit. ’lion’s tooth’: it is
hopeless to start from the words Löwe ‘lion’ and Zahn ‘tooth’ and seek to derive the
meaning of ‘dandelion’. Only after one learns the correct referent, i.e. sees the flower,
it is possible to grasp the metaphor behind the creative process which resulted in this
particular name. In any case, the correct referent of Löwenzahn has to be stored in an
individual’s mental lexicon in order to correctly identify its meaning next time it is
encountered, since the compositional process will not be of any help.

Similarly, meaning deviations like the one in the example above make it impossible
for composition models to produce the correct vector representation of Löwenzahn
starting from the representations of Löwe and Zahn. In such cases the correct repre-
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sentation can only be learned from the contexts in which the compound Löwenzahn
appears in the support corpus.

Bauer (1983:45) describes a continuum of types of complex words, arranged with
respect to their formation status and to how dependent their interpretation is on the
context: (i) nonce formations, “coined by a speaker/writer on the spur of the moment
to cover some immediate need”, where there is a large ambiguity with respect to the
meaning of the compound which has to be resolved using the immediate context (e.g.
Algenwein ‘algae wine’, a new word described by Lemnitzer (2007) to mean alcoholic
beverage made of fermented algae); (ii) institutionalized lexemes, whose potential
ambiguity is canceled by the frequency of use and familiarity with the term, and whose
more established meaning could be inferred based on the meanings of the constituents
and prior world experience, without the need for an immediate context (e.g. orange
juice); (iii) lexicalized lexemes, where the meaning has become a convention which
cannot be inferred from the constituents alone and can only be successfully interpreted
if the term is familiar or if the context provides enough clues (e.g. couch potato1).

A person learning the German language can relate to these three stages. Upon the
first encounter with the word Löwenzahn, if one knows that the constituents Löwe and
Zahn mean ‘lion’ and ‘tooth’ one can think of multiple interpretations as in stage 1:
‘tooth from a lion’, ‘tooth as sharp/strong/large as a lion’s’, ‘person with particularly
sharp/strong teeth’ (similar to ‘hawk eye’). However, as soon as the learner becomes
aware of the real referent, she speeds though the institutionalized to the lexicalized
stage, and the idiosyncratic meaning of the word has to be stored for future use. Failure
to record compounds that significantly deviate from their ‘expected’ interpretations
will hamper further progress in understanding the German language.

Non-compositional compounds can have a derailing effect for the modeling of
compositional compounds. For composition models like the ones presented in the
previous chapter, it might be desirable to filter out compounds that exhibit large
meaning drifts. This is because training on lexicalized compounds will result in
patterns that do not generalize to other compounds. Moreover, composition models
cannot be expected to learn how to construct a meaning representation that significantly
deviates from the expected compositional representation.

This chapter takes an in-depth look at the performance of composition models
on lexicalized compounds. Section 6.1.1 introduces a small, manually annotated
lexicalization dataset which is then used in Section 6.1.2 to analyze the results of the
composition models. Section 6.2 connects the investigations in this chapter to similar
investigations in the literature.

6.1.1 de-ulex Dataset of German Compounds
A subset of the annotation scheme introduced in Section 2.2, pp. 42 focuses on
lexicalization. 648 (approx. 8%) of the de-nncom-sem dataset to be introduced in

1a couch potato is not a potato, but a person who exercises little and spends most of the time in
front of a TV.
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Section 7.1.1 are annotated as being partially or completely lexicalized. The annotation
guidelines regarding lexicalization specify that the compounds can be annotated with
one or more of the labels lex_M, lex_H, lex_MS, lex_HS and lex_R.

The label lex_M is used when the modifier deviates from its regular meaning (e.g.
Pfefferkuchen ‘ginger bread’, lit. ‘black pepper cake’); similarly lex_H is used when
the head deviates from its regular meaning (e.g. Notnagel ‘person who can fill in for
others in emergency case’, lit. ‘emergency nail’). In these examples one constituent has
an opaque meaning, while the other maintains its conventional meaning. However, in
cases like Eselsbrücke ‘mnemonic’, lit. ‘donkey bridge’ neither constituent contributes
to the meaning of the new compound. Moreover, the head and the modifier are in an
atypical relation. Such examples are marked with three lexicalization labels: lex_M,
lex_H and lex_R, to mark the fact that the modifier, the head and the relation they
are in have deviated from typical use.

lex_MS and lex_HS are used to label compounds where the referent of the modifier
or the head physically resembles the typical referent: e.g. Ohrensessel ‘wing chair’,
lit. ‘ears chair’, where the top part of the chair loosely resembles a pair of ears or
Schokoladenhase ‘chocolate bunny’ where the chocolate is shaped to look like a bunny.

As mentioned before, 648 compounds from the annotated dataset to be introduced
in Section 7.1.1 are annotated with at least one of the five lexicalization labels. These
compounds were used to create a dataset for bootstrapping the automatic identification
of lexicalized German compounds.

A balanced dataset was constructed from the 648 lexicalized compounds plus
another 648 compounds that were not marked in the dataset as being lexicalized. The
goal was to have a sample of data containing both compositional and non-compositional
compounds, and learn how to tell them apart. From the 1296 compounds only 1050 had
the head, modifier and compound itself occur with a frequency above 100 in the support
corpus used to create the word representations described in Chapter 5.3.2. These 1050
compounds form the de-ulex dataset, which comprises of 525 compositional and 525
non-compositional compounds. The de-ulex dataset will be used in the next section
to discover criteria for distinguishing when a compound is compositional and when it
is lexicalized.

6.1.2 More, or Less Compositional?

Even for the best of the composition models presented in the previous chapter there
were test compounds for which the composed representation was far away from
when the corpus-learned representation. A look at the four example compounds
from Table C.13 in Appendix C, whose multimatrix representations are assigned
the worst rank possible, 1000, shows that these examples have something in common.
Nachtschatten ‘solanum’, lit. ‘night shadow’ is a botanical genus, whose best known
members are the potato, the tomato and the eggplant. Besenreiser ‘spider veins’,
lit. ‘broom twigs’ is a medical condition affecting the veins. Wertschätzung, meaning
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‘esteem’ or ‘appreciation’ is an abstract concept with the literal meaning of ‘value
estimate’. And Tierkreis ‘zodiac’ is literally translated as ‘animal circle’.

What these compounds have in common is that their actual meaning cannot be
derived from the meaning of their constituents. The compositional representation
produced by the composition models does not correspond to the actual, lexicalized
meaning. Table 6.1 illustrates this point. It shows the neighbors of the original and
the multimatrix-composed representations of the just mentioned compounds. The
neighbors are taken from the full vector space of word representations, containing
„1 million words (described in Section 5.3.2). In all cases the neighborhood of the
original compound representation captures the actual meaning of the word, whereas the
composed representation is in the ‘garbage bin’ of cosine similarity, with most composed
representations being nearly orthogonal to their observed counterparts (orthogonal
vectors have a cosine similarity of 0).

nachtschatten:1000 besenreiser:1000 wertschätzung:1000 tierkreis:1000

nachtschatten 1.00000 besenreiser 1.00000 wertschätzung 1.00000 tierkreis 1.00000
lotos 0.36870 varizen 0.66002 akzeptanz 0.67903 tierkreiszeichen 0.62106

schwarzer 0.36613 besenreisern 0.61733 anerkennung 0.64735 siderischen 0.49127
walfisch 0.35867 krampfadern 0.60190 zuneigung 0.64412 zodiak 0.48716

tollkirsche 0.34875 pigmentstörungen 0.57887 empathie 0.59704 tierkreises 0.46585
herbstzeitlose 0.34442 couperose 0.56271 entgegengebracht 0.58749 ekliptik 0.46328

klabauter 0.33420 aknenarben 0.54388 entgegenbringen 0.58140 aszendent 0.45524
weisser 0.33350 dehnungsstreifen 0.52476 respekt 0.58109 sternbilder 0.44575
täuber 0.32934 schwangerschaftsstreifen 0.52181 sympathie 0.58090 frühlingspunkt 0.43581

schluckspecht 0.32924 besenreißer 0.51405 dankbarkeit 0.58040 astrologischen 0.42823
stechapfel 0.32594 äderchen 0.50821 zuwendung 0.57655 aszendenten 0.42551

... ... ... ...
lohndumping 0.12018 höflichere 0.08151 rwert 0.09490 karpaltunnelsyndroms 0.11724
strandpiraten 0.12018 gke 0.08151 freistellung 0.09489 geretteten 0.11724

prüß 0.12018 muskelmänner 0.08151 waschergebnis 0.09489 ferias 0.11724
weinthal 0.12018 geldkoffer 0.08151 geschichtsbewusste 0.09489 bagatelldelikte 0.11723

weimeraner 0.12018 regenbogenpresse 0.08151 mittelbarkeit 0.09489 wirtschaftskrimineller 0.11723
nachtschatten_c 0.12018 besenreiser_c 0.08151 wertschätzung_c 0.09489 tierkreis_c 0.11723

offenau 0.12018 eröffnungsposting 0.08151 pflegealltag 0.09489 peloponnes 0.11723
zivilrechtlich 0.12018 ethereal 0.08151 frauenbewegungen 0.09489 panzerkolonnen 0.11723

dragees 0.12017 aufgeschwollen 0.08151 schweiz 0.09489 drangehalten 0.11723
ungef 0.12017 dirndln 0.08151 musikszene 0.09489 tcg 0.11723

fiorella 0.12017 silur 0.08151 abraumhalde 0.09489 vorausbuchungen 0.11723

Table 6.1 Neighbours of a sample of lexicalized compounds from the nn-only test
set where the composed representation was assigned a cut-off rank. Neighbours are
arranged in decreasing cosine similarity order to the original representation. The
composed representation is marked in each case with an _c. Both the original and the
composed representations are highlighted in red. The composed representation of such
lexicalized compounds is commonly very far away from the original representation, as
the cosine similarities show. The composed representations were obtained using the
best performing composition model, the 300-dimensional multimatrix model.

As these examples show, a large dissimilarity between the original and the composed
representation can mean that the compound in question is partially or completely
lexicalized. The hypothesis that a compound’s degree of lexicalization can be judged
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6.1 Identifying Non-Compositional Compounds

using a good quality composition model was put to the test using the compounds from
the de-ulex set.

As mentioned above, the de-ulex set contains 525 compounds that were marked
with different types of lexicalization, and an equal amount of compounds that were
not marked as being lexicalized. A first step in testing the hypothesis formulated
above was to compute the cosine distance between the original, corpus-observed
representation of each compound and its corresponding composed representation, using
the best performing composition model from the previous chapter - the 300-dimensional
multimatrix model.

The average of the cosine similarity between the original and the composed repre-
sentation was computed separately for the group of compounds annotated as lexicalized
and for the ones that were compositional according to the annotation. The average of
the compositional compounds was 0.6338. Surprisingly, the average of the lexicalized
ones was also relatively high - 0.5566. Even for highly lexicalized compounds like
Löwenzahn ‘dandelion’, lit. ‘lion tooth’ there was little difference between the composed
and the original representation - 0.7456.

Why? Because Löwenzahn was part of the data the composition model was trained
on, and the model did its best and learned the idiosyncratic meaning of the lexicalized
compounds. 495 of the 1050 compounds in the de-ulex dataset, both lexicalized and
compositional, were part of the nn-only train portion. To avoid the situation in which
the model learns any of the vectors, the de-ulex compounds were filtered out of the
nn-only train set. Given that the original train set had 18796 compounds, removing
the 495 overlapping compounds did not affect the performance of the composition
model on the test set (the quartiles remained 1-2-4).

What did happen, however, is that when using the retrained composition model
there was a visible decrease in the average cosine similarity of the de-ulex compounds
which were annotated as lexicalized: from 0.5566 down to 0.3615. The average of
the compositional vectors also decreased to 0.5191. The cosine similarity between the
corpus-based and the composed representation of Löwenzahn was also much lower:
0.1579, because the compound was not seen during training.

Figure 6.1 compares the lexicalization labels assigned via the manual annotation
to the empirical score assigned by the automatic analysis. The score, shown on the
X-axis of Figure 6.1, is the cosine similarity between the original and the composed
representation for all the 1050 compounds in the de-ulex dataset. The large blue
circles mark the compounds that were annotated as lexicalized (i.e. Milchstraße, ‘Milky
Way’, lit. ‘milk street’), while the small orange circles mark the compositional ones
(Sporthalle ‘sports hall’, ‘gym’).

The green color marks some of the examples where the annotation and the cosine
similarity agree, while red signals examples where the annotation and the similarity
disagree. The agreement can arise in two situations: either when compounds annotated
as lexicalized obtain a low cosine similarity value (the green examples on the left of
Figure 6.1, e.g. Milchstraße), or when compounds annotated as compositional obtain a
high cosine similarity (the green examples on the right of the figure, e.g. Sporthalle).
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Similarly, disagreements can also occur in two circumstances: (i) for compounds
with a low cosine similarity that are annotated as compositional (red examples on the
left side, e.g. Flügeldecke ‘elytron’, lit. ‘wing blanket’); (ii) for compounds with a high
cosine similarity that are annotated as lexicalized (red examples on the right side, e.g.
Sojamilch ‘soy milk’).

The figure is a visual representation of the fact that lexicalization is a continuum
and that there are no sharp boundaries that clearly separate the lexicalized compounds
from the compositional ones. There are, however, trends - i.e. many of the compounds
annotated as lexicalized are on the left side of the figure, with a cosine similarity
between 0.1 and 0.4 (, Seekanne ‘fringed water lily’, lit. ‘lake pot’). This region
contains, however, also compounds that had not been marked as lexicalized, i.e.
Eierfrucht ‘aubergine’, lit. ‘eggs fruit’, or Zuckerrohr ‘sugarcane’, lit. ‘sugar tube’.

A similar situation occurs on the right end of Figure 6.1: compounds like Tomatos-
alat ‘tomato salad’ and Colaflasche ‘cola bottle’ have a high cosine similarity, which
corresponds to their annotation as non-lexicalized compounds. From a distributional
perspective, however, compounds like Sojamilch ‘soy milk’ and Rittersaal ‘knight’s
hall’ seem to be closer to being compositional, even if the ‘soy milk’ is not ‘milk’ in the
sense of ‘cow milk’, and the ‘knight’s hall’ of many castles has in the meantime a much
wider user pool (not necessarily knights).

Other interesting examples are compounds which could be interpreted either com-
positionally or non-compositionally, depending on the context they are used in. For
example Buchholz can be interpreted as ‘beech wood’ in the compositional case, but is
also a frequent family or town name. Similarly Rosenblatt can either mean the ‘leaf
or petal of a rose’ in the compositional case, but is again a frequent family name. As
Fig. 6.1 shows, in both cases the distributional representation captures the family
name meaning, leading to a large discrepancy between the corpus-learned and the
composed representation. Also, the annotation did indicate Buchholz as a possible
name, but Rosenblatt was annotated as being compositional. Given the use of large,
unannotated corpora for the creation of word representations, it is difficult to predict
when such a collision might happen, and when will the vector no longer correspond to
the compound but to the proper name.

Such compounds - whose meaning strongly deviates from the compositional meaning
- can have an undesired effect on the overall efficiency of the composition model. At the
beginning of this section the composition model showed that it had the ability to learn
quite well the idiosyncratic representation of Löwenzahn. If many such idiosyncratic
compounds - either lexicalized like Löwenzahn or doubling as a name like Buchholz -
are used as training material, will the composition models have a harder time modeling
the compositional examples? The following experiment aims to provide an answer to
the question: are composition models affected by the presence of lexicalized compounds
in the training data or not?

In order to find an answer, the best composition model was trained using portions
comprising 20%, 40%, 60%, 80% and 100% of the train dataset. Three setups are
then tested. In setup 1 the train data is randomized and then split; in setup 2 the
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train data is sorted from most compositional to least compositional and then split; in
setup 3 the train data is sorted from least compositional to most compositional and
then split. Composition models are expected to generalize faster when trained first
on compositional compounds (setup 2) than when trained first on non-compositional
examples (setup 3) or on randomly chosen examples (setup 1). This is because
training on compositional compounds leads to learning patterns that can be reused to
compose similar examples. In contrast, training on non-compositional examples - like
Löwenzahn - results in patterns that can only be used for composing that particular
word.

The manually annotated compounds are only a small fraction of the GermaNet
compounds in the nn-only dataset used for the composition experiments, and manually
annotating each compound with a ‘compositionality score’ would be a laborious, time
intensive undertaking.

Therefore, an automatic method was devised to arrange the train compounds
based on their (automatically-perceived) compositionality. The full nn-only dataset,
comprising 26861 compounds, was split into 10 equal folds of data. Ten separate
multimatrix composition models were trained, each using nine of the folds as training
material and the tenth fold as the dev/test data. All models were trained using the
hyperparameters that worked best for multimatrix in the previous chapter: η “ 0.1,
0.75 dropout, 120 transformation matrices and a ReLU nonlinearity.

The cosine similarity between the composed and the original representation was
computed for each compound when it was part of the test fold. In this way each
compound gets to be tested without it being part of the training data, making it possible
to compare the original and the composed representations without the interference of
overfitting. The concatenated list of all the cosine similarities computed for all the
10 test folds serves as an approximation of how compositional each compound is: the
higher the cosine similarity - the more compositional the compound and vice-versa.

The original train subset of the nn-only dataset was then re-sorted according to
the cosine similarities, and 5 train splits were created, each containing an increasing
percentage of the data: 20%, 40%, 60%, 80% and 100%. In setup 1 each training
example is randomly assigned to a data split. In setup 2 the first subset contains
the train compounds identified as most compositional, whereas in setup 3 the first
subset contains the least compositional train compounds.

Table 6.2 shows the quartiles, the average cosine distance on the nn-only test set
and the number of compounds in the test set that received a rank ď5. The models in
setup 2, using the train data sorted from most compositional to least compositional,
obtain a smaller (i.e. better) average cosine distance and rank consistently more than
100 compounds with ranks ď5 than the ones in setup 1 (which uses randomized
training data). The difference between setup 1 and setup 2 evens out when the last
20% of data is added. However, in setup 2 the last 20% of data are the compounds
where the cosine similarity between the original and the composed representations is
less than 0.4560, so on the non-compositional side of the spectrum. These last 20%
of training data bring no improvement in terms of cosine distance (compare 0.4479
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# %train setup1: random setup 2: decr. cosine setup 3: incr. cosine
Q1 Q2 Q3 cos-d ď 5 Q1 Q2 Q3 cos-d ď 5 Q1 Q2 Q3 cos-d ď 5

3760 20% 2 4 12 0.5305 3098 2 4 14 0.5149 3261 6 15 38 0.6080 1348
7520 40% 2 3 7 0.4939 3804 1 2 6 0.4753 3959 2 5 13 0.5386 2851

11280 60% 1 2 5 0.4736 4120 1 2 4 0.4564 4231 2 3 7 0.5012 3666
15040 80% 1 2 4 0.4589 4281 1 2 4 0.4479 4389 1 2 5 0.4733 4154
18796 100% 1 2 4 0.4483 4428 1 2 4 0.4482 4430 1 2 4 0.4480 4427

Table 6.2 Three different training setups: setup 1 - train data chosen randomly;
setup 2 - train data chosen from most to least compositional; setup 3 - train data
chosen from least to most compositional. Non-compositional compounds supply less
information than the compositional ones. However, as long as the majority of the data
is compositional, there is no downside to also having less compositional instances in
the training data.

to 0.4482), and only 41 additional compounds are assigned a rank ď5 (from 4389 to
4430). This is not the case for the models in setup 1, using randomly sampled data -
there the improvements are more evenly spread out.

setup 3 shows dramatic differences to the previous two setups in terms of the
quality of the models trained on 20%, 40% and 60% of the data. In this case, the first
20% of training data contains compounds with a cosine similarity between -0.0366 and
0.4561, while the next two 20% parts bring the maximum cosine similarity to 0.5451
and 0.6118, respectively.
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Fig. 6.2 Percentage of test compounds with rank ď5 (X-axis) against the percentage
of train data (Y-axis). The dashed green line plots the performance of the model
trained on cosine-sorted data (from least compositional to most compositional). The
dash-dotted blue line plots the performance of the models trained on randomly sampled
data. The dotted red line plots the performance of the models using the cosine-sorted
training data (from most to least compositional).

Figure 6.2 shows the percentage of test compounds that received a rank ď5 (X-
axis) against the percentage of train data that was used (Y-axis). The dashed green
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line shows the performance of the models in setup 3, using the lexicalized training
data first. The dash-dotted blue line plots the performance of the models trained on
randomly sampled train data (setup 1). The dotted red line plots the performance of
the models in setup 2, using the training data sorted from most to least compositional.
Although the models in setup 3 do learn from the first 20% of data, their performance
is nowhere near the models in the other two training setups. This shows that while the
composition models manage to learn even from the less compositional examples, they
do not obtain as much information as from more compositional instances. As can be
seen in Figure 6.2, models trained on the 40% least compositional training examples
perform worse than the ones trained on 20% of the most compositional instances.

This analysis shows, in setup 2, that while training on the last 20% of data -
containing the lexicalized compounds - does not have a negative impact, composition
models do not learn much from them. setup 3 shows that using a high percentage of
lexicalized examples as training data has a negative impact on the performance of the
composition models.

It should be noted, however, that it would nevertheless be advisable to filter out the
lexicalized compounds from the training data, as shown above. Consider for example
compounds like the compound Frauenschuh, a type of orchid, lit. ‘women’s shoe’ being
used and interpreted in its compositional sense in the context of buying shoes, but being
used in its non-compositional sense at a purchase in a florist shop. Such ambiguities
cannot be solved without access to context information. In contexts that warrant the
use of the compositional interpretation, the representation created by a composition
model should be used, whereas in the other contexts the learned, non-compositional
representation should be chosen. However, if the composition model is trained on the
non-compositional representation, it will always produce the lexicalized representation
of the compound, even in cases where the compositional interpretation would be needed.

6.2 Other Compositionality Explorations

Previous research targeting the compositionality of German and English noun-noun
compounds (Reddy et al., 2011; Im Walde et al., 2013; Roller et al., 2013) investigated
the link between human ratings of compositionality and different representations of
the modifier, the head, and of the compound as a whole. While the compositionality
experiments in Chapter 5 and the automatic interpretation experiments in Chapter 7
analyze German and English compounds in parallel, the remainder of this chapter
focuses on replicating experiments concerning the compositionality of German noun-
noun compounds. This is due to the shortage of annotated resources for English: the
dataset of English noun-noun compounds annotated for compositionality of Reddy et al.
(2011) contains only 90 compounds, making it impractical for automatic approaches.

Roller et al. (2013) describe a dataset of 244 German noun-noun compounds, where
each compound was rated by multiple human annotators. The ratings are meant to
capture three separate aspects: (i) how compositional the meaning of the modifier is

168



6.2 Other Compositionality Explorations

with respect to that of the compound; (ii) how compositional the meaning of the head
is with respect to the compound and (iii) how compositional the whole compound
is perceived to be. All three aspects are rated with a number from 1 to 7, where 1
rates a completely opaque meaning (non-compositional), while 7 rates a completely
transparent meaning (compositional). Multiple independent annotators provide
ratings for each of the compounds. The end result are three average scores associated
to each compound, quantifying the compositionality of the modifier with respect to the
compound, the head’s compositionality and how compositional the whole compound is.

Im Walde et al. (2013) use Spearman’s rank-order correlation coefficient ρ (Siegel
and Castellan, 1988) to quantify the correlation between the average human ratings
and the representations created by vector space models for the modifiers, heads and
compounds in the Roller et al. (2013) dataset.

Spearman’s ρ is a measure of how monotonic the relationship between two variables
x and y is, i.e. how often do x and y ‘change’ together. Spearman’s ρ takes values
between -1 and 1. -1 is a perfect correlation meaning that when one of the variables
increases, the other decreases, or that x and y decrease together. 1 is a perfect
correlation meaning that x and y ‘grow’ at the same time (but not necessarily at the
same rate). A value of 0 means that there is no correlation between the two variables.

Im Walde et al. (2013) try to predict the average human rating and use as predic-
tors (i) the cosine similarity between the modifier and the compound (cospm, cq), (ii)
the similarity between the head and the compound (cosph, cq) and (iii) the similarity
between the addition or multiplication of head and modifier vectors and the compound
(cospm` h, cq and cospm ¨ h, cq). Their best predictions are made using vector repre-
sentations based on co-occurring nouns (in a window of 20 words to the left and to the
right of the target word).

The experiments of Im Walde et al. (2013) were replicated using their dataset of
244 noun-noun compounds. The 300-dimensional word representations for German,
trained using GloVe (as described in Section 5.3.2) were used to represent the modifiers,
heads and compounds in the dataset. An additional representation that was used was
the 300-dimensional composed representation created using multimatrix, the best
performing model from Chapter 5. To avoid that the composed representations are in
any way biased by training, a new instance of the model was retrained where the 244
noun-noun compounds in the dataset used by Roller et al. (2013) and Im Walde et al.
(2013) were filtered out of the original nn-only train set.

Figures 6.3a and 6.3b plot the average modifier and head ratings (Y -axis, ranging
from 1 to 7) against three cosine similarity measures. The green triangles have on
the X-axis the cosine similarity between the multimatrix composed representation
and the original representation of the compound (cos(composed, orig)). The X-axis
corresponding to the red circles is the cosine similarity between the modifier and the
original compound representation (cos(modifier, orig)), while in the case of the blue
plus signs on the X-axis there is the cosine similarity between the head and the original
compound representation (cos(head, orig)).
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Fig. 6.3 (a) On the Y -axis: the average human rating regarding how compositional
the modifier is wrt. the compound; On the X-axis: green triangles - cosine similarity
between the multimatrix-composed and the original compound representation; red
dots - cosine similarity between the modifier and the original compound representa-
tions; blue plus signs - cosine similarity between the head and the original compound
representations. The best Spearman correlation coefficient ρ “ 0.525 is achieved, as
expected, when using cos(modifier, orig). (b) On the Y -axis: the average human rating
regarding how compositional the head is wrt. to the compound; the X-axis as in
subfigure (a); the best ρ “ 0.517 is this time achieved using cos(head, orig).

The best predictors for the average human ratings of the modifier and the head are
the cosine similarities between the modifier and the original compound representation,
and between the head and the original representation, respectively. This result brings
no surprises: Im Walde et al. (2013) also report a ρ “ 0.5698 and ρ “ 0.5745 when
predicting the modifier-compound and the head-compound compositionality using the
cosine between the representations of the modifier/head and that of the compound.
The lower ρ values obtained here are most likely the result of the word embeddings
using all the words in the context, not only the nouns as in Im Walde et al. (2013), and
a smaller context window of only 10 words (instead of 20). The results are comparable
to those of Im Walde et al. (2013) when using a 10-word window for creating the
representations.

In the case of the compound whole average human ratings, the starting hypothesis
was that the cosine similarity between the composed representation and the original
compound representation (which was learned from the corpus) should provide the
best predictions. However, the plots in Fig. 6.4 contradict this hypothesis: the best
Spearman rank correlation coefficient is obtained by cos(modifier, orig). The similarity
between the modifier and the original compound representations seems to be a better
predictor of the compositionality or non-compositionality of the compound as a whole.
Im Walde et al. (2013) make a similar point: in their experiments the best results are
obtained using cos(modifier, compound) and cos(modifier¨head, compound). In the
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Fig. 6.4 Correlation for compound-whole ratings.

experiments here, however, the similarity using the compositional representation is
clearly not as good a predictor as the one using the modifier.

The idea of using a composition function to distinguish between compositional and
non-compositional phrases has been put to the test in various settings: using high-
dimensional co-occurrence based representations and simple additive/multiplicative
compositions (Reddy et al., 2011), using low-dimensional word representations (Salehi
et al., 2015) or using more complex composition functions (Yazdani et al., 2015).
However, for the German noun-noun dataset of Roller et al. (2013), there is no better
Spearman correlation coefficient than the ρ “0.45 obtained by Im Walde et al. (2013),
although on an English dataset containing 90 compounds a far better ρ “0.714 (Reddy
et al., 2011) is obtained.

Bell and Schäfer (2013, 2016) describe a model for analyzing a complex nominal
AB with the constituents A and B. Two aspects of the semantics of compounds are
underlined: first, that the two constituents A, B are connected via an underspecified
semantic relation R. Second, that both the constituents and the compound as a whole
are likely to undergo metaphoric or metonymic meaning shifts. Bell and Schäfer (2016)
gives as an example the English compound buttercup, where both constituents have a
metaphorical meaning shift: butter is shifted to smth. which has the color of butter,
whereas cup is shifted to smth. that has the shape of a cup. Additionally, the entire
construction is then metonymically shifted such that the flower’s color/shape are used
to denote the the plant as a whole.
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A closer look at compound-whole human ratings of the examples in the Roller
et al. (2013) dataset showed interesting types of discrepancies between how the humans
perceived the compound and how well the composition model is able to model it. Many
of the compounds perceived as compositional by humans but which are difficult for
the composition model are compounds with a metonymic shift of the head. Examples
of this type are Eisberg ‘iceberg’, lit. ‘ice mountain’, which humans rated with an
average score of 6.39 while the cosine similarity between the composed and the original
representation was only 0.27; Sandburg ‘sand castle’, human rating 6.42, avg. cosine
0.26; Schneeball ‘show ball’, avg. human rating 6.35, avg. cosine 0.32 (a rating of 7
means that the compound is transparent/compositional; for the composition model a
cosine similarity of 1 means that the vectors have the same direction, while orthogonal
vectors have similarity 0). This suggests that such metaphorical meaning shifts affecting
the head make it far more difficult to model the compound compositionally, but seem
to have a lesser effect on the human perception of compositionality.

Similarly, a subset of compounds that are assigned a very low rating wrt. the
transparency of the modifier but a high rating wrt. to the transparency of the head
are far less of a challenge for the composition model. For example the compound
Jägerzaun ‘rustic fence’, lit. ‘hunter’s fence’ has an average modifier rating of 2.38,
an average head rating of 5.00 and a whole rating of 2.11, while the cosine between
the composed and the original compound representation is 0.67. Similarly for the
compound Blumenkohl ‘cauliflower’, lit. ‘flower cabbage’ humans rate the relationship
between Blumen and Blumenkohl with 2.1, between Kohl and Blumenkohl with 5.83
and the whole compound with 3.19. The cosine between the composed and original
representation of the compound is 0.74. In these cases, the opacity of the modifier
seems to play a bigger role in the human perception of compositionality, but is less of
a challenge for the compositional models.

Further work is needed to apply the insights gained from this study on a larger scale
to composition models. Maybe composition models must first learn how to pick up the
meaning shift that humans have no trouble with - e.g. from an object to the shape of
an object (like in Schneeball) or from an object to a small-scale, idealized version of
it (e.g. Sandburg). The next chapter will focus on identifying the semantic relation
between the constituents of a compound, using again compositional representations as
a proxy for the meaning of compounds.2

2Both Schneeball and Sandburg are annotated in the dataset used in Chapter 7 as appearance*:
the first constituent names a material that is formed to resemble the entity denoted by the second
constituent.
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Chapter 7

Automatic Interpretation of
Noun-Noun Compounds

Writing code is an activity whose main result are good, useful programs, each tackling
one of many different tasks that can nowdays be solved with the help of a computer.
However, a by-product of programming are also the bugs, the parts of the program
that do not perform the tasks that they should be performing, to the distress of the
programmer. The art and science of discovering and removing the bugs - i.e. the
programming faults - is called debugging.

A popular method for debugging is called rubber duck debugging. The reader
encountering this three part compound for the first time will (if not aware of this
technique) face some difficulty in interpreting it. As a first step she might try to figure
out which makes more sense ((rubber) duck debugging) or ((rubber duck) debugging)?
Given that rubber is a material, it is more likely for a duck to be made of rubber than
for the (duck) debugging to be made of rubber. Then, if rubber duck is taken to be a
concept, to solve the riddle one then has to figure out what does a rubber duck have
to do with debugging? As it turns out, the rubber duck plays the role of a partner to
which the programmer explains the program. By explaining the program line by line
to the rubber duck, in as simple terms as she can, the programmer is usually able to
figure out where the bug is (Hunt and Thomas, 1999:95).

As this example showed, understanding the meaning of a compound can be a
non-trivial exercise even for humans. As mentioned in Chapter 2, researchers studying
the way humans process novel compounds saw patterns of interpretation being used.
Ryder (1994:87) describes the interpretation process of a listener as follows:

When presented with a novel combination of established forms, such as a new compound,
a listener will automatically generalize across knowledge from all the previous contexts in
which he has experienced the two words and any other linguistic experiences he perceives
as similar, in order to create an interpretation compatible with whatever contextual
information he has.

In the example above, the reader might have known the compound rubber duck, or
if not the relatively frequent pattern ‘rubber animal’ might provide enough grounds
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for interpreting the first part of the compound. However, discovering the link between
rubber duck and debugging is far more difficult, given the lack of similar compounds.

Klos (2011:155) names as the first result of her analysis the fact that humans are
aware that compounds have, when presented in isolation, multiple possible interpreta-
tions. If for rubber duck the interpretation seems relatively straightforward, the rubber
duck debugging is an example where a person might come up with multiple plausible
interpretations, which might be closer or further away from the institutionalized use of
the compound.

As discussed in Chapter 2, computational approaches have framed the semantic
interpretation of compounds as a classification task. Given a compound like rubber
duck and an inventory of semantic relations like part, material, time, location,
the automatic classifier has to choose only one of the semantic relations, deemed the
most plausible by the classifier. For some compounds, choosing just one semantic
relation might work - e.g. the material relation should be the preferred choice of a
well-trained classifier for the compound rubber duck. However, it is very likely that the
inventory of semantic relations does not contain a suitable label for the link between
rubber duck and debugging. Such infrequent patterns are likely to get bundled up into
an ‘other relation’ category.

For some compounds the internal semantic relation is easy to recognize, while others
can be ambiguous in their interpretation. If there is ambiguity in the interpretation
of the constituents, or the semantic relations have some overlap, or the compound
genuinely has multiple interpretations, choosing the correct semantic relation might
require the use of additional information from the sentential context.

Most of the existing compound datasets annotated with semantic relations provide,
however, the compounds and the semantic relation annotations out-of-context, i.e.
without illustrative sentences containing the compound together with the annotated
semantic relation. This is true also for the German and English datasets used in this
chapter (described in Sections 7.1.1 and 7.2.1). The datasets contain low frequency
compounds, whose interpretation might require taking the immediate context into
account, as well as lexicalized compounds whose identification requires the use of
context. The out-of-context setup can make the interpretation task more difficult: a
human that thinks of multiple possible interpretations for a compound has an easier
time choosing (the correct) interpretation when context is available, sometimes even
completely re-analyzing and overriding the initial analysis. Meyer (1993:26) describes
the process as follows:

Compounds are ambiguous. So if a certain interpretation of a compound is chosen
in a discourse, other possibilities are still open such that it is uncertain whether the
interpretation used is the right one. So if it turned out that the compound is used
with a wrong meaning, a kind of semantic backtracking process could lead to a new
interpretation.

Given the available data, the automatic interpretation experiments in this chapter
will be carried out in the artificial and more difficult setup where the compounds are
interpreted without context, and where only one semantic relation is considered
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correct in each case. While the automatic interpretation of compounds might prove
easier in a given sentential context, such experiments are left for future work since
they require dedicated datasets, where the compound-internal semantic relation is
annotated in its context of use.

Evaluating the Quality of a Classification When automatically interpreting
compounds, the task of the classifier is to decide which of the r possible labels in a
semantic relation inventory is the correct one. Such classifiers are called multi-label
classifiers because they need to choose between r labels, with r>2.

Several measures can be used for evaluating the performance of a multi-label
classification algorithm. The first is to build a contingency table (Manning and
Schütze, 1999:577) for each label. A contingency table provides information about
each of four possible scenarios: (i) how many examples labeled with a label l were
actually assigned label l (true positives, tp); (ii) how many examples of different
labels were assigned label l (false positives, fp); (iii) how many examples with label
l received another label (false negatives, fn) and (iv) how many examples that were
not labeled with l were also predicted to have a label other than l (true negatives,
tn). Table 7.1 shows an example of a contingency table for a given label l.

items labeled with l items not labeled with l

prediction was l tp (true positives) fp (false positives)
prediction was not l fn (false negatives) tn (true negatives)

Table 7.1 Contingency table for the label l.

Several scores can be computed based on the information in a contingency table
(Manning and Schütze, 1999:269):

• accuracy = tp`tn
tp`tn`fp`fn , the proportion of correct predictions from the total

number of predictions

• precision = tp
tp`fp , the proportion of correct predictions of the label l out of all

the predictions of the label l

• recall = tp
tp`fn , the proportion of correct predictions of the label l out of the

total number of instances labeled l in the test set

Depending on the application, one might compromise precision for recall or the
other way around. When precision and recall are equally important a combined score
- the F1 score - is usually reported. The F1 score is defined as the harmonic mean
between precision and recall (Eq. 7.1).

F1 “ 2 ¨ precision ¨ recall

precision` recall
(7.1)
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Accuracy and F1 score offer complementary insights into the results of a classifier.
The accuracy indicates how many times the classifier was right in choosing a particular
label. The F1 score, on the other side, favors classifiers that obtain more true positives.

In the case of multi-label classification, accuracy and F1 score are computed
separately for each label. The instances labeled with a particular label l are the
positive instances. All the instances labeled with labels other than l are considered to
be negative examples for the label l. The per-label scores are then averaged to obtain
an overall, macro-averaged classification score. Macro-averaging treats the score of
each label equally - each is given an equal weight in the overall score, even as the
number of instances is different from label to label.

A variant of macro-averaging - the weighted F1 score - weighs the score of each
label by the number of support instances for that label. In the weighted F1 score case,
labels that have few examples will have less impact on the overall score, whereas labels
with many examples will make the most significant contribution to the overall score.
In other words, the penalty for making errors is higher when there are many examples
with a particular label l, and smaller when there are only a handful of examples of l.

The datasets used in the experiments in this chapter all have different number of in-
stances per label, making the weighted F1 score the most appropriate score to report.
The evaluation is carried out using a public implementation available in scikit-learn
(Pedregosa et al., 2011) - the metrics.precision_recall_fscore_support method.

7.1 Automatic Interpretation of German Compounds

7.1.1 de-nncom-sem: The Dataset of German Noun-Noun Com-
pounds Annotated with Semantic Relations

The dataset of annotated German noun-noun compounds contains a total of 8005
compounds, formed through the combination of 497 distinct heads and 3002 distinct
modifiers. The most frequent head is the noun Haus ‘house’, which combines with
161 distinct modifiers. The most frequent modifier is the noun Wasser ‘water’, which
forms compounds with 49 different heads. There are on average 16.11 compounds with
the same head and 2.67 compounds with the same modifier.

Each compound in the dataset is labeled with a hybrid label. The hybrid label
consists of a property and a preposition, all from the predefined inventory of 57
properties and 19 prepositions described in Section 2.2. Table 2.5 in Section 2.2 presents
the statistics of the dataset in terms of percentage of dataset compounds for each
property, along with the most frequently co-occurring prepositions and representative
examples for each property.

As mentioned in Section 2.2, the inventory is a mixture of three property types: there
are 26 direct-only properties, 14 bi-directional properties and 3 indirect-only properties.
member, for example, is a bi-directional property: the compound Kinderchor ‘children
chorus’ is labeled with its direct sense, member, because the denotatum of the modifier
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Kinder ‘children’ are members of the group defined by the head Chor ‘chorus’. The
inverse situation happens in the case of the compound Marinesoldat ‘marine soldier’,
where the modifier names the group Marine ‘marine’ and the head Soldat ‘soldier’
names the member of the group. Marinensoldat is therefore annotated with the inverse
sense of the property, member*. Direct-only and inverse-only properties are those
properties that occur in the annotated dataset only in one of the two possible directions.

If the 57 properties are taken individually, the most frequent property is part*,
which labels 535 compounds - 6.68% of the total dataset. The least frequent property
is comparison*, which labels only 5 compounds - 0.06% of the dataset.

If the bi-directional properties are counted together, the inventory contains 43
properties. The most frequent is the bi-directional part/* property, which labels
984 compounds - 12.29% of the total dataset. The least frequent property in this
case is access*, which labels 18 compounds - 0.22% of the dataset. Compacting the
bi-directional properties seems to be a good way of gaining more training examples
for each class. The experiments in the next sections will quantify the impact of the
property collapse with respect to the performance of the automatic classification.

The annotated dataset was split into four parts. First, the 481 IAA compounds
were removed from the dataset to form a separate test-iaa portion. The remaining
7524 were then split in standard train, test and dev splits, containing 5265, 1505
and 754 compounds respectively (70-20-10%).

Table 7.2 lists the overlap in terms of modifiers and heads between the train split
of the dataset and the other splits. A high overlap in terms of modifiers and heads
between the train subset and the test and dev subsets might make the model learn
to associate particular heads and modifiers to particular properties or prepositions.
A good model, however, should be able to generalize above the lexical level, and
make useful predictions even when it encounters compounds with completely new
heads/modifiers. The test-iaa split is expected to be the most challenging but also
the most informative portion of the test data, given the zero overlap in terms of heads
between it and the train split.

Data split Size Modifier overlap Head overlap

test 1505 63.09% 98.36%
dev 754 65.66% 98.62%

test-iaa 481 73.64% 0.00%

Table 7.2 Amount of modifier/head overlap between the train split of the dataset
(5266 compounds) and the dev, test and test-iaa splits. The test-iaa split should
provide the most realistic estimate of the generalization power of the model, since there
is no overlap in terms of the head constituent between it and the train split.

Because some of the property labels in the dataset are not frequent enough, the
different splits might not contain instances labeled with all the properties. Figure 7.1
shows the number of compounds labeled with each of the 57 individual properties, first
for the whole dataset and then for the different data splits. Both the test and the dev
subsets have only one compound labeled with some of the least frequent properties -
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like ingredient* and comparison*. The distribution of properties in the test-iaa
subset is different when compared to the distribution of the other subsets. The fact
that test-iaa contains compounds with a particular subset of heads has a bearing
on the distribution of properties used to annotate them. There are, for example, far
more compounds annotated with the properties attribute, purpose_of_use and
raw_product in the test-iaa subset than in the whole dataset. Conversely, the
test-iaa subset was annotated using only 43 of the 57 properties available in the
annotation inventory, with 14 individual properties missing completely in the test-iaa
annotation. This suggests that there is a strong correlation between the identity and
semantics of the head constituent and the range of possible properties.
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Fig. 7.1 Number of compounds annotated with each of the 57 individual properties
in the whole dataset and the train, test, dev and test-iaa subsets respectively.

Figure 7.2 presents the distribution of properties in the different data splits, this
time using the 43 collapsed properties. This time there are only four properties that are
not represented in the test-iaa subset: storage, diet/*, construction_method
and access*. Collapsing categories seems particularly useful in this case, when
comparing the 4 missing categories with the 14 that were missing in the individual
case.

The experiments in the next sections will report on the performance of different
classifiers both using the 57 individual properties and using the 43 collapsed
properties. In both cases, the number of examples shows marked variations from
label to label, making the weighted F1 score the most appropriate scoring variant for
this classification setup.
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Fig. 7.2 Number of compounds annotated with the 43 collapsed properties in the
whole dataset and the train, test, dev and test-iaa subsets respectively.

7.1.2 Experiments on de-nncom-sem

Word Representations The first step in experimenting with automatic classifiers is
connecting the constituents and the compounds in the dataset to word representations.
The experiments in this chapter will make use of the 300-dimensional set of distributional
word representations created in the previous chapter (for details see Section 5.3.2),
normalized to unit norm. The vocabulary used to train these representations contained
1,029,270 individual words of minimum frequency 100. The 8005 compounds in
de-nncom-sem use 11028 individual words. There are 497 heads, 3001 modifiers and
8005 compounds, with 385 words that appear both as heads and modifiers, and 90
words that appear both as modifiers and as compounds.

Each of the words - the compound as well as its constituents - was assigned a word
representation by searching in the embedding dictionary. As expected, the words in
the dataset cover a wide spectrum of frequencies: from very frequent - e.g. Zeit ‘time’,
which appears over 94 million times in the support corpus, to moderately frequent, e.g.
Gesichtscreme ‘face cream’ appears 3294 times, or low frequent - Klavierdeckel ‘piano
lid’ occurs only 102 times. Moreover, a subset of the individual words do not appear
in the embedding dictionary - meaning that if they appear in the support corpus their
frequency must be below 100 occurrences. 9700 of the 11028 individual words were
found in the embedding vocabulary and received a custom, trained representation. All
497 head nouns, 2969 of the 3001 modifiers and 6708 of the 8005 compounds were part
of the word embeddings vocabulary and received a custom vector representation. The
fact that only 1% of the modifiers were below the frequency threshold - compared to
16% of the compounds - shows again the importance of an alternative, compositional
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modeling of compounds. Almost one in five compounds in the de-nncom-sem dataset
is infrequent enough to make its direct modeling using word representations impossible.

In the context of distributional word representations, unknown words are usually
modeled by an unknown word vector, which is either trained together with the other
word representations1 or obtained later by averaging over all the representations in
the vocabulary. Following the suggestion of the GloVe developers, unknown words will
be represented in the latter way, as the averaged (and L2-normalized) vector over all
the 1M word vectors in the vocabulary. The experiments using the original compound
representations as input will make use of this averaged unknown word vector both
for modeling the 16% infrequent compounds and the 1% infrequent modifiers. The
experiments using composed representations will use composed vectors to represent
the infrequent compounds and will only use the unknown vector to model the 1%
infrequent modifiers.

7.1.3 Classification using individual properties

Baselines Typical baselines for a classification task are the random baseline and
most frequent class baseline. For the property classification case, this amounts to
assigning all compounds in the test set either a random property label or the most
frequent property label seen in the train data.

Table 7.3 shows the performance of these baselines applied to the compounds in
de-nncom-sem. The models in this section will be evaluated in terms of their accuracy
and of their weighted F1 score. Each baseline is computed 10 times, and the average
accuracy and weighted F1 score is reported.

The baseline results leave much room for improvement. The random property
baseline (#1) has the worse performance on each data split, leading to a correct
assignment of the individual property for „2% of the data. The accuracy of the overall
most frequent property baseline (#2) ranges from 5.41% to 6.78% on the different
data splits. As mentioned above, the most frequent property is, in this case, the
property part*, annotating compounds like Autodach ‘car roof’, where the modifier
Auto names the whole, and the head Dach names the part.

In the particular case of noun-noun compounds, there are other baselines that
might provide useful insights into the underlying data patterns. A variation of the
most frequent baseline is to assign, to each compound, the most frequent property
encountered with the modifier (#3) or the head (#4). In cases where there is no
data about a particular head or modifier, these baselines would back off to the overall
most frequent property - part* (baseline #2). These baselines are estimated with the
help of the data in the train split. In cases where two or more properties occur with

1The unknown word representation is used as a representation for every token that occurs fewer
times than the minimal frequency threshold. Its representation is thus learned just like any other
word representation, based on all the contexts containing infrequent tokens.
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# Baseline test dev test-iaa

Acc. wF1 Acc. wF1 Acc. wF1

1 random property 1.79% 0.021 1.82% 0.022 1.73% 0.022
2 mf prop overall (mf_o) 6.78% 0.009 6.76% 0.009 5.41% 0.006
3 mf prop modifier (mf_m) 29.77% 0.303 28.45% 0.287 25.90% 0.255
4 mf prop head (mf_h) 35.18% 0.327 35.07% 0.314 5.41% 0.006

5 prop_mXprop_h if‰ ϕ else mf_o 30.47% 0.341 33.22% 0.364 5.41% 0.006
6 prop_mXprop_h if‰ ϕ else mf_m else mf_o 35.28% 0.365 36.96% 0.379 26.15% 0.259
7 prop_mXprop_h if‰ ϕ else mf_h else mf_o 46.57% 0.450 46.33% 0.439 5.41% 0.006
8 prop_mXprop_h if‰ ϕ else mf_m else mf_h else mf_o 46.63% 0.451 46.66% 0.442 26.03% 0.257

Table 7.3 Baselines for individual property classification. Results reported in
terms of accuracy (Acc.) and weighted F1 score (wF1). The best test set performance
is obtained by taking the intersection of the modifier and head properties and choosing
the property with the highest probability. If the intersection is empty, the most frequent
property of the modifier, head or overall most frequent property are considered (in this
order, the first to be defined is chosen).

maximum frequency for a given head, one of them is randomly chosen.2 The quality of
the predictions is then judged on the test, dev and test-iaa data.

Knowing what property is most frequently associated with a particular modifier
substantially improves the results, leading to a correct prediction in 25.90% - 29.77%
on the different data splits. An intriguing result can be observed in the case of the
test-iaa split. Although the modifiers in the test-iaa split have a larger overlap
with the modifiers in the train split when compared to the test and dev splits (73.64%
vs. 63.09%/65.66%, cf. Table 7.2), the performance of baseline #3 decreases on the
test-iaa split when compared to the test and dev splits. A likely explanation is
that the new heads contained in the test-iaa subset enter different relations with
the existing modifiers, thus requiring other properties than those already associated
with them in the training data. An example of this type is the modifier Linde ‘lime
tree’, which appears in the train set in the compounds Lindenblatt ‘lime tree leaf’
and Lindenblüte ‘lime tree flower’, both annotated with the property part*. In the
test-iaa subset the modifier Linde appears in the context of the compound Lindenholz
‘lime tree wood’, annotated with the property raw product.

Using the property that is most frequently associated with the head (baseline #4)
leads to even better results: „35% of the compounds in the test and dev splits are,
in this case, correctly classified. On the test-iaa subset, however, because there is
no overlap with the heads in the training set, this baseline is reduced to guessing the
overall most frequent property (baseline #2).

Another possible baseline is to consider the best property from the intersection
between the set of properties associated to the head and the modifier (baseline #5). It
can be computed by multiplying the individual probability distributions over properties
for the modifier and the head, and renormalizing the resulting product distribution

2The random choice is made for each data instance individually: e.g. if the head occurs 25% of
times with prop1, 25% with prop2, and a smaller number of times with other properties, there’s a
uniform probability for each compound using this head to be assigned either prop1 or prop2.
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to sum to 1. Having a non-empty intersection occurs, however, only in „50% of the
compounds in the test and dev data splits. In the rest of the cases baseline #5 backs
off to predict the overall most frequent property.

Since the intersection of properties is non-empty only in half of the test cases,
baseline #5 could therefore be augmented by adding the most frequent property of the
head and modifier where available. Adding the most frequent property assigned to the
modifier (baseline #6) lead to an accuracy of over 35% on the test and dev data, a
result comparable to the one obtained with baseline #4.

Adding the most frequent property assigned to the head (baseline #7) worked
even better, leading to accuracies above 46% on the test and dev data. The head
information, however, did not bring improvements on the test-iaa dataset, given its
zero overlap in terms of heads with the train subset. A combined baseline (baseline
#8), augmented with both the information about the most frequent property of the
head and of the modifier obtained the overall best results from all the baselines that
were tested: „46% accuracy on the test and dev subsets, and „26% accuracy on the
test-iaa subset.

Experimenting with different types of baselines lead to substantial improvements
over the classical most frequent property baseline. Knowing the distribution of prop-
erties that a particular modifier or head typically occurs with can greatly improve
classification results. However, even the more sophisticated baselines lack a central
property: they cannot generalize to new constituents. When dealing with compounds
with new constituents, they are reduced to guessing the most frequent property.

The next section introduces automatic interpretation models that aim to overcome
these generalization issues through the use of distributional word representations. For
cases where the distributional representations of the compounds are not available
because of their low frequency, compound representations are created using the best
performing composition models described in Chapter 5.

Experiments using as input the learned compound representation. Consider
a compound like Apfelbaum ‘apple tree’. To predict the semantic relation3 connecting
its constituents, Apfel ‘apple’ and Baum ‘tree’, a good starting point should be the
distributional representation of the compound itself. This is the representation learned
directly from co-occurrence data for the word Apfelbaum, as previously described in
Section 7.1.2.

Several classifiers were tried out for this classification task. The logistic regres-
sion (LR) and k nearest neighbors (KNN) classifiers as implemented in scikit-learn
v.0.19.1 (Pedregosa et al., 2011) are used as strong baselines. The following hyper-
parameters differ from the default settings (they were optimized according to their
performance on the dev subset): logistic regression uses the multinomial loss and the
sag optimizer, while the nearest neighbors classifier uses k “ 12 neighbors and the

3Out of the 57 semantic relations available in the individual property inventory.
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distance weighting function, where the closer neighbors have a higher impact than
the ones that are further away.

The LR and KNN baselines are compared to a multilayer perceptron implemented
in Torch (Collobert et al., 2011a). Figure 7.3a shows the neural network architecture
that was used for this task: an input layer of size n, a hidden layer of size 2n and an
output layer of size r. n is the size of the word representations which equals 300 for
the experiments presented here.
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(a) Single input classification network (SMLP)
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(b) Two input classification network (DMLP)

Fig. 7.3 Different classification architectures. Leftmost: the input layer; inputs are
displayed as small while circles. Middle: hidden layer; hidden units are displayed as
large blue circles with ReLU activation. Right: output layer; output notes displayed as
yellow circles with tanh activation.

The sizes of the input and output layers are fixed by virtue of the input features
(the word representations), and by the number of classes in the classification task. The
size of the hidden layer is a hyperparameter of the model. Three hidden layer sizes were
tested out: n{2, n and 2n, where n is the size of the input representation. Table B.7 in
Appendix B presents details on the impact of different hyperparameter settings. The
classifier has an initial learning rate of 0.14 and a learning rate decay of 1e´ 5. It is
trained using a negative log-likelihood criterion, optimized with mini-batch AdaGrad
(Duchi et al., 2011), with a mini-batch size of 100 examples. Models are trained using
early stopping (Prechelt, 1998) with a patience of 100 epochs (see Section 3.3.3 for
details about the use of early stopping as a regularization technique). The values for
the learning rate, batch size and patience were chosen after an initial set of experiments
over the dev set and were kept unchanged for the rest of the experiments.

The best results on the dev subset were obtained using a hidden layer twice the size
of the input layer. Other hyperparameters were a 0.5 dropout immediately after the
input layer (Dropout 1), the use of a ReLU activation function for the hidden layer and
of a tanh activation function for the output layer (see Sections 3.3.3 for details about
the use of dropout, and Section 3.1 for details about the different activation functions).
A softmax layer was added on top of the network to transform the activations of the
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output layer into a probability distribution over all the classification labels and thus
be able to predict the “winning” label out of the r possible ones. The acronym SMLP is
used for the single input classification network in the discussion that follows.

Classifier Input test dev test-iaa

Acc. wF1 Acc. wF1 Acc. wF1

KNN compound_original 33.89% 0.333 35.01% 0.340 26.20% 0.236
LR compound_original 32.89% 0.313 34.48% 0.317 28.07% 0.239
SMLP compound_original 36.94% 0.367 42.18% 0.410 30.77% 0.274

KNN head 32.62% 0.306 34.62% 0.311 18.50% 0.164
LR head 36.08% 0.321 37.14% 0.320 27.44% 0.199
SMLP head 34.29% 0.303 36.74% 0.314 25.99% 0.211

KNN modifier 34.22% 0.308 32.89% 0.308 27.23% 0.252
LR modifier 35.35% 0.318 35.81% 0.326 29.11% 0.246
SMLP modifier 36.74% 0.342 38.20% 0.359 28.48% 0.260

Table 7.4 Results for individual property classification, using as input the original
representation of the compound, its head or its modifier. LR (logistic regression) and
KNN (k nearest neighbours) are strong baselines. SMLP is the single input multilayer
perceptron from Figure 7.3a.

Table 7.4 contains the classification results. When using the original, corpus-learned
representation of the compound as an input feature (compound_original), the SMLP
classifier was able to predict the semantic relation correctly for 36.94% of the test
subset, and 30.77% of the test-iaa subset, surpassing the logistic regression (LR) and
nearest neighbors (KNN) classifiers. However, these results are disquieting in the light of
the best baseline (#8) results, where the accuracy of the predictions measured 46.63%
on the test subset and 26.03% on the test-iaa subset (from Table 7.3). The results
show that the compound representation contains, in this case, not enough information
to make an informed prediction about the internal semantic relation.

Other inputs that could be used in a similar way are the corpus-learned represen-
tations of the two constituents: the head and the modifier. The next two sections in
Table 7.4 present the results of using the head (head) and the modifier (modifier)
representations as inputs for predicting the semantic relation. However, neither of
these representations lead to a better result, irrespective of the classifier that is used.

Overall, none of the original representations on its own leads to a result that is
above the best baseline (#8) on the test subset, while the results on the test-iaa
subset improve but still remain unsatisfactory. Can a composed representation, making
use of both modifier and head representations, do better?

The results in Table 7.5 show this to be the case. The classification input is in
this case a compound representation created using a composition operation. The
composition operation starts from the representations of the modifier and the head
and produces a compound representation, which is then normalized to unit norm and
used as input for the classifier. Using a composed representation brings improvements
across the board, for all data subsets. It improves over using any of the original vectors
as input, as well as over the best baseline results (baseline #8).
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Inputs Dropout 1 test dev test-iaa

Acc. wF1 Acc. wF1 Acc. wF1

composed_addition 0.3 54.22% 0.527 58.49% 0.560 32.85% 0.306
composed_matrix 0 54.55% 0.530 57.16% 0.553 38.88% 0.354
composed_multimatrix 0.1 56.81% 0.550 58.89% 0.565 44.70% 0.411

Table 7.5 Results for individual property classification, using as input composed
representations of the compound.

The results in Table 7.5 were obtained using the same SMLP architecture depicted in
Figure 7.3a. The only hyperparameter that was tuned was the amount of dropout to be
applied to the input vectors. Since the input is now a composed representation - so a
combination of two original vectors - one might expect that the amount of information
that could be safely “dropped-out” without hurting the performance of the classifier
to be different depending on the composition function that was used. The results in
Table B.8 in Appendix B show the results obtained on the dev subset using the different
hyperparameter settings. The best dropout setting when using composed vectors as
input turned out to be different for each composition function: as high as 0.3 when
making use of the addition-based representation, 0 when using the matrix-composed
representation and only 0.1 when having the multimatrix representation as input.

Combining both constituent representations significantly boosts the performance of
the smlp classifier: the test accuracy reaches 56.81%, while the test-iaa accuracy
gets to 44.70%. When compared to the results in Table 7.4 (test: 36.94% acc.,
test-iaa: 30.77% acc.), it is indisputable that a compound representation based on
both constituents contains far more information than what the compound_original
representation could offer. The poor classification results using only the original
representation of the compound might be due, on one side, to the fact that the
unknown word representation is used to model infrequent compounds, which amount
to 16% of the dataset. Given the productivity of the compounding process, it is
very likely that the classifier will face the task of interpreting compounds whose
corpus-based representation is unavailable. Using a combination of the constituent
representations will make this task easier. On the other side, the semantic property
annotation is aimed at capturing the interaction between the two constituents of
a compound. The classification might be easier to accomplish starting from the
constituent representations than from the representation of the compound, which might
not preserve enough information about its constituents to make the semantic relation
identification possible.

The results on the test-iaa subset from Table 7.5 also reveal a qualitative dif-
ference between the different composed vectors. Using the multimatrix-composed
representation leads to a 11.85% increase in accuracy when compared to using a
composed vector obtained via addition. This difference can solely be attributed to
the fact that the multimatrix model was trained to learn a good composition using
a large amount of example compounds, whereas the addition model performs the
combination directly, unaware of any other training examples.
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The experiments in this section have shown that a classifier based on a composed
representation outperforms classifiers based on the original compound representation.
The improvements are already visible when using a simple addition-based repre-
sentation to combine the representations of the modifier and the head. Even better
results can be obtained using a composed representation produced by a pre-trained
composition model. However, when the constituent representations are combined into
a new, composed representation, the composition process will perform a compression
operation. The two n-dimensional constituent representations are combined into an
n-dimensional representation for the compound. How well does composition preserve
the semantic information? Is composition lossy or not? The next section will try to
answer these questions.

Experiments using two representations as input. If composed representations
capture all the necessary details from the modifier and head representations, there
ought to be no difference between a classifier that starts off with the two constituent
representations and one that uses a composed representation. This hypothesis was
tested using a new architecture, depicted in Fig. 7.3b, which takes as input two vectors
(2n) and uses an n-dimensional hidden layer with a ReLU activation. Just like in the
case of the previous classifier, the classification is performed using a nˆ r linear layer
with a tanh activation function, followed by a softmax. Two possibilities for placing a
dropout layer are considered: one immediately after the inputs, and the other after
the hidden layer. Different sizes of the hidden layer, as well as different dropout rates
were explored and are presented in more detail in Table B.9, Appendix B.
Inputs Dr1 Dr2 test dev test-iaa

Acc. wF1 Acc. wF1 Acc. wF1

modifier; head 0 0.2 61.06% 0.597 64.46% 0.633 44.28% 0.433
composed_multimatrix; head 0.1 0.1 53.95% 0.526 58.62% 0.562 40.54% 0.381
modifier; composed_multimatrix 0.3 0.3 61.93% 0.608 64.59% 0.631 47.82% 0.457

Table 7.6 Results for individual property classification, using as input two repre-
sentations. Hidden layer size: 2nˆ n.

Table 7.6 shows the results of classifiers using two representations as input. In the
first experiment, the inputs are the two representations of the constituents, modifier
and head. There is a notable improvement over the results of the SMLP classifier using
a composed representation as input: 61.06% accuracy on the test subset versus the
previous best result, 56.81% accuracy (cf. Table 7.5). On the test-iaa subset there
is only a minimal difference between the two results: 44.28% vs. 44.70%, with the
composed vector obtaining a slightly improved performance. This result suggests that
the composition process discards some semantic information needed for distinguishing
between the different semantic relations.

To find out which information gets discarded, two variations were tried out: one
where the head representation is kept but the modifier representation is replaced by
the best composed representation - composed_multimatrix. And a second one where
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the head representation is discarded and the composed_multimatrix representation
is used together with the modifier representation.

Surprisingly, pairing the head and the composed representation and discarding
the modifier representation lead to worse results than when using the composed
representation alone: 53.95% vs. 56.81% on the test subset and 40.54% vs. 44.70%
on the test-iaa subset.

Conversely, discarding the head representation and pairing the multimatrix and
the modifier representations lead to better results - both when compared to the
classifiers using only composed vectors as well as the classifier using the original
representation of the compound. The results improved both on the test subset -
61.93% vs. 61.06% and on the test-iaa subset - 47.82% vs. 44.70%.

The result suggests that the multimatrix-composed representation is biased to-
wards capturing more information about the head constituent and less about the
modifier. This behavior is understandable, given that the majority of compounds
are endocentric, i.e. the compound is a subtype of the head. Therefore, the focus
on capturing information about the head seems like a reasonable strategy towards
obtaining a good representation. However, the modifier usually names the noteworthy
aspect that makes it worthwhile to construct a compound rather just using the head
word - i.e. a dog house would not quite qualify as a house. Composition models could
be improved by making sure that they capture the essential information about both
constituents, and not focus excessively on the head constituent.

Analyzing the performance of the best model on individual property clas-
sification The best classifier for individual property classification uses as input the
modifier representation and the composed multimatrix representation of the com-
pound (modifier; composed_multimatrix, Table 7.6). This model obtained, on the
test subset, an accuracy of 61.93% and a weighted F1 score of 0.608. Figure 7.4 shows
the performance of this classifier on the test set, broken down per individual property.
The F1 score, with a minimum value of 0 and a maximum value of 1, is marked with
blue circles. The absolute frequency of each label in the train set is marked using
green triangles. Going from left to right, the number of train examples per label
constantly increases (from 3 - comparison* to 356 - part*).

One might expect that the F1 score increases with the number of examples - after all,
having more training data for a class should increase the classifier’s ability to correctly
identify it. This is, however, not the case. The labels on which the classifier performs
best come from all bands of frequency - some with as little as 6 training examples -
diet*, F1 score: 1, others with as many as 317 training examples - material, F1
score: 0.85.

In contrast, some properties seem inherently difficult to classify, even when enough
training data is available. This is the case of the two properties that label compounds
where the internal semantic relation is either unknown (no property - 0.14, 40 train
examples) or is too specific to warrant a separate category (other property - 0.07,
51 train examples). Given the heterogeneous nature of the compounds labeled with
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Fig. 7.4 Individual property classification: test F1 score vs. train frequency.

these two properties, it is unlikely that a classifier can ever learn to distinguish them
very well. While they make sense when designing an annotation inventory, one can
hardly expect a classifier to correctly identify the characteristic features of such groups.

Other properties that have a low F1 score despite a large number of training
examples are appearance (F1 score 0.37, 188 train examples), usage (F1 score
0.37, 192 train examples) and part (F1 score 0.43, 307 train examples). As seen in
Figure 7.6, and discussed in more detail below, these labels have a higher probability
to be confused with other labels in the inventory, leading to worse classification results.

On the test-iaa subset the best classifier obtained an accuracy of 47.82% and an
weighted F1 score of 0.457. Figure 7.5 compares the weighted F1 score on the test-iaa
set with the amount of instances labeled with a particular property in the train
set. The figure shows only the 43 individual properties that were used to annotate
compounds in the test-iaa subset, and not the full set of 57 properties that are shown
in the previous figure (7.4). Remember that the heads of the compounds in this dataset
are not known to the classifier - the overlap with the compounds in the train data
occurs only at the modifier level.

Figure 7.5 shows that the lack of information about the head has a greater impact
on properties like hyponym (whose F1 score drops from 0.56 to 0), function (0.56 Ñ
0.1), topic (0.63 Ñ 0.15), owner (0.62 Ñ 0.17), purpose of use (0.61 Ñ 0.19) or
product (0.79 Ñ 0.32). For example the lack of training data with the head Klinik,
and the existence of the compound Blutbank ‘blood bank’ annotated as storage*
in the train set made the classifier infer that Augenklinik should also be labeled as
storage* (meaning a place for storing eyes) rather than as topic (clinic for eye
treatment), the correct label.

However, the lack of head information seems not to affect labels like comparison
(e.g. Rabensohn ‘bad, uncaring son’, lit. ‘raven son’), relation* (e.g. Mannschaft-
skapitän ‘team captain’) or time (e.g. Winterreifen ‘winter tire’). The reason for this
discrepancy is the strong association between these labels and particular modifiers,
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Fig. 7.5 Individual property classification: test-iaa F1 score vs. train frequency.

which make it possible to identify the correct label while relying mostly on the infor-
mation provided by the modifier. E.g. the train subset contains 5 other compounds
with the modifier Winter ‘winter’, all labeled with the property time.

Figure 7.6 shows the confusion matrix for the test set. Because of the large
difference in the amount of test instances annotated with each property, it was more
illustrative to normalize the counts per property. This makes it easy to figure out
what proportion of the test compounds labeled with a particular semantic property
were also predicted to have that semantic label. E.g. the classifier predicted the label
appearance for 0.43 of the compounds annotated as appearance, while the part
label was incorrectly predicted for 0.17 of the appearance compounds. The ideal
case are properties like diet*, who has a 1.00 on the main diagonal. This means that
all the compounds that had been annotated as diet* were also correctly predicted as
diet* by the classifier.

A number close to 1 on the main diagonal suggests therefore that the classifier
had no trouble identifying that property, whereas a small proportion or nothing at
all on the main diagonal means that the classifier had trouble recognizing the traits
of that property and cannot easily distinguish them from the characteristics of other
properties.

Several points can be made based on the information in Figure 7.6. First, 11 of
the 57 properties were badly misclassified. The properties access* (13), cause* (6),
comparison* (3), consistency (24), ingredient* (6), measure (8) were fully
misclassified, meaning that none of the test compounds annotated with this semantic
property were correctly identified by the classifier. The properties appearance* (44),
comparison (23), no property (40), other property (51) and production
method (31) were misclassified in a very large proportion - over 85% of the data was
assigned an incorrect label by the classifier.

Many of these properties are cases where having more training data would most
likely improve the classification results. E.g. measure, a property labeling compounds
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Fig. 7.6 Confusion matrix on the test subset for the best performing model on
individual property classification. Using as input the composed multimatrix vector
and the modifier vector (modifier; composed_multimatrix) in Table 7.6.
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like Literflasche ‘liter bottle’, is a clear compounding pattern with a smaller number of
instances, given its specificity (the modifier has to be a measure for the head). However,
it will always have far fewer instances than a more productive pattern like part.

As discussed above, the no property and other property labels will probably
remain difficult to classify given the heterogeneity of compounds that are assigned
these labels.

A second subset contains 14 properties which were correctly classified only in
a relatively small proportion - up to 50%: appearance (188), component (31),
construction method (15), diet (21), function* (15), hyponym (83), location*
(53), origin (90), part (307), product* (34), prototypical holder (71), result
of use (31), storage* (48), usage (192). While in some cases the limited amount
of data is the cause of the poor performance of the classifier, this subset also contains
a selection of properties with a relatively high number of training examples - like
appearance - 188 examples, usage - 192 examples or part - 307 examples. Why
would the classifier have trouble with them? The answer: because of their generality,
these properties are easier to confuse with other properties. E.g. the compound
Ringbuch ‘ring binder’ is labeled with the semantic property part, since the Ring ‘ring’
is part of the Buch ‘book’. The classifier, however, chooses the property appearance
as a more likely candidate, given the train examples Ringmauer ‘ring wall’ and
Ringbahn ‘circular railway’. The interpretation that would be assigned in this case
would be that of a book that is shaped as a ring - a rather unlikely artifact. However,
is it important to note that the pattern ‘ring + artifact’ meaning ‘artifact with a
circular/ring shape’ is not unusual, as illustrated by the existence of other examples
like Ringbürste ‘ring brush’ or Ringdichtung ‘plug washer’.

The third subset are the 32 properties for which over 50% of the instances received
the correct label, where the classifier was able to identify enough of the main traits of
the properties to make the identification possible in the majority of cases.

The confusion matrix also revealed that sometimes the classifier has trouble distin-
guishing between the direct and the inverse relation: e.g. the classifier predicts for the
compound Straßentunnel ‘street tunnel’ the semantic relation location, which would
correspond to the interpretation ‘street located in a tunnel’, but the correct semantic
relation is location*, with the interpretation ‘tunnel that is located on a street’.
Another frequent confusion is between part and part*: e.g. Fensterfront ‘window
facade’ is automatically labeled as part*, an interpretation where the head Front
should be part of the modifier Fenster, while in reality the relation is reversed - the
Fenster is part of the Front. Correctly establishing the directionality of the relation in
these cases would require an amount of world knowledge that the classifier is currently
unable to derive directly from the word vectors.

The impact of the amount of training data To asses the impact of the amount of
training data on classification performance, the best performing classifier was retrained
using 25%, 50% and 75% of the original train subset. These percentages correspond to
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1316, 2632 and 3948 compounds, respectively, given that the full train subset contains
5265 compounds.

As Figure 7.7 shows, there is still a relatively large gap between the train and the
dev/test/test-iaa accuracies. This indicates that the classifier suffers from a high
variance problem, and that the addition of new training examples will improve the
quality of its predictions.

While increasing the size of the training set is left for future work, the amount
of manual work can be drastically reduced by using the best classifier to predict the
semantic relation in new compounds and then manually correcting the classification
output.
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Fig. 7.7 More training data increases the test accuracy of the classifier. The classifier
has a high variance problem, in which case adding more training data is likely to
improve the classification results.

7.1.4 Classification using collapsed properties
The results presented thus far focused on classifying compounds according to each of
the individual semantic properties in the annotation inventory. However, as discussed
above, and also in more detail in Section 2.2, 14 of the 57 properties have an inverse
property in the inventory.
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This section presents experiments using 43 collapsed categories, where direct
property and their inverses (like member and member*) are considered to be one
property. The goal of these experiments is to find out if collapsing the categories
offers any advantages from a semantic perspective - i.e. if it is easier to recognize
that two entities enter a particular semantic relation without having to decide on the
directionality of the relation. Another practical reason for collapsing the categories is
that, as pointed out in Section 7.1.1, Fig. 7.2, each collapsed category will have more
training examples than the individual categories. As shown in the previous section,
increasing the number of training examples per property should improve the classifier’s
performance.

Baselines The eight baselines computed in the case of individual property classifica-
tion were also used for evaluating the difficulty of the collapsed property classification
task. A marked increase, compared to the previous baseline, is observed, as expected,
in the case of the overall most frequent property baseline (#2). The collapsed part/*
property labels 12.29% of the total dataset, and this high percentage is apparent in
the baseline results presented in Table 7.7.

# Baseline test dev test-iaa

Acc. wF1 Acc. wF1 Acc. wF1

1 random property 2.11% 0.024 2.48% 0.029 2.45% 0.030
2 mf prop overall (mf_o) 12.56% 0.028 12.60% 0.028 7.69% 0.011
3 mf prop modifier (mf_m) 33.49% 0.322 31.13% 0.303 27.46% 0.263
4 mf prop head (mf_h) 36.37% 0.337 35.49% 0.318 7.69% 0.011

5 prop_mXprop_h if ‰ ϕ else mf_o 34.88% 0.355 36.67% 0.370 7.69% 0.011
6 prop_mXprop_h else mf_m else mf_o 39.08% 0.385 39.46% 0.391 27.23% 0.260
7 prop_mXprop_h else mf_h else mf_o 47.71% 0.462 46.95% 0.447 7.69% 0.011
8 prop_mXprop_h else mf_m else mf_h else mf_o 47.74% 0.463 47.14% 0.449 27.32% 0.261

Table 7.7 Baselines for collapsed property classification.

For the strongest baseline (#8), however, the „1% increase in test accuracy (from
46.63%, in Table 7.3, to 47.74%) is small when considering that by using this set of
labels the classifier does not have to guess an important piece of information - namely
the directionality of the semantic relation. Overall, the decrease in the number of
properties does not lead to a more simple classification problem - the complexity of the
classification decisions remain largely on the same level as in the individual property
classification case. The experiments presented next follow the same classification setup
used before in the individual property case.

Table 7.8 displays the results of classifying compounds according to the 43 collapsed
semantic properties. The input is, for the first section of Table 7.8, the representation
of the compound - either taken directly from the learned word representations (for
compound_original, head and modifier) or composed using either addition or
multimatrix. The classifier used in this case is the SMLP classifier from Figure 7.3a.

The results in the second section of Table 7.8 always use two vectors as input: either
the representations of the two constituents, modifier and head, or a multimatrix-
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Classif. Input Dr 1 Dr2 test dev test-iaa

Acc. wF1 Acc. wF1 Acc. wF1

SM
LP

compound_original 0 0.4 37.74% 0.361 42.97% 0.404 32.02% 0.291
head 0 0 34.49% 0.303 36.87% 0.319 25.16% 0.194
modifier 0 0.4 38.14% 0.355 38.99% 0.367 30.98% 0.280
compound_addition 0 0.3 56.81% 0.557 61.41% 0.596 34.51% 0.320
compound_multimatrix 0 0.3 57.34% 0.559 60.61% 0.589 40.33% 0.387

DM
LP

modifier; head 0.2 0.2 62.66% 0.615 67.37% 0.659 45.95% 0.434
compound_multimatrix; head 0 0 55.61% 0.543 60.08% 0.580 42.41% 0.395
modifier; compound_multimatrix 0.2 0.2 62.33% 0.613 66.31% 0.649 48.44% 0.468

Table 7.8 Results for classification on 43 collapsed semantic properties, using
as input either one representation (original, or obtained using a composition model) or
two concatenated representations.

composed representation of the compound and one of the constituent representations.
The classifier used in this case is the DMLP classifier from Figure 7.3b.

The overall trend when comparing the results in Table 7.8 to those obtained for
the classification of individual property is that collapsing the categories only results
in minor improvements. The best result, obtained using the modifier and head
representation as input to the DMLP classifier is 62.66% accuracy and 0.615 F1 score
on the test subset, is slightly higher than the best result on the individual property
classification task (61.93% accuracy, 0.608 weighted F1 score).

The difficulty of the classification task does not show a significant decrease when
collapsing the 14 bi-directional properties. This results suggests that the difficulty of a
classification task relates also to the homogeneity of the examples annotated with each
label. In the individual property classification case the classifier had to decide among
more semantic relations, but the class membership was more clear. In the collapsed
property classification case, there are fewer semantic relations to choose in between,
but the class itself is more heterogeneous, making the class boundaries less crisp.

In light of these results, an annotation inventory with multiple, well-defined semantic
relations is preferable to an inventory containing fewer semantic relations that label a
more heterogeneous set of examples.

Integrating information from prepositions The German dataset was annotated
with hybrid labels - a property and preposition combination. As detailed in Chapter 2,
Section 2.2, in its instantiation for German the annotation inventory contains 19 unique
prepositions. The annotators were instructed to select the preposition that felt the
most natural for paraphrasing the compound.

For example, Armbanduhr ‘wrist watch’, lit. ‘bracelet watch’ is annotated with the
hybrid label (part, mit ‘with’), because the preposition mit is used to the paraphrase
the compound as Uhr mit Armband ‘watch with bracelet’. In a small number of cases
(206 out of the 8005 compounds in the annotated dataset), multiple prepositions were
considered to be equally good for paraphrasing particular compounds. Kartoffelsalat
‘potato salad’, whose hybrid label is (ingredient, (aus ‘of’, mit ‘with’)) is a point
in case: it can be paraphrased either as ‘salad (made) of potatoes’ or as ‘salad with

194



7.1 Automatic Interpretation of German Compounds

potatoes’. Given the small percentage of multi-preposition annotations a single, random
preposition4 was considered for each of the multi-preposition compounds.

Sorokin et al. (2015) showed that the results of semantic property classification
can be improved by using a single classifier to predict both the compound-internal
semantic property and the preposition that is most frequently used to paraphrase the
compound. The assumption of such multitask learning (Caruana, 1997) setups is
that one can improve the classification performance of a task of interest by making use
of related tasks as auxiliary classification targets.

In the de-nncom-sem case, each compound is annotated both with a semantic
relation and a preposition. Given that the main focus of this chapter is predicting the
semantic relation between the constituents of a compound, the preposition prediction
task was used as an auxiliary task. The classification architectures used in the previous
sections, SMLP and DMLP (from Figures 7.3a and 7.3b), were updated to include two
separate output layers: one predicting the semantic relation (from the 57 individual
properties in the inventory) and one predicting the preposition (from the 19 available
prepositions). The errors from the two classification systems are joined together in a
common error signal. The errors were weighted such that the property classification
contributed 0.9 and the preposition classification 0.1 to the total error. At the same
time, the errors from both classifiers are backpropagated through the shared hidden
layer, making adjustments for each of the classification tasks. Details about the results
with different dropout rates are available in Appendix B, Table B.11. Figures 7.8a and
7.8b illustrate the updated architectures.
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Fig. 7.8 Different classification architectures. Leftmost: the input layer; inputs are
displayed as small while circles. Middle: hidden layer; hidden units are displayed as
large blue circles with ReLU activation. Right: output layer; output notes displayed as
yellow circles with tanh activation.

The results in Table 7.9 show that the use of preposition prediction as an auxiliary
task for individual property classification did not result in a significant improvement.
The classifier using the concatenated modifier; head representation obtained, in the

4A random preposition from the ones manually assigned to that compound by the human annotators.
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Input Dr 1 Dr2 test dev test-iaa

Acc. wF1 Acc. wF1 Acc. wF1

compound_multimatrix 0.2 0 56.15% 0.545 59.42% 0.570 40.96% 0.380

modifier; head 0.2 0.2 62.13% 0.609 65.38% 0.637 44.70% 0.427
compound_multimatrix; head 0.1 0.1 54.42% 0.528 57.96% 0.553 39.71% 0.377
modifier; compound_multimatrix 0.1 0.1 60.47% 0.592 64.59% 0.630 48.86% 0.467

Table 7.9 Results for individual property classification, using the prediction of the
preposition associated with the compound as an auxiliary task.

multitask setup, an F1 score of 0.609, compared to the 0.597 F1 score obtained by
the single-task individual property classifier. For the compound_multimatrix and
modifier; compound_multimatrix case, the performance of the classifier is rather
degraded through the addition of the extra output - from 0.550 to 0.545 F1 score for
compound_multimatrix and from 0.608 to 0.592 for modifier; compound_multimatrix.

A likely reason for this result is that both the single and the multi-task classifiers
rely on the same input representations which, in contrast to Sorokin et al. (2015)’s
setup, does not include co-occurrence information of nouns with the prepositions in
the dataset. The word representations capture global co-occurrence patterns, and are
unlikely to focus on prepositions as disambiguating contexts. Prepositions co-occur
frequently with many other words, making them of peripheral importance in the
representation of most nouns.

Another way to use the preposition annotations would be to include the gold
preposition as an additional input when classifying the semantic relations. While
adding information about the gold preposition might bring improvements - cf. Girju
et al. (2005), it detracts from the generality of the approach, as the classification relies
on the existence of this gold preposition annotation. The preposition classification
resulted in an accuracy of „60%, making the use of automatically generated preposition
labels not a viable option. Further research is needed to improve the classification
in this case. Chapter 8 contains suggestions for alternative types of context that
could supplement the input information and lead to improvements both in preposition
classification as a separate task and the multi-task setup.
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7.2 Automatic Interpretation of English Compounds

The automatic labeling of the semantic relations in English noun-noun compounds
has been an active field of investigation, and several datasets that identify compound-
internal relations have been made available. In their overview Tratz and Hovy (2010) cite
8 datasets, containing a range of annotations: from 385 to 2169 annotated compounds.
Tratz and Hovy (2010) go on to propose their own annotated dataset, containing 17509
compounds annotated with 43 semantic relations. The dataset was updated in Tratz
(2011) to contain 19158 compounds annotated with 37 semantic relations. Given that
machine learning models require many training examples to make good predictions,
the experiments in this section will focus exclusively on the Tratz (2011) dataset, the
largest dataset of English compounds annotated with semantic relations.

7.2.1 The Tratz (2011) Dataset

The Tratz (2011) dataset contains 19158 compounds, 3446 unique modifiers and 3375
unique heads. There are, on average, 5.68 compounds with the same head and 5.56
compounds sharing the same modifier. System is the most frequent head, forming
compounds with 228 modifiers (e.g. flight system). The most frequent modifier is
government, which forms compounds with 235 heads (e.g. government activity).

Table 2.3 in Chapter 2 displays the 37 semantic relations together with example
annotated compounds. The Tratz (2011) relation inventory makes similar distinctions
to the ones made by the inventory used for the German de-nncom-sem dataset. The
category names chosen by Tratz (2011) overlap in a large proportion to the ones
proposed in the inventory in Section 2.2. However, the type of semantic distinctions
that dictate assigning a particular compound to a category or another are very similar
for some relations, but diverge for others.

For example, the relation owner-user from Tratz (2011)’s inventory, which labels
compounds like family estate and taxpayer money, corresponds to two relations in
the inventory introduced in Section 2.2 - namely the direct relation owner and the
relation user. Tratz (2011)’s location relation, however, labels compounds with
more diverse relations, which in the inventory of semantic relations proposed in this
thesis are more finely differentiated. E.g. in the English dataset shipyard worker
is annotated as location whereas in the German dataset Werftarbeiter ‘shipyard
worker’ is annotated as specialization. Because the annotation proposed here is head-
driven, compounds like Textilarbeiter ‘textile worker’ and Wissensarbeiter ‘knowledge
worker’ have the same label, specialization, while in the Tratz (2011) annotation
rail worker is annotated as location, food worker as other, construction worker
as perform&engage_in and city worker as employer. This approach makes it
sometimes difficult to choose a single correct annotation: hospital worker, annotated as
location, might as well be annotated as employer. This type of ambiguity in the
definition of relations can make it difficult for a classifier to make correct predictions.
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Other compounds annotated as location in the Tratz (2011) dataset are toilet
paper - annotated as prototypical place of use in the German dataset, garage
door - which would be annotated as access* in the German dataset. Compounds like
Bergdorf ‘mountain village’ and Körperhaar ‘body hair’ would receive the annotation
location in both datasets.

Dima (2016) used distributed word representations in combination with composition
models to predict the 37 relations for the compounds in the Tratz (2011) dataset.
However, the results reported by Dima (2016) point to a problematic aspect of the
Tratz (2011) data: the relations for which the classifier performs the best are also the
ones with a small number of unique heads or unique modifiers in the dataset. For
example the property adj-like noun only has 7 distinct modifiers for 254 compounds,
while amount_of has 15 unique heads for 168 compounds. Both properties have an
error rate of under 10%. The use of pre-trained composition models does not bring any
improvements over the use of a simple classifier with only the concatenated constituent
representations as input. Dima (2016) attributes this behavior to a process of lexical
memorization (Levy et al., 2015b), the situation in which a classifier assigns a label
based on the identity of a particular input - e.g. assigning the property adj-like noun
whenever one of the seven modifiers associated with adj-like noun class occurs.5 In
effect, (Tratz, 2011:202) defines the adj-like noun relation as “in n1n2, n1 is one
of a handful of adjective-like nouns such as ‘key’, ‘chief’, and ‘core”’. This, however,
makes the identification of the relation equal to memorizing which modifiers signal
the semantic relation. Generalizing to unseen examples is impossible on datasets
where the set of modifiers is disjoint between the training and the test examples. The
particularities of such relations make them too ‘easy’ for the classifier to learn, and
can lead to unrealistic estimations about the capacity of the classifier to capture more
complex semantic relations and to generalize to unseen examples.

Dataset train dev test

inst. inst. modifier overlap head overlap inst. modifier overlap head overlap

tratz-fine, random 14,369 958 84.10% 84.54% 3,831 77.52% 78.63%
tratz-fine, lexical-mod 9,783 5,400 0.0% 70.07% 3,975 0.0% 73.68%
tratz-fine, lexical-head 9,185 5,819 65.74% 0.0% 4,154 70.39% 0.0%
tratz-fine, lexical-full 4,730 1,614 0.0% 0.0% 869 0.0% 0.0%

Table 7.10 Dataset statistics for the four variations of the Tratz (2011) dataset proposed
by Shwartz and Waterson (2018). The columns ‘modifier/head overlap’ show what
percentage of the constituents in the dev, respectively test split occurs also in the
train split. The random dataset has a very high constituent overlap, lexical-mod
has no modifier overlap, lexical-head has no head overlap. The compounds in the
dev and test splits of the lexical-full setup share neither modifier nor head with
the train compounds.

Shwartz and Waterson (2018) follow up on the issues raised by Dima (2016) and,
in testing their own methods for semantic relation identification, propose four dataset

5These are chief, core, head, key, mainstream, mass, minimum.
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variations based of the original Tratz (2011) data: (1) random, where the entire dataset
is split into train, test and dev portions (75:20:5); (2) lexical-full, where the
train, test and dev splits have disjoint vocabularies; (3) lexical-mod, where the
vocabularies of the train, test and dev splits are disjoint with respect to the modifier
(i.e. a modifier that appears in train will not be part of compounds the test or dev
splits); (4) lexical-head, where the vocabularies of the three splits are disjoint with
respect to the head of the compound.

The experiments presented in this section report on these four dataset variations
proposed by Shwartz and Waterson (2018). This will allow both for a better under-
standing of the real generalization capabilities of the different classifiers, and for a
direct comparison of the results. As a note, Shwartz and Waterson (2018) also report
results for classifying the compounds according to the 12 coarse relation groups defined
by Tratz (2011) (these are the headings shown in bold in Table 2.3, Chapter 2, e.g.
Topic Group). However, Shwartz and Waterson (2018)’s results when using the coarse
relations, just as the experiments on collapsed property classification for German in
Section 7.1.2, show only small improvements when compared to the fine-grained setup.
Collapsing the categories is likely to have a blurring effect - i.e. more diverse compounds
are assigned the same category, making it more difficult for the classifier to capture
the defining traits of each label. In what follows, the experiments will concentrate on
identifying the set of 37 fine-grained semantic relation proposed by Tratz (2011).

The statistics of the four dataset variations proposed by Shwartz and Waterson
(2018) are shown in Table 7.10. The high constituent overlap of the random dataset
is confirmed: 84.10% of the compounds in the random dataset’s dev split have mod-
ifiers that occur in the train data, and 84.54% of the heads occur in train. The
lexical-mod and lexical-head variations have zero overlap with the train data in
terms of modifiers and heads, respectively. The lexical-full dataset has zero overlap
with the train data both in terms of modifiers and of heads, but is at the same time
the smallest of the four dataset variants, with only 7213 of the initial 19158 compounds
(37.65%) from the Tratz (2011) dataset.

Baselines Table 7.11 presents the baselines for the four dataset variations. 8 different
baselines are considered, as in the German dataset case. The average of 10 separate runs
is reported for each baseline. The first two baselines are the classical random baseline
(random relation) and most frequent baseline (mf_o). The next two baselines predict,
for the compounds in the test/dev splits, the most frequent relation associated with
that particular modifier (mf_m) or head (mf_h) in the train split. On the random
dataset variation, the mf_m and mf_h baselines obtain already very good results: 0.345
and 0.532 in weighted F1 score. However, on dataset variations where there is no
overlap between the constituents in the train split and the ones in the test/dev splits,
i.e. where there is no information about the tested constituents in the train set, these
baselines revert to the most frequent relation baseline.

The next four baselines combine the separate information about the typical modifier
relations and the typical head relations and take the most frequent relation that occurs
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# Baseline test dev

Acc. wF1 Acc. wF1

tratz-fine, random

1 random relation 2.73% 0.034 2.79% 0.034
2 mf relation overall (mf_o) 17.55% 0.052 17.14% 0.050
3 mf relation modifier (mf_m) 37.21% 0.345 37.49% 0.343
4 mf relation head (mf_h) 55.73% 0.532 53.93% 0.510
5 mf_m X mf_h if ‰ ϕ else mf_o 52.50% 0.519 48.64% 0.469
6 mf_m X mf_h if ‰ ϕ else mf_m else mf_o 57.67% 0.563 57.02% 0.547
7 mf_m X mf_h if ‰ ϕ else mf_h else mf_o 64.10% 0.625 60.75% 0.585
8 mf_m X mf_h if ‰ ϕ else mf_h else mf_m else mf_o 66.17% 0.652 63.74% 0.624

tratz-fine, lex-mod

1 random relation 2.74% 0.035 2.65% 0.033
2 mf relation overall (mf_o) 19.05% 0.061 17.73% 0.053
3 mf relation modifier (mf_m) 19.05% 0.061 17.73% 0.053
4 mf relation head (mf_h) 53.67% 0.517 55.28% 0.533
5 mf_m X mf_h if ‰ ϕ else mf_o 19.05% 0.061 17.73% 0.053
6 mf_m X mf_h if ‰ ϕ else mf_m else mf_o 19.05% 0.061 17.73% 0.053
7 mf_m X mf_h if ‰ ϕ else mf_h else mf_o 53.65% 0.517 55.28% 0.533
8 mf_m X mf_h if ‰ ϕ else mf_h else mf_m else mf_o 53.79% 0.519 55.26% 0.533

tratz-fine, lex-head

1 random relation 2.88% 0.036 2.68% 0.034
2 mf relation overall (mf_o) 17.12% 0.050 19.46% 0.063
3 mf relation modifier (mf_m) 36.28% 0.344 36.39% 0.345
4 mf relation head (mf_h) 17.12% 0.050 19.46% 0.063
5 mf_m X mf_h if ‰ ϕ else mf_o 19.05% 0.061 17.73% 0.053
6 mf_m X mf_h if ‰ ϕ else mf_m else mf_o 36.49% 0.346 36.34% 0.345
7 mf_m X mf_h if ‰ ϕ else mf_h else mf_o 17.12% 0.050 19.46% 0.063
8 mf_m X mf_h if ‰ ϕ else mf_h else mf_m else mf_o 36.51% 0.346 36.31% 0.344

tratz-fine, lex-full

1 random relation 2.35% 0.029 2.78% 0.037
2 mf relation overall (mf_o) 17.97% 0.055 20.89% 0.072
3 mf relation modifier (mf_m) 17.97% 0.055 20.89% 0.072
4 mf relation head (mf_h) 17.97% 0.055 20.89% 0.072
5 mf_m X mf_h if ‰ ϕ else mf_o 17.97% 0.055 20.89% 0.072
6 mf_m X mf_h if ‰ ϕ else mf_m else mf_o 17.97% 0.055 20.89% 0.072
7 mf_m X mf_h if ‰ ϕ else mf_h else mf_o 17.97% 0.055 20.89% 0.072
8 mf_m X mf_h if ‰ ϕ else mf_h else mf_m else mf_o 17.97% 0.055 20.89% 0.072

Table 7.11 Baselines for the four Tratz (2011) dataset variations proposed in Shwartz
and Waterson (2018).

with both modifier and head (baseline #5). Since the intersection of typical properties
can be empty, the backup strategy is, again, to predict the most frequent relation
overall. Baselines #6, #7 and #8 refine the backup strategy. For baseline #6 the first
backup considered is the relation most frequently associated with the modifier, for #7,
the one most frequently associated with the head while for #8 the backup strategy is
first the most frequent relation of the head, than of the modifier.

The baselines show a marked decrease in performance as the amount of overlap
between the constituents in the train split and those in the test and dev splits
decreases. Moreover, the very high weighted F1 scores of baseline #8 on the random
dataset variation show already how much can be learned just from knowing the identity
of the constituents and their most frequently associated relations in the train data.
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In what follows the combinations of inputs and classifiers that were tested on the
German dataset will be tried on the four variations of the Tratz (2011) data.

Word Representations The 300-dimensional, unit normalized (L2-row) word rep-
resentations described in Section 5.5.2 were used as inputs for classifying the semantic
relations in English compounds. The goal of the experiments is to identify the se-
mantic relation between a compound’s constituents while relying only on constituent
information - i.e. without using the compound representation that was learned using
the underscore trick (e.g. learn the representation of apple tree by recoding each
appearance of the compound as apple_tree). The reason for this setup is that the
majority of the compounds for which identifying the relation will be needed are the
novel compounds - compounds where there is no large body of previous occurrences.
Relying on information about the compound as a whole makes the approach not
applicable in cases where it is most needed.

Classifiers and Inputs The SMLP and DMLP classifier from Figures 7.3a and 7.3b
are retrained for predicting the semantic relations from the Tratz (2011) data.

Four input types are tested for the SMLP classifier: using only the modifier or
the head representation, using the unit-normalized addition of the two constituent
representations and using the composed representation obtained by applying the pre-
trained multimatrix composition model to the modifier and head representations.
The SMLP classifier has a nˆ 2n hidden layer size, and a 2nˆ r output layer, where
n “ 300 is the dimensionality of the input representation and r “ 37 is the number of
semantic relations to be classified.

Three input variations are tested for the DMLP classifier: using a concatenation of
the constituent representations (modifier; head); using the multimatrix-composed
representation concatenated with the head representation, and using the modifier
together with the multimatrix-composed compound representation. The DMLP classifier
uses a 2nˆ n hidden layer and a nˆ r output layer.

All the classifiers are trained using a negative log-likelihood criterion. The opti-
mization is done using mini-batch Adagrad (Duchi et al., 2011), with a mini-batch size
of 100 examples. The learning rate is initially set to 0.14, with a learning rate decay of
1e´ 5. The models are trained using early stopping (Prechelt, 1998) on the dev set,
with a patience of 100 epochs.

The seven classifiers were tried out on each of the four dataset variations. The
only hyperparameters that were tuned for each classifier/dataset pair was the amount
of dropout to be applied. Section B.4 of Appendix B details the performance of the
classifiers with different dropout rates. As a rule, dropout rates from 0 to 0.4 were
tried, in 0.1 increments. In cases where the best result was obtained using 0.4 dropout,
further values were tested until a decrease in the dev set performance was observed.
The best performing classifier - with the highest weighted F1 score, was then tested on
the test split of the data. Table 7.12 reports the accuracy and weighted F1 score on
both the test and the dev splits.
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Dataset Classifier Input Dr 1 Dr2 test dev

Acc. wF1 Acc. wF1

tratz-fine, random baseline #8 - 66.17% 0.652 63.74% 0.624
Shwartz and Waterson (2018), Int 0.1 - 0.714 - -

SM
LP

modifier 0.6 0.0 38.42% 0.343 40.50% 0.359
head 0.4 0.0 56.96% 0.547 56.26% 0.537
addition 0.2 0.0 69.38% 0.685 68.37% 0.676
compound_multimatrix 0.2 0.0 71.08% 0.702 70.67% 0.700

DM
LP

modifier; head 0.1 0.1 77.92% 0.772 78.71% 0.783
compound_multimatrix; head 0.1 0.1 72.93% 0.721 72.76% 0.715
modifier; compound_multimatrix 0.1 0.1 72.83% 0.721 73.07% 0.723

tratz-fine, lex-mod baseline #8 - 53.79% 0.519 55.26% 0.533
Shwartz and Waterson (2018), Int 0.1 - 0.613 - -

SM
LP

modifier 0.4 0.0 29.76% 0.250 30.22% 0.256
head 0.4 0.0 54.79% 0.534 56.76% 0.553
addition 0.3 0.0 54.36% 0.533 55.31% 0.539
compound_multimatrix 0.2 0.0 58.99% 0.579 59.20% 0.579

DM
LP

modifier; head 0.1 0.1 66.62% 0.656 68.37% 0.670
compound_multimatrix; head 0.1 0.1 63.25% 0.620 64.67% 0.633
modifier; compound_multimatrix 0.2 0.2 62.14% 0.606 63.33% 0.616

tratz-fine, lex-head baseline #8 - 36.51% 0.346 36.31% 0.344
Shwartz and Waterson (2018), Int 0.1 - 0.510 - -

SM
LP

modifier 0.3 0.0 37.17% 0.338 38.79% 0.352
head 0.4 0.0 25.25% 0.230 38.06% 0.360
addition 0.3 0.0 41.48% 0.392 43.48% 0.415
compound_multimatrix 0.0 0.0 48.36% 0.469 51.80% 0.508

DM
LP

modifier; head 0.3 0.3 52.50% 0.503 55.30% 0.530
compound_multimatrix; head 0.3 0.3 46.34% 0.449 49.91% 0.481
modifier; compound_multimatrix 0.0 0.0 54.33% 0.531 55.97% 0.553

tratz-fine, lex-full baseline #2 - 17.97% 0.055 20.89% 0.072
Shwartz and Waterson (2018), Int 0.1 - 0.421 - -

SM
LP

modifier 0.2 0.0 27.73% 0.237 27.76% 0.251
head 0.4 0.0 23.13% 0.231 36.62% 0.355
addition 0.1 0.0 34.75% 0.321 37.42% 0.353
compound_multimatrix 0.2 0.0 39.82% 0.380 40.89% 0.395

DM
LP

modifier; head 0.3 0.3 43.61% 0.410 47.58% 0.446
compound_multimatrix; head 0.3 0.3 39.13% 0.380 43.25% 0.411
modifier; compound_multimatrix 0.3 0.3 44.65% 0.419 46.65% 0.448

Table 7.12 Semantic property classification on the English Tratz (2011) dataset, using
the four variations proposed by Shwartz and Waterson (2018). The variations range
from a datasplit with substantial constituent overlap (random) to no modifier overlap
(lex-mod), no head overlap (lex-head) and no constituent overlap (lex-full). The
performance of the classifiers decreases as the lexical overlap between the train data
and the test/dev splits decreases. The results on the lex-full dataset are realistic
estimates about the generalization capabilities of the classifier in the absence of overlap
between the constituents in the train and test data.

Each of the four subsections of Table 7.12 focuses on one of the four dataset
variations proposed in Shwartz and Waterson (2018). The first two lines in each of the
section report the result of the best performing baseline, as well as the result obtained
by Shwartz and Waterson (2018) for that dataset variation using their integrated
classifier (Int).

Shwartz and Waterson (2018)’s integrated classifier uses as input a combination
of the 300-dimensional distributional representations of the constituents and a path
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representation. The path representation between the two constituents w1 and w2 is
defined in terms of all the dependency paths that connect the two words in the corpus.
A single path can contain multiple edges - i.e. a path for the compound coffee cup can
be formed from the phrase cup of coffee. This path has two edges: one connecting
cup to of and another connecting of to coffee. Each edge is represented by a 4-tuple
containing its lemma, its part of speech, its dependency label and its direction vectors.
Each path embedding is obtained by running an LSTM over the edge representations
and taking the last output. The path representation of a compound is a 50-dimensional
vector obtained by averaging over individual path embeddings, where each path is
weighted by its frequency.

Shwartz and Waterson (2018) also propose a variant of the integrated classifier
which uses the original compound representation in addition to the constituent and the
path representations (Int-NC). However, the only setup where the original compound
information helps is on the tratz-fine, lex-full dataset, where Int-NC outperforms
the Int with a 0.008 increase in F1 score (from 0.421 to 0.429). On the other dataset
variants adding information about the original compound leads to a lower performance.

Returning to the classifiers tested in this thesis, the results of the SMLP classifier
using as input the modifier and head representations reveal a complex picture about
guessing the semantic relation using only information about one of the constituents.

On the random dataset, using the head representation leads to a substantial,
0.20 increase in F1 score on the test split when compared to using the modifier
representation - from 0.343 to 0.547. This seems to corroborate (Ó Séaghdha, 2008:97)’s
observation that “knowledge about compound heads is more informative for compound
interpretation, at least when classifying with distributional information”. The same
trend is visible from the results on the other dataset variations: modifier drops 0.09
in F1 score on the lex-mod dataset, where there is 0 modifier overlap. However, head
drops an impressive 0.30 in F1 score on the datasets for which there is 0 head overlap
(lex-head and lex-full). Moreover, head also shows a large discrepancy between
the results on the dev and test splits on the datasets with no head overlap (e.g. from
0.355 on the dev to 0.231 on the test of the lex-full dataset).

It must be noted, however, that both the results of the modifier and the head
on the no-overlap dataset lex-full are above the best baseline (compare baseline
0.055 F1 score to 0.237 of modifier and 0.231 of the head). In this setup - with no
constituent overlap - both modifier and head information are equally informative, with
the modifier having a slightly better performance.

The addition setup uses constituent representations that were first pairwise added
and then unit-normalized. The addition representation preforms on all dataset varia-
tions better than or at least on par with the best performing constituent representation,
while at the same time outperforming the baseline results on every dataset.

The SMLP classifier performs at its best using as input the multimatrix-composed
representation. Although this representation starts off with the same provisions as
addition, i.e. the representations of the two constituents, the value of pre-training
the composition model becomes apparent, particularly in the setups where there is no
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overlap in terms of the head constituent between the compounds in the train and
test data splits (e.g. 0.392 for addition, but 0.469 for compound_multimatrix on
the lex-head dataset).

Three inputs were tested with the DMLP classifier: using the concatenated modifier
and head representations, or replacing one of the constituent representations with
the multimatrix-composed representation. On the random and lex-mod datasets the
best results (marked in bold in Table 7.12) were obtained using only the constituent
representations. Although they show substantial improvements both from the baselines
and from the previously reported results (0.772 weighted F1 score on random, 0.656 on
the lex-mod setup), they are probably not a realistic estimate of the classifier’s real
capacity to grasp the patterns underlying the semantic relations. To illustrate this
point, it’s worth comparing the results of the best performing classifier on the random
dataset with that of the best performing classifier on the lex-mod dataset. What are
the semantic relations that the classifier struggles to identify when switching from the
random to the lex-mod dataset?

An example of such a relation is the employer relation, which labels compounds
like hospital personnel. Even as the head personnel occurs in the train set three out of
eight times in a compound labeled as employer, the best performing classifier assigns
it the label location rather than employer. The training data contains only one
instance with the head personnel tagged as location - namely ground personnel.

A look at the train data can shed some light on this behavior. There are 50
unique modifiers in the 264 compounds labeled with the relation employer in the
train set, but none of them are similar to hospital. By contrast, there are 156 unique
modifiers for the 527 compounds labeled as location in the train data, and several
have similar meanings to hospital: nursing home, pharmacy, hospice. The classifier
seems to be predicting the relation label that is closer to the modifier hospital it has
encountered for the first time - and this turns out to be location.

For the dataset variations where there is no overlap between the head constituents
in the train and test/dev data the DMLP classifier performs best when using the
modifier; compound_multimatrix combination as input. The results, however, are
far less impressive, and amount only to a 0.531 F1 score on the lex-head dataset, and
a 0.419 F1 score on the lex-full dataset.

The semantic relations on which the classifier does well on the lex-full dataset are,
in effect, the only ones where the classifier can be said to have generalized above the word
level. These are measure (F1 0.765), substance-material-ingredient (F1 0.723)
and time-of1 (F1 0.652). By contrast, the relations on which the classifier struggles are
the ones with a low F1 measure, like means (F1 0), whole+part_or_member_of
(F1 0.1), part&member_of_collection&config&series (F1 0.19).

What makes these groups of relations different in the former group the majority of
the modifiers belong to a well established class of things: i.e. they are measures (e.g.
inch water, percent change, mile road), time expressions (e.g. afternoon newspaper, fall
semester, morning workout) or substances/materials (e.g. sand beach, aluminum can,
leather jacket). It is then of no surprise that such a tightly knit cluster of modifiers
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makes the classifier’s job easier, resulting in good predictions for similar pairs like
kilometer walk, tablespoon oil for measure, summer session, summer tour for time-of1
and glass bowl, steel wall or brick cabin - for substance-material-ingredient.

These examples seem to illustrate the textbook version of lexical similarity
(Turney, 2006; Ó Séaghdha, 2008), where compounds like plastic knife and metal spoon
are similar because of the pairwise similarity of their constituents (plastic, metal) and
(knife, spoon).

In contrast, the relations for which the classifier has a hard time making good
predictions show a different pattern. The constituents come from more diverse word
classes: e.g. the compounds steam boat, bus trip, video conference, all labeled as means,
have constituents from more diverse classes. While all express a means relation, the
means has at the same time a very different interpretation, one that is particular for
each head: the boat is powered by steam, the bus is the vehicle for the trip and the
video names the medium of the conference. However, to analyze plane ride correctly
one has to consider really only those compounds annotated as means that have a head
similar to trip. The compounds with semantically different heads but with the same
relation are more of a distraction than of help in correctly analyzing plane ride. In
effect, learning that a compound like gas cooker should also be annotated as means
seems impossible.

A similar situation occurs in whole+part_or_member_of’s case. Many
things can be described as wholes with parts: whale tongue, album cover, reactor
core. Generalizing from such a diverse set of train examples to compounds like train
car, apartment window and audience member is a task that the classifier using only
distributional information as input seems ill-suited to solve.

From a theoretical perspective, what is still needed is to ensure that the classifier
is aware of and can use the relational similarity (Turney, 2006; Ó Séaghdha, 2008)
between the two pairs of constituents. Relational similarity entails that two pairs
of words are similar if they occur in similar contexts. I.e. “My disposable knife is
made of plastic” and ‘Spoons are made using high-quality metal.‘ However, this type
of relational knowledge is, in many cases, encyclopaedic and thus seldom available in
a large number of contexts. For example the statement The whale has a tongue is
not frequently encountered, even as the size of the corpus grows. It’s common-sense
knowledge that mammals have tongues. The only highlight-worthy aspect is maybe
the size of the whale’s tongue, which can weigh as much as an elephant. Predicting the
relation between whale and tongue might put the distributional classifier in a difficult
situation - it needs to somehow learn, from the little training data that it has, that
whales are mammals, that tongues are body parts and that the relation between a
mammal and one of its body parts is whole+part_or_member_of, this, of course,
while also figuring out the correct word classes and prototypical combinations that are
as well tagged with whole+part_or_member_of (the album cover, the reactor
core, etc.).

The English WordNet (Fellbaum, 1998) might be seen as an obvious source for this
type of encyclopaedic information. Tratz (2011), in fact, used WordNet information -
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such as the synonyms and hypernyms of a word, the terms in the words gloss, etc.6
Shwartz and Dagan (2018) replicated the setup described in Tratz (2011) and report,
however, only a 0.340 F1 score for the lexical-full dataset, lower than the best
result reported here, 0.419 and than Shwartz and Waterson (2018) best results, 0.429.
A reason for this subpar performance is likely to be the limited coverage of such lexical
resources, but also the fact that in the end the classifier still has to use a set of features
to learn that a particular word belongs to the mammal class during the semantic
relation classification task. Chapter 8 describes possible directions of research that can
incorporate the information from such lexical resources while sidestepping the limited
coverage issue.

Comparison to other Studies One of the earliest experiments in the automatic
classification of English noun compounds is due to Lauer (1995), who reports an
accuracy of 47% at predicting one of 8 possible prepositions in a set of 385 compounds.
Rosario and Hearst (2001) obtain 60% accuracy at the task of predicting one of 18
relations using neural networks and a dataset of 1660 compounds from the medical
domain. The domain-specific inventory Rosario and Hearst (2001) use was obtained
through iterative refinement by considering a set of 2245 extracted compounds and
looking for commonalities among them. Girju et al. (2005) use WordNet-based models
and SVMs to classify nouns according to an inventory containing 35 semantic relations,
and obtain accuracies ranging from 37% to 64%. Kim and Baldwin (2005) report 53%
accuracy on the task of identifying one of 20 semantic relations using a WordNet-based
similarity approach, given a dataset containing 2169 noun compounds.

Ó Séaghdha and Copestake (2013) experiment with the dataset of 1443 compounds
introduced in Ó Séaghdha (2008) and obtain 65.4% accuracy when predicting one of
6 possible classes using SVMs and a combination of various types of kernels. Tratz
and Hovy (2010) classify English compounds using a new taxonomy with 43 seman-
tic relations, and obtain 79.3% accuracy using a Maximum Entropy classifier and
79.4% accuracy using SVMmulticlass on their dataset comprising 17509 compounds and
63.6%(MaxEnt)/63.1%(SVMmulticlass) accuracy on the Ó Séaghdha (2008) data. Dima
and Hinrichs (2015) report 77.7% accuracy on identifying the 37 relations in the Tratz
(2011) dataset using a combination of distributional representations as input to a neural
network classifier. Dima (2016) reports an accuracy of 79.36% on the Tratz (2011)
dataset, and 61.12% accuracy on the Ó Séaghdha (2008) data.

All these efforts have concentrated on English compounds, despite the fact that
compounding is a pervasive linguistic phenomenon in many other languages. Recent
work by Verhoeven et al. (2012) applied the guidelines proposed by Ó Séaghdha (2008)
to annotate compounds in Dutch and Afrikaans with 6 category tags: BE, HAVE, IN,
INST, ACTOR and ABOUT. The reported F1-scores are 47.8% on the 1447 compounds
Dutch dataset and 51.1% on the 1439 compounds Afrikaans dataset.

For German, Sorokin et al. (2015) report an F1 score of 0.601 at the task of
identifying one of the 38 semantic relations and 0.639 at the task of the 17 prepositions

6A complete overview is available in Chapter 2, p. 27.
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defined in their hybrid inventory on a dataset of 4607 noun-noun compounds. Sorokin
et al. (2015)’s system uses SVMs and a combination of distributional and knowledge-
based features.

Semantic Relation Classification - Main Results The semantic relation clas-
sification experiments brought insights both into the complexities of identifying the
semantic relation for a given compound and into the advantages but also the limitations
of using composed representations as classification features.

The experiments have shown that using the composed representation as input
when doing semantic relation classification is better than using any of the original,
corpus-learned representations - either of the constituents or of the compound as a
whole. Moreover, composed representations obtained via a trained composition model
like multimatrix are superior to additive representations - in particular for compounds
whose head constituent is not part of the training data.

The experiments also showed that the composed representations capture more
information about the head than about the modifier, leading to a loss of expressiveness
when used as features for a semantic task; a classifier combining the modifier and the
composed representation is better suited to identify the semantic relation in compounds
than classifiers that rely only on the constituent representations or that combine the
head and the composed representation.

In the German case, more data is needed to improve the classification capabilities
of classifiers. However, the experiments on the larger English dataset pointed to a
possible pitfall that should be avoided when enlarging the dataset: the chosen data
must not permit the classifier to perform lexical memorization, i.e. to learn a mapping
from specific constituents to relation labels, by including too many examples with the
same constituents and the same relation type. The most realistic classification setup
is one where there is no overlap between the constituents of the compounds used for
training and those used for the development and testing of machine learning classifiers.

The results of the classifiers on the datasets with little lexical overlap show that the
task of semantic relation identification for noun-noun compounds is far from solved,
obtaining F1 scores around 0.5. The best classifiers are able to identify relations where
the constituents come from closely knit classes with high attributional similarity like
material or time, but break down for more open-ended relations like part of.
In most cases the classifiers have a hard time grasping the defining features of each
semantic relation directly from the distributional representations.

Using fewer categories that conflate several patterns does not lead to a sizable
improvement in classification performance, even when the difference is only the direc-
tionality of the semantic relation. Having many well defined categories is therefore
preferable both from a semantic and from a computational perspective.
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Chapter 8

Conclusions

8.1 Contributions

This thesis showed that neural network-based composition models can be successfully
used to represent and interpret the semantics of German and English nominal com-
pounds. The experiments showed that composition models produce versatile compound
representations, useful for distinguishing compound-internal semantic relations and for
recognizing lexicalized compounds. The main contributions of this thesis are summa-
rized next.

A hybrid annotation scheme and a dataset of semantically annotated Ger-
man compounds. The hybrid annotation scheme described in Section 2.2 classifies
compounds in terms of a combined label consisting of a property and preposition. The
work on the hybrid annotation scheme was part of the SFB 833 A3’s project work,
and several colleagues contributed. An initial version of the annotation scheme was
developed with input from Prof. Dr. Erhard Hinrichs, Dr. Yannick Versley, Dr. Verena
Henrich and Christina Hoppermann. The second iteration greatly benefited from the
valuable insights of late Dr. Heike Telljohann. The annotation of the compounds in the
dataset was performed in parallel by one of the students helping with the annotation,
Nadine Balbach, Tabea Sanwald and Kathrin Adlung, and one of the experienced
annotators, Christina Hoppermann and Dr. Telljohann.

Since the author is not a native speaker of German, her contribution focused mainly
on the theoretical aspects of developing the annotation scheme, i.e. deciding about
which categories should be included, and how should these categories be defined and
differentiated from other categories, and computing the inter-annotator agreement. An-
other contribution was developing a web-based annotation tool that allowed versioning
the annotation associated with each compound as the annotation scheme evolved.

New composition models: addmask, wmask, multimatrix. The experiments in
Chapter 5 showed that composed distributional representations are a viable way of
representing compounds. Surveying the performance of existing composition models
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indicated several shortcomings of existing models: they were either discarding useful
information (lexfunc), had an extremely large number of parameters and worked
only for the constituents in the training data (lexfunc, fulllex) or used a one-fits-all
composition (matrix, fulladd).

The new models addressed the limitations of existing models both by training
dedicated vector masks for each vocabulary word, like the addmask and wmask models,
and by allowing the input representations to be transformed in multiple ways and then
integrating the different transformations, like the multimatrix model.

multimatrix, the best performing composition model, was able to build meaningful
composed representations for 81.8% of the German test compounds and 78.03% for the
English test compounds. The proposed composition models are, however, not specific
to compounds - they can in theory be used to create representations for other binary
constructions - e.g. for adjective-noun phrases or prepositional phrases - provided that
the necessary training data is available. Their usefulness for each new construction
must, however, be separately investigated.

Composed representations to identify lexicalized compounds The experiments
in Chapter 6 showed that lexicalized compounds can be identified by comparing the
composed and the observed representation of a compound. While definitive guidelines
for annotating lexicalized compounds are still a desideratum, using the representations
created by a composition model can streamline the process of automatically identifying
larger sets of potentially lexicalized compounds.

Composed representations as features for semantic relation classification.
Chapter 7 has shown that composed representations are the best representation choice
for compounds in semantic tasks where simplex and complex words should have rep-
resentations of the same length. Using a multimatrix-composed representation gave
substantially better results than using the original representation when classifying
the internal relations in German compounds (compare 0.550 to 0.367 test F1 score).
The results are particularly compelling on the subset of compounds used for the inter-
annotator agreement, which shared none of the head constituents with the test set -
compare 0.411 F1 to 0.274 test-iaa F1 score.

Extrinsic evaluation of composition models The analysis of the semantic relation
classification task in Chapter 7 showed that some of the modifier information which
is needed for identifying semantic relations is discarded during composition. The
experiments showed that evaluating composed representations in an extrinsic setting
brings useful insights and should be an integral part of evaluating the performance of
composition models.
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This thesis has lead to the development of a number of resources made available to
the scientific community.

• Torch7 implementations of the composition models, available on the
author’s GitHub page1

• Word representations for German and English - containing representations
of words and compounds in different dimensions2.

• Composition datasets for benchmarking composition models for English and
German compounds2.

• Semantically annotated dataset of German compounds, containing 8005
compounds annotated with semantic relations and prepositions2.

8.2 Looking Back, Looking Forward
Looking back, this thesis did not yet provide an answer on the matter of how many
semantic relations can be found between the constituents of a compound. The proposed
hybrid annotation scheme contained 57, but, as mentioned, the inventory of semantic
relations was constructed bottom-up using the compounds in the German dataset.

The parallel investigation of semantic relations and composition models meant,
however, that this question was at the periphery of every analysis, especially those
involving the „30,000 compounds used in the composition experiments, and the
multitude of additional compounds in the „1 million words distributional vocabulary.

There are, undoubtedly, more semantic relations to be recognized if a larger scale
analysis is undertaken. They form, most likely, a “continuum of patterns”, as described
by Ryder (1994): some with many instances and possibly even sub-patterns, like part,
and some characteristic only for a handful of compounds, like measure. While their
manual annotation is a prohibitively expensive undertaking, the use of distributional
word representations in combination with machine learning algorithms might allow for
the problem to be turned on its head and framed as discovery of relations instead
of classification of relations.

If one looks at deictic compounds, the number of possible semantic relations is
probably infinite, as postulated before by Downing (1977) and Finin (1980). However,
discovering most of the typical, habitual relations that form the basis of creating new
compounds that have a naming function should be an attainable goal.

Looking forward, the distributional representations used for representing words need
to become better. As the results in Chapter 7 showed, the classifier using distributional
representations as input (both original and composed) had difficulties in recognizing

1https://github.com/corinadima
2Word representations and datasets available through TALAR, the Tübingen Archive of Language

Resources, at http://hdl.handle.net/11022/0000-0007-CFE2-1.
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the defining traits of the different semantic relations when working with disjoint sets of
training and test constituents. The classifiers were expected to know when a particular
representation belonged to an artifact, a shape, a group, a body part, an animal, a
plant, a human, an organization, a place, an edible thing etc. These are, as Warren
(1978) showed, the type of features that people instinctively use when interpreting
compounds. While distributional representations of words might inherently capture
this information, semantic tasks require a more direct access to categorizations of words
in terms of such microfeatures (Rumelhart et al., 1986b).

Recent research (Faruqui et al., 2015; Speer and Lowry-Duda, 2017) has shown the
benefits of incorporating information from external knowledge source like WordNet
(Fellbaum, 1998) and ConceptNet (Speer et al., 2017) into word representations. A
possible way to improve the performance of classifiers that use distributional word
representations as inputs is to first pretrain them to learn how to distinguish microfea-
tures like the ones described above. In a subsequent step the classifier is aimed at the
end-task, possibly using a progressive network architecture like the one proposed by
Rusu et al. (2016).

Another aspect that noun representations need to become more sensitive to are their
lexical preferences. The hybrid label annotation showed that semantic relations and
prepositions have a mutual disambiguation effect when interpreting noun-noun com-
pounds. However, to be able to bank on this mutual disambiguation, word representa-
tions of nouns need to be sensitive to the preposition co-occurrences. Dependency-based
embeddings like the ones proposed by Levy and Goldberg (2014a) allow for a more
deliberate choice of the context that a word representation is based on. For example
the context can be restricted only to words with particular parts of speech and/or
words that are connected via specific dependency relations. Such representations are
better suited to model the preferences of nouns with regard to prepositions, and should
provide additional information both for composing and interpreting compounds.

The discovery of semantic relations does not concern only the internal semantics
of compounds. The container semantic relation in the compound tea cup can also
be expressed via the prepositional paraphrase cup for tea. Because “compounding
straddles the boundary between morphology and syntax, behaving in some ways like
word-formation and in others like phrase-formation” (Bender, 2013:15), the lessons
learned for compounds might be of help in investigating particular types of phrases.
From a computational perspective, one could argue that just like simplex words and
compounds should have comparable representations (remember the example from
Chapter 5 - the representation programmer should be comparable to that of software
developer), compounds and their prepositional paraphrases should also have comparable
representations - i.e. the representations of tea cup and cup for tea should be comparable
and possibly even interchangable.

Composing representations for such phrases is not a trivial task, for a careful
analysis of the semantics of the different prepositions is needed. A statement like
*I invited my friend over for a cup for tea is wrong because cup for tea expresses a
container relation (in the example one could substitute cup for the phrase cup for
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tea). A friend is usually invited over for ‘consumables’ like beverages, drinks, talks,
etc, not for ‘things’ like cups. The correct version is I invited my friend over for a
cup of tea, where cup of tea expresses a measure relation, and where the phrase cup
of tea could be substituted for tea.

This parallelism between the compound and the semantics of its for and of para-
phrases can be observed for other examples as well: wine bottle - bottle for wine
(container); bottle of wine (measure), beer glass - glass for beer (container),
glass of beer (measure). It suggests that, like the semantic relations in compounding,
phrases of this type are based on patterns and could thus be automatically identified
and suitably represented using machine learning techniques.

The construction of vector representations for complex words starting from the
representations of the parts that constitute them was the central topic of this thesis.
Composition models are, however, not specific to compounds. The models presented
in Chapter 5 can be readily applied to phrases made of two components, e.g. adjective-
noun phrases like white car. However, allowing only for fixed size inputs - i.e. of length
2, 3, or more, can lead to arbitrary distinctions in some cases - e.g. the representations
of tea cup and cup for tea would have to be constructed by different composition
models because of their mismatch in length - despite their similar semantics.

Recurrent neural networks like LSTMs (Hochreiter and Schmidhuber, 1997) and
GRUs (Cho et al., 2014) are capable of creating representations for inputs of variable
length. Such networks build the representation of a longer phrase incrementally,
processing a word from the phrase at each step. The representation they build at a
given step depends both on the previous state (i.e. the words from the input that the
network has already seen) and on the current input (the current word). Using such
models for composition would remove the artificial constraints imposed by architectures
which only support a fixed number of inputs.

The composition models in Chapter 5 were applied for German compounds like
Apfelbaum ‘apple tree’ by using the splitting information available in GermaNet.
However, the splitting information might not be available for newly coined compounds,
rendering composition models that rely on it unusable in such contexts. Schütze
(1992) represents words via their fourgrams, e.g. the representation of the word
rule is the average of the representations of the fourgrams _rul, rule and ule_.
The representation of each fourgram is based on its co-occurrences with a selection
of 5000 fourgrams, to which singular value decomposition is applied - leading to a
97-dimensional representation.

Recently Bojanowski et al. (2017) have shown that adding subword information
to word representations improves the quality of the word representations and their
usefulness for language modeling. Bojanowski et al. (2017) represent a word as a bag
of character n-grams, an approach in a similar vein to that of Schütze (1992).

Combining the idea of representing words via their subword units and that of
recurrent neural networks for composition should result in more robust composition
models. Such composition models could handle both a variable number of words in
a phrase (tea cup, cup for tea), as well as words or phrases that are written as a

213



Conclusions

contiguous string of characters (Apfelbaum). A welcome side-effect of such an approach
would be that spelling variations of the same word - like database, data-base, data base
could be represented using the same composition model, and would ideally receive
similar vector representations.
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Related Publications The following peer-reviewed publications were published on
topics addressed in this thesis.

• Dima, C. (2016). On the Compositionality and Semantic Interpretation of English
Noun Compounds. In Proceedings of the 1st Workshop on Representation Learning
for NLP @ ACL 2016, pages 27–39, Berlin, Germany

• Dima, C. (2015). Reverse-engineering Language: A Study on the Semantic
Compositionality of German Compounds. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2015), pages
1637–1642, Lisbon, Portugal

• Dima, C. and Hinrichs, E. W. (2015). Automatic Noun Compound Interpretation
using Deep Neural Networks and Word Embeddings. In Proceedings of the
11th International Conference on Computational Semantics (IWCS 2015), pages
173–183, London, UK

• Sorokin, D., Dima, C., and Hinrichs, E. W. (2015). Classifying Semantic Relations
in German Nominal Compounds using a Hybrid Annotation Scheme. Journal of
Cognitive Science, 16(3):260–285

• Dima, C., Henrich, V., Hinrichs, E. W., and Hoppermann, C. (2014). How to Tell
a Schneemann from a Milchmann: An Annotation Scheme for Compound-Internal
Relations. In Proceedings of 9th International Conference on Language Resources
and Evaluation (LREC 2014), pages 1194–1201, Reykjavik, Iceland
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Appendix A

Mathematical Notation

symbol meaning

α, β P R scalars (integer or real values)
x, y, u, v, p, b P Rn real-valued vectors with n components
x = (x1, x2, . . . , xk)J, xi P R n-dimensional vector and its components; each xi is a

scalar; the J notation indicates transposition, i.e. trans-
forms row vectors to column vectors

∥u∥1 “ |x| ` |y| the L1 norm of a vector u “ px, yq

∥u∥2 “
?

x2 ` y2 the L2 norm of a vector u “ px, yq; also known as the
Euclidean norm of a vector

û “ u
∥u∥2

a unit vector; its length is equal to 1;
ru; vs P R2n concatenation of two n-dimensional vectors, u and v;

the result is a 2n-dimensional vector
ud v component-wise multiplication of two vectors
u` v component-wise addition of two vectors
u ¨ v “

řn
i“1 uivi the dot product of two vectors

A, B, . . . , M1, . . . , Mi P Rnˆn real-valued matrices with n rows and n columns
AJ the transpose of matrix A

f, g, h, J : RÑ r0, 1s mathematical functions; the first interval after the semi-
colon marks the domain of the function, and the second
interval marks its codomain; examples are the hyperbolic
tangent (tanh), the logistic function etc.

ln : R` Ñ R the natural logarithm (logarithm in base e)
exppxq “ ex : RÑ R the exponential function; e is the base of the natural

logarithm and is approx. equal to 2.71828
∇J gradient of a function J
BJ

Bw1
partial derivative of the function J with respect to
the parameter w1
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Appendix B

Hyperparameter tuning

B.1 Hyperparameter tuning for composition mod-
els on the German nn-only dataset

norm model η=0.001 η=0.01 η=0.1
Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d Q1 Q2 Q3 cos-d

no
ne

dilation 275 1K 1K 0.6867 182 1K 1K 0.6553 50 371 1K 0.5734
w_addition 52 322 1K 0.5628 52 325 1K 0.5627 52 323 1K 0.5627
fulladd 3 11 48 0.3667 4 11 49 0.3677 3 11 50 0.3679
matrix 3 10 47 0.3658 3 10 46 0.3649 4 11 49 0.3696
lexfunc 7 49 448 0.4586 7 44 377 0.4524 8 52 365 0.4599
fulllex 3 9 42 0.3573 2 6 30 0.3384 6 22 122 0.4079

L 2
-r

ow

dilation 275 1K 1K 0.6867 182 1K 1K 0.6553 50 371 1K 0.5734
w_addition 51 319 1K 0.5616 50 322 1K 0.5615 51 325 1K 0.5615
fulladd 3 11 48 0.3669 3 11 49 0.3678 3 11 49 0.3682
matrix 3 11 47 0.3663 3 11 46 0.3649 3 10 47 0.3657
lexfunc 7 49 448 0.4586 7 44 377 0.4524 8 52 365 0.4599
fulllex 3 10 51 0.3676 2 6 30 0.3379 4 12 65 0.3764

L 2
-c

ol

dilation 253 1K 1K 0.6769 166 1K 1K 0.6459 44 330 1K 0.5632
w_addition 47 284 1K 0.5511 45 288 1K 0.5509 45 290 1K 0.5509
fulladd 3 11 49 0.3686 4 11 49 0.3696 3 11 51 0.3701
matrix 4 11 49 0.3701 3 11 49 0.3674 3 10 49 0.3674
lexfunc 7 50 440 0.4574 7 45 374 0.4514 8 54 364 0.4604
fulllex 3 11 60 0.3737 3 8 36 0.3475 3 10 60 0.3696

Table B.1 Hyperparameter optimization for producing the results in Table 5.5. Trying
out different learning rates (η) and different types of normalization: none - no normal-
ization; L2-row - L2 normalization per word vector; L2-col - L2 normalization per
column.
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Hyperparameter tuning

model dropout position learning rate dropout rate epochs Q1 Q2 Q3 cos-d

fulladd after W1, W2 0.01 0 29 3 11 49 0.3678
fulladd after W1, W2 0.01 0.25 36 3 11 48 0.3686
fulladd after W1, W2 0.01 0.5 36 4 12 51 0.3716
fulladd after W1, W2 0.01 0.75 25 4 14 57 0.3785

matrix after W 0.01 0 28 3 10 46 0.3649
matrix after W 0.01 0.25 23 3 10 47 0.3652
matrix after W 0.01 0.5 23 3 10 47 0.3656
matrix after W 0.01 0.75 25 3 11 47 0.3668

lexfunc after lookup 0.01 0 14 7 44 377 0.4524
lexfunc after lookup 0.01 0.25 32 5 32 292 0.4383
lexfunc after lookup 0.01 0.5 56 5 32 246 0.4350
lexfunc after lookup 0.01 0.75 93 6 34 243 0.4390

fulllex after lookup 0.01 0 8 2 6 30 0.3379
fulllex after lookup 0.01 0.25 18 2 6 27 0.3317
fulllex after lookup 0.01 0.5 39 2 6 27 0.3324
fulllex after lookup 0.01 0.75 107 3 7 31 0.3419

addmask after lookup 0.01 0 926 3 11 57 0.3675
addmask after lookup 0.01 0.25 1129 3 11 58 0.3688
addmask after lookup 0.01 0.5 1372 4 12 67 0.3755
addmask after lookup 0.01 0.75 1716 5 17 95 0.3936
addmask after lookup 0.1 0 39 3 8 49 0.3563
addmask after lookup 0.1 0.25 69 3 8 44 0.3516
addmask after lookup 0.1 0.5 100 3 8 43 0.3508
addmask after lookup 0.1 0.75 180 3 8 44 0.3532

wmask after lookup 0.01 0 78 2 6 26 0.3342
wmask after lookup 0.01 0.25 227 2 6 23 0.3314
wmask after lookup 0.01 0.5 165 3 9 36 0.3575
wmask after lookup 0.01 0.75 55 11 37 127 0.4313
wmask after lookup 0.1 0 12 2 5 22 0.3265
wmask after lookup 0.1 0.25 29 2 5 20 0.3224
wmask after lookup 0.1 0.5 56 2 6 25 0.3331
wmask after lookup 0.1 0.75 72 5 13 49 0.3773

Table B.2 Quantifying the effect of different dropout rates on the performance of the
composition models on the nn-only dev set, using 50-dimensional input representations.
The mask models converge slower and have weaker results using a learning rate of 0.01,
but perform better with a higher learning rate of 0.1.
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B.1 Hyperparameter tuning for composition models on the German
nn-only dataset

model nonlinearity cos-d Q1 Q2 Q3

multimatrix identity 0.3649 3 10 46
multimatrix tanh 0.3450 2 7 30
multimatrix ReLU 0.3102 2 4 15
multimatrix PReLU 0.3117 2 4 16
multimatrix PReLU, per channel a 0.3122 2 4 16

model dropout cos-d Q1 Q2 Q3

multimatrix 0 0.3282 2 5 22
multimatrix 0.25 0.3230 2 5 20
multimatrix 0.5 0.3157 2 4 18
multimatrix 0.75 0.3102 2 4 15

model learning rate cos-d Q1 Q2 Q3

multimatrix 0.001 0.3389 2 7 26
multimatrix 0.01 0.3144 2 4 17
multimatrix 0.1 0.3102 2 4 15

model # matrices cos-d Q1 Q2 Q3

multimatrix 40 0.3202 2 5 18
multimatrix 60 0.3157 2 4 17
multimatrix 80 0.3129 2 4 16
multimatrix 100 0.3110 2 4 16
multimatrix 120 0.3102 2 4 15
multimatrix 140 0.3091 2 4 16

Table B.3 Hyperparameter optimization for the multimatrix model, described in
Section 5.4.5. The nonlinearity tryouts use dropout=0.75, learning rate=0.1, k=120;
the dropout tryouts use nonlinearity=ReLU, learning rate=0.1, k=120; the matrices
tryouts use dropout=0.75, learning rate=0.1, nonlinearity=ReLU; the learning rate
tryouts use dropout=0.75, k=120, nonlinearity=ReLU.
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Hyperparameter tuning

B.2 Hyperparameter tuning for composition mod-
els on the English en-comcom dataset

norm model lr=0.01 lr=0.1
Q1 Q2 Q3 cos-d epochs Q1 Q2 Q3 cos-d epochs

no
ne

dilation 1K 1K 1K 0.8111 6 174 1K 1K 0.7023 6
w_addition 139 1K 1K 0.6888 6 136 1K 1K 0.6888 6
fulladd 3 13 93 0.3727 34 3 13 99 0.3736 97
matrix 3 11 74 0.3617 36 3 12 76 0.3660 43
lexfunc 5 59.5 1K 0.4823 22 5 39 913 0.4634 7
fulllex 2 6 55 0.3330 8 4 21 215 0.3964 12
addmask 3 15 238 0.3967 1112 3 12 203 0.3849 39
wmask 2 8 49 0.3426 40 2 8 64 0.3487 11
multimatrix 2 7 41 0.3352 11 2 6 46 0.3364 9

L 2
-r

ow

dilation 1K 1K 1K 0.8111 6 174 1K 1K 0.7023 6
w_addition 131 1K 1K 0.6870 6 132 1K 1K 0.6870 6
fulladd 3 13 95 0.3733 34 3 13 100 0.3743 93
matrix 3 11 75 0.3636 21 3 11 75 0.3646 21
lexfunc 5 59.5 1K 0.4823 22 5 39 913 0.4634 7
fulllex 2 5 53 0.3337 8 3 11 111 0.3641 8
addmask 3 15 242 0.3978 1113 3 12 208 0.3859 39
wmask 2 7 50 0.3409 58 2 6 47 0.3360 11
multimatrix 2 7 41 0.3363 11 2 6 44 0.3357 11

L 2
-c

ol

dilation 699 1K 1K 0.7642 6 88 1K 1K 0.6462 6
w_addition 67 864 1K 0.6251 6 67 864 1K 0.6251 6
fulladd 3 14 105 0.3787 34 4 14 106 0.3794 97
matrix 3 12 77 0.3694 21 3 12 78 0.3691 32
lexfunc 5 60.5 1K 0.4712 16 5 40 908 0.4574 7
fulllex 2 7 78 0.3488 9 3 10 98 0.3650 7
addmask 3 16 268 0.3942 994 3 13 208 0.3834 36
wmask 2 7 51 0.3430 91 2 7 51 0.3394 13
multimatrix 2 7 52 0.3416 29 2 7 56 0.3459 23

Table B.4 Trying out different learning rates (η) and different types of normalization
on the dev subset of en-comcom: none - no normalization; L2-row - L2 normalization
per word vector; L2-col - L2 normalization per column. The best cosine distance for
each model is shown in bold. The column epochs displays the number of epochs needed
for each model to converge when using early stopping with patience 5 epochs.
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B.2 Hyperparameter tuning for composition models on the English
en-comcom dataset

model dropout position learning rate dropout rate epochs Q1 Q2 Q3 cos-d

fulladd after W1, W2 0.01 0 34 3 13 95 0.3733
fulladd after W1, W2 0.01 0.25 34 4 14 92 0.3738
fulladd after W1, W2 0.01 0.5 23 4 15 95 0.3768
fulladd after W1, W2 0.01 0.75 34 4 17 95 0.3820

matrix after W1, W2 0.01 0 21 3 11 75 0.3636
matrix after W1, W2 0.01 0.25 18 3 11 77 0.3641
matrix after W1, W2 0.01 0.5 26 3 11 76 0.3642
matrix after W1, W2 0.01 0.75 26 3 12 79 0.3653

lexfunc after lookup 0.1 0 7 5 39 913 0.4634
lexfunc after lookup 0.1 0.25 8 5 43 978 0.4652
lexfunc after lookup 0.1 0.5 11 5 49 1K 0.4682
lexfunc after lookup 0.1 0.75 18 6 47 985 0.4711

fulllex after lookup 0.01 0 8 2 5 53 0.3337
fulllex after lookup 0.01 0.25 17 2 5 42 0.3251
fulllex after lookup 0.01 0.5 36 2 5 38 0.3228
fulllex after lookup 0.01 0.75 121 2 5 41 0.3282

addmask after lookup 0.1 0 39 3 12 208 0.3859
addmask after lookup 0.1 0.25 68 2 11 175 0.3793
addmask after lookup 0.1 0.5 105 2 10 164 0.3770
addmask after lookup 0.1 0.75 190 2 10 157 0.3781

wmask after lookup 0.1 0 11 2 6 47 0.3360
wmask after lookup 0.1 0.25 20 2 7 42 0.3356
wmask after lookup 0.1 0.5 40 2 9 47 0.3482
wmask after lookup 0.1 0.75 50 6 23 102 0.3969

multimatrix between layers 0.1 0 10 2 7 45 0.3398
multimatrix between layers 0.1 0.25 12 2 6 41 0.3342
multimatrix between layers 0.1 0.5 24 2 6 38 0.3300
multimatrix between layers 0.1 0.75 79 2 6 34 0.3292

Table B.5 Quantifying the effect of different dropout rates on the performance of
the composition models on the en-comcom dataset, dev, using 50-dimensional input
representations.

model nonlinearity cos-d Q1 Q2 Q3

multimatrix ReLU 0.3215 2 5 31
multimatrix PReLU 0.3221 2 5 31

model # matrices cos-d Q1 Q2 Q3

multimatrix 40 0.3292 2 6 34
multimatrix 60 0.3263 2 6 35
multimatrix 80 0.3232 2 5 31
multimatrix 100 0.3230 2 5 33
multimatrix 120 0.3215 2 5 31
multimatrix 140 0.3216 2 5 31

Table B.6 Hyperparameter optimization for the multimatrix model on the en-comcom
dataset (50-dimensional dev).
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B.3 Hyperparameter tuning for classification on the
German de-nncom-sem dataset

input hidden layer dropout nonlin_h nonlin_o Acc. wF1 Epochs

compound_original n{2 0 ReLU tanh 37.93% 0.3729 140
compound_original n{2 0.1 ReLU tanh 37.00% 0.3623 235
compound_original n{2 0.2 ReLU tanh 39.79% 0.3874 216
compound_original n{2 0.3 ReLU tanh 39.26% 0.3844 334
compound_original n{2 0.4 ReLU tanh 37.80% 0.3630 261
compound_original n 0 ReLU tanh 37.53% 0.3676 154
compound_original n 0.1 ReLU tanh 38.99% 0.3830 210
compound_original n 0.2 ReLU tanh 39.79% 0.3924 164
compound_original n 0.3 ReLU tanh 41.51% 0.4023 305
compound_original n 0.4 ReLU tanh 39.52% 0.3808 217
compound_original 2n 0 ReLU tanh 35.94% 0.3534 129
compound_original 2n 0.1 ReLU tanh 40.85% 0.4009 366
compound_original 2n 0.2 ReLU tanh 40.58% 0.3940 210
compound_original 2n 0.3 ReLU tanh 41.25% 0.4027 168
compound_original 2n 0.4 ReLU tanh 41.64% 0.4084 323
compound_original 2n 0.5 ReLU tanh 42.18% 0.4096 265
compound_original 2n 0.6 ReLU tanh 41.25% 0.3952 243

modifier n 0 ReLU tanh 36.74% 0.3477 171
modifier n 0.1 ReLU tanh 36.87% 0.3451 136
modifier n 0.2 ReLU tanh 36.07% 0.3396 140
modifier n 0.3 ReLU tanh 37.14% 0.3474 183
modifier n 0.4 ReLU tanh 37.27% 0.3448 129
modifier 2n 0 ReLU tanh 36.21% 0.3351 178
modifier 2n 0.1 ReLU tanh 37.53% 0.3479 156
modifier 2n 0.2 ReLU tanh 38.20% 0.3586 163
modifier 2n 0.3 ReLU tanh 36.21% 0.3381 163
modifier 2n 0.4 ReLU tanh 37.67% 0.3521 174

head n 0 ReLU tanh 32.10% 0.2661 151
head n 0.1 ReLU tanh 35.28% 0.3002 241
head n 0.2 ReLU tanh 34.75% 0.2996 226
head n 0.3 ReLU tanh 35.94% 0.3082 180
head n 0.4 ReLU tanh 35.28% 0.3055 232
head 2n 0 ReLU tanh 34.48% 0.2909 442
head 2n 0.1 ReLU tanh 35.41% 0.2995 449
head 2n 0.2 ReLU tanh 36.74% 0.3143 628
head 2n 0.3 ReLU tanh 35.28% 0.2933 204
head 2n 0.4 ReLU tanh 34.88% 0.2995 240

Table B.7 Results for individual property classification using the single input
classification network from Fig. 7.3a, different dropout rates and different sizes of
the hidden layer. Input: the original representations of the compound, modifier and
head (300-dimensional). The best hyperparameters (in bold) were used to produce the
results in Table 7.4.
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B.3 Hyperparameter tuning for classification on the German de-nncom-sem
dataset

model hidden layer dropout nl_h nl_o Acc. wF1 Epochs

composed_addition n 0 ReLU tanh 56.23% 0.5410 237
composed_addition n 0.1 ReLU tanh 56.10% 0.5366 305
composed_addition n 0.2 ReLU tanh 57.29% 0.5516 498
composed_addition n 0.3 ReLU tanh 56.37% 0.5358 209
composed_addition n 0.4 ReLU tanh 54.77% 0.5200 379
composed_addition 2n 0 ReLU tanh 55.70% 0.5409 388
composed_addition 2n 0.1 ReLU tanh 58.22% 0.5631 384
composed_addition 2n 0.2 ReLU tanh 57.82% 0.5581 408
composed_addition 2n 0.3 ReLU tanh 58.49% 0.5602 344
composed_addition 2n 0.4 ReLU tanh 57.56% 0.5528 345

composed_matrix n 0 ReLU tanh 55.17% 0.5333 550
composed_matrix n 0.1 ReLU tanh 56.76% 0.5483 513
composed_matrix n 0.2 ReLU tanh 56.76% 0.5409 512
composed_matrix n 0.3 ReLU tanh 54.51% 0.5182 165
composed_matrix n 0.4 ReLU tanh 52.92% 0.4938 156
composed_matrix 2n 0 ReLU tanh 57.16% 0.5529 240
composed_matrix 2n 0.1 ReLU tanh 55.70% 0.5324 314
composed_matrix 2n 0.2 ReLU tanh 56.90% 0.5473 418
composed_matrix 2n 0.3 ReLU tanh 56.50% 0.5408 490
composed_matrix 2n 0.4 ReLU tanh 56.23% 0.5419 408

composed_multimatrix n 0 ReLU tanh 56.10% 0.5338 201
composed_multimatrix n 0.1 ReLU tanh 57.43% 0.5548 393
composed_multimatrix n 0.2 ReLU tanh 57.56% 0.5494 266
composed_multimatrix n 0.3 ReLU tanh 56.90% 0.5412 455
composed_multimatrix n 0.4 ReLU tanh 55.44% 0.5240 470
composed_multimatrix 2n 0 ReLU tanh 57.56% 0.5513 274
composed_multimatrix 2n 0.1 ReLU tanh 58.89% 0.5654 344
composed_multimatrix 2n 0.2 ReLU tanh 58.36% 0.5605 298
composed_multimatrix 2n 0.3 ReLU tanh 58.75% 0.5630 516
composed_multimatrix 2n 0.4 ReLU tanh 57.03% 0.5389 534

Table B.8 Results for individual property classification using the single input
classification network from Fig. 7.3a, different dropout rates and different sizes of
the hidden layer. Input: a composed representation - obtained either via addition,
matrix or multimatrix composition (300-dimensional). The best hyperparameters
(in bold) were used to produce the results in Table 7.5.
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input h_sz dr1 dr2 nl_h nl_o Acc. wF1 Epochs

c1; c2 n 0 0 ReLU tanh 61.67% 0.6017 292
c1; c2 n 0 0.1 ReLU tanh 63.53% 0.6228 736
c1; c2 n 0 0.2 ReLU tanh 64.46% 0.6327 360
c1; c2 n 0 0.3 ReLU tanh 63.53% 0.6194 353
c1; c2 n 0 0.4 ReLU tanh 64.06% 0.6269 323
c1; c2 n 0 0 ReLU tanh 61.67% 0.6017 292
c1; c2 n 0.1 0.1 ReLU tanh 63.66% 0.6198 325
c1; c2 n 0.2 0.2 ReLU tanh 63.26% 0.6130 304
c1; c2 n 0.3 0.3 ReLU tanh 64.59% 0.6273 608
c1; c2 n 0.4 0.4 ReLU tanh 61.94% 0.5911 230
c1; c2 2n 0 0 ReLU tanh 62.07% 0.6030 369
c1; c2 2n 0.1 0.1 ReLU tanh 64.19% 0.6268 255
c1; c2 2n 0.2 0.2 ReLU tanh 64.59% 0.6245 298
c1; c2 2n 0.3 0.3 ReLU tanh 64.46% 0.6293 423
c1; c2 2n 0.4 0.4 ReLU tanh 63.53% 0.6158 492

composed_multimatrix; head n 0 0 ReLU tanh 58.36% 0.5608 408
composed_multimatrix; head n 0.1 0.1 ReLU tanh 58.62% 0.5624 564
composed_multimatrix; head n 0.2 0.2 ReLU tanh 57.29% 0.5452 516
composed_multimatrix; head n 0.3 0.3 ReLU tanh 55.57% 0.5259 444
composed_multimatrix; head n 0.4 0.4 ReLU tanh 52.39% 0.4928 469

composed_multimatrix; modifier n 0 0 ReLU tanh 63.13% 0.6128 180
composed_multimatrix; modifier n 0.1 0.1 ReLU tanh 63.53% 0.6209 224
composed_multimatrix; modifier n 0.2 0.2 ReLU tanh 63.53% 0.6207 450
composed_multimatrix; modifier n 0.3 0.3 ReLU tanh 64.59% 0.6307 375
composed_multimatrix; modifier n 0.4 0.4 ReLU tanh 62.47% 0.6031 390

Table B.9 Results for individual property classification using the two inputs
classification network from Fig. 7.3b, different dropout rates and different sizes of the
hidden layer. Input: the constituent representations, modifier and head and/or the
multimatrix-composed representations. The best hyperparameters (in bold), are used
to produce the results in Table 7.6.
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B.3 Hyperparameter tuning for classification on the German de-nncom-sem
dataset

input hl dr1 dr2 nl_h nl_o Acc. wF1 Epochs

compound_original 2n 0 0 ReLU tanh 38.99% 0.3683 248
compound_original 2n 0 0.1 ReLU tanh 42.18% 0.4014 427
compound_original 2n 0 0.2 ReLU tanh 42.31% 0.4024 205
compound_original 2n 00.3 ReLU tanh 41.78% 0.3944 211
compound_original 2n 0 0.4 ReLU tanh 42.97% 0.4037 163

modifier 2n 0 0 ReLU tanh 38.59% 0.3558 161
modifier 2n 0 0.1 ReLU tanh 38.06% 0.3460 127
modifier 2n 0 0.2 ReLU tanh 38.33% 0.3624 258
modifier 2n 0 0.3 ReLU tanh 38.20% 0.3633 236
modifier 2n 0 0.4 ReLU tanh 38.99% 0.3667 184

head 2n 0 0 ReLU tanh 36.87% 0.3194 260
head 2n 0 0.1 ReLU tanh 36.60% 0.3137 324
head 2n 0 0.2 ReLU tanh 36.07% 0.3089 215
head 2n 0 0.3 ReLU tanh 35.94% 0.3079 216
head 2n 0 0.4 ReLU tanh 35.68% 0.2993 218

compound_addition 2n 0 0 ReLU tanh 59.55% 0.5752 501
compound_addition 2n 0 0.1 ReLU tanh 61.01% 0.5954 428
compound_addition 2n 0 0.2 ReLU tanh 59.42% 0.5757 266
compound_addition 2n 0 0.3 ReLU tanh 61.41% 0.5957 285
compound_addition 2n 0 0.4 ReLU tanh 61.14% 0.5891 427

compound_multimatrix 2n 0 0 ReLU tanh 60.61% 0.5866 310
compound_multimatrix 2n 0 0.1 ReLU tanh 60.74% 0.5877 316
compound_multimatrix 2n 0 0.2 ReLU tanh 59.68% 0.5722 251
compound_multimatrix 2n 0 0.3 ReLU tanh 60.61% 0.5894 593
compound_multimatrix 2n 0 0.4 ReLU tanh 58.75% 0.5676 600

modifier; head n 0 0 ReLU tanh 63.53% 0.6215 294
modifier; head n 0.1 0.1 ReLU tanh 64.59% 0.6287 233
modifier; head n 0.2 0.2 ReLU tanh 67.37% 0.6594 550
modifier; head n 0.3 0.3 ReLU tanh 63.66% 0.6192 426
modifier; head n 0.4 0.4 ReLU tanh 63.79% 0.6197 563

compound_MM; head n 0 0 ReLU tanh 60.08% 0.5796 468
compound_MM; head n 0.1 0.1 ReLU tanh 58.36% 0.5689 300
compound_MM; head n 0.2 0.2 ReLU tanh 57.96% 0.5581 409
compound_MM; head n 0.3 0.3 ReLU tanh 56.50% 0.5406 448
compound_MM; head n 0.4 0.4 ReLU tanh 54.77% 0.5181 487

modifier; compound_MM n 0 0 ReLU tanh 62.33% 0.6090 274
modifier; compound_MM n 0.1 0.1 ReLU tanh 64.85% 0.6359 288
modifier; compound_MM n 0.2 0.2 ReLU tanh 66.31% 0.6494 330
modifier; compound_MM n 0.3 0.3 ReLU tanh 64.72% 0.6299 257
modifier; compound_MM n 0.4 0.4 ReLU tanh 62.33% 0.6032 195

Table B.10 Results for different dropout rates, results for collapsed property classifi-
cation, using 300-dimensional input representations: either the original representations
of the compound, modifier and head or the composed representation obtained via
addition or multimatrix composition, or two representations - one of a constituent
and a composed representation. The hyperparameters marked in bold were used to
produce the results in Table 7.8.
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input hl dr1 dr2 nl_h nl_o IProp Acc. IProp wF1 Prep Acc. Epochs

compound_multimatrix 2n 0 0 ReLU tanh 58.75% 0.5686 60.08% 346
compound_multimatrix 2n 0.1 0 ReLU tanh 57.43% 0.5520 59.02% 281
compound_multimatrix 2n 0.2 0 ReLU tanh 59.42% 0.5698 57.69% 329
compound_multimatrix 2n 0.3 0 ReLU tanh 58.09% 0.5531 57.69% 295
compound_multimatrix 2n 0.4 0 ReLU tanh 55.84% 0.5351 55.97% 377

modifier; head n 0 0 ReLU tanh 63.00% 0.6167 61.61% 422
modifier; head n 0.1 0.1 ReLU tanh 65.12% 0.6344 63.53% 495
modifier; head n 0.2 0.2 ReLU tanh 65.38% 0.6368 63.00% 407
modifier; head n 0.3 0.3 ReLU tanh 63.13% 0.6094 60.61% 314
modifier; head n 0.4 0.4 ReLU tanh 63.00% 0.6071 60.48% 580

modifier; compound_multimatrix n 0 0 ReLU tanh 61.67% 0.6020 62.86% 254
modifier; compound_multimatrix n 0.1 0.1 ReLU tanh 64.59% 0.6295 63.93% 249
modifier; compound_multimatrix n 0.2 0.2 ReLU tanh 64.19% 0.6256 64.72% 449
modifier; compound_multimatrix n 0.3 0.3 ReLU tanh 62.60% 0.6060 63.26% 328
modifier; compound_multimatrix n 0.4 0.4 ReLU tanh 63.66% 0.6148 62.73% 488

compound_multimatrix; head n 0 0 ReLU tanh 57.82% 0.5557 60.08% 370
compound_multimatrix; head n 0.1 0.1 ReLU tanh 57.96% 0.5526 58.49% 331
compound_multimatrix; head n 0.2 0.2 ReLU tanh 57.03% 0.5414 57.03% 379
compound_multimatrix; head n 0.3 0.3 ReLU tanh 54.91% 0.5190 54.77% 365
compound_multimatrix; head n 0.4 0.4 ReLU tanh 53.05% 0.4991 52.92% 395

Table B.11 Hyperparameter optimization for classification networks using individual
property classification as the main task and preposition classification as an auxiliary
task. The best settings for input, shown in bold, are used to produce the results in
Table 7.9.
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B.4 Hyperparameter tuning for classification on the English Tratz (2011)
dataset

B.4 Hyperparameter tuning for classification on the
English Tratz (2011) dataset

dataset, split input dr1 dr2 Acc. wF1

tratz-fine, random modifier 0 0 39.14% 0.3439
tratz-fine, random modifier 0.1 0 39.56% 0.3452
tratz-fine, random modifier 0.2 0 39.87% 0.3508
tratz-fine, random modifier 0.3 0 39.67% 0.3476
tratz-fine, random modifier 0.4 0 40.40% 0.3558
tratz-fine, random modifier 0.5 0 40.29% 0.3579
tratz-fine, random modifier 0.6 0 40.50% 0.3591
tratz-fine, random modifier 0.7 0 38.83% 0.3315

tratz-fine, lex-mod modifier 0 0 28.33% 0.2376
tratz-fine, lex-mod modifier 0.1 0 28.46% 0.2357
tratz-fine, lex-mod modifier 0.2 0 29.46% 0.2522
tratz-fine, lex-mod modifier 0.3 0 29.11% 0.2407
tratz-fine, lex-mod modifier 0.4 0 30.22% 0.2558
tratz-fine, lex-mod modifier 0.5 0 30.74% 0.2551
tratz-fine, lex-mod modifier 0.6 0 30.72% 0.2505

tratz-fine, lex-head modifier 0 0 37.27% 0.3336
tratz-fine, lex-head modifier 0.1 0 38.48% 0.3445
tratz-fine, lex-head modifier 0.2 0 38.31% 0.3414
tratz-fine, lex-head modifier 0.3 0 38.79% 0.3516
tratz-fine, lex-head modifier 0.4 0 38.44% 0.3426

tratz-fine, lex-full modifier 0 0 27.88% 0.2470
tratz-fine, lex-full modifier 0.1 0 25.84% 0.2114
tratz-fine, lex-full modifier 0.2 0 27.76% 0.2505
tratz-fine, lex-full modifier 0.3 0 26.33% 0.2294
tratz-fine, lex-full modifier 0.4 0 27.70% 0.2505

Table B.12 Semantic property classification on the English Tratz (2011) dataset. Results
for different dropout rates, using 300-dimensional representations of the modifier and
the smlp classifier. The hyperparameters marked in bold were used to produce results
for Table 7.12.

243



Hyperparameter tuning

dataset, split input dr1 dr2 Acc. wF1

tratz-fine, random head 0 0 55.11% 0.5270
tratz-fine, random head 0.1 0 55.22% 0.5258
tratz-fine, random head 0.2 0 55.32% 0.5272
tratz-fine, random head 0.3 0 55.11% 0.5197
tratz-fine, random head 0.4 0 56.26% 0.5373
tratz-fine, random head 0.5 0 55.95% 0.5340

tratz-fine, lex-mod head 0 0 54.26% 0.5256
tratz-fine, lex-mod head 0.1 0 56.54% 0.5526
tratz-fine, lex-mod head 0.2 0 56.22% 0.5496
tratz-fine, lex-mod head 0.3 0 56.19% 0.5478
tratz-fine, lex-mod head 0.4 0 56.76% 0.5528
tratz-fine, lex-mod head 0.5 0 56.83% 0.5526

tratz-fine, lex-head head 0 0 33.80% 0.3252
tratz-fine, lex-head head 0.1 0 34.18% 0.3271
tratz-fine, lex-head head 0.2 0 35.11% 0.3306
tratz-fine, lex-head head 0.3 0 36.67% 0.3479
tratz-fine, lex-head head 0.4 0 38.06% 0.3599
tratz-fine, lex-head head 0.5 0 36.29% 0.3348

tratz-fine, lex-full head 0 0 32.90% 0.3100
tratz-fine, lex-full head 0.1 0 32.71% 0.3072
tratz-fine, lex-full head 0.2 0 32.96% 0.3120
tratz-fine, lex-full head 0.3 0 33.89% 0.3373
tratz-fine, lex-full head 0.4 0 36.62% 0.3549
tratz-fine, lex-full head 0.5 0 35.25% 0.3243

Table B.13 Semantic property classification on the English Tratz (2011) dataset. Results
for different dropout rates, using 300-dimensional representations of the head and the
smlp classifier. The hyperparameters marked in bold were used to produce results for
Table 7.12.
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B.4 Hyperparameter tuning for classification on the English Tratz (2011)
dataset

dataset, split input dr1 dr2 Acc. wF1

tratz-fine, random addition 0 0 68.06% 0.6722
tratz-fine, random addition 0.1 0 68.16% 0.6738
tratz-fine, random addition 0.2 0 68.37% 0.6755
tratz-fine, random addition 0.3 0 67.01% 0.6599
tratz-fine, random addition 0.4 0 66.91% 0.6582

tratz-fine, lex-mod addition 0 0 53.24% 0.5166
tratz-fine, lex-mod addition 0.1 0 54.69% 0.5342
tratz-fine, lex-mod addition 0.2 0 55.22% 0.5380
tratz-fine, lex-mod addition 0.3 0 55.31% 0.5388
tratz-fine, lex-mod addition 0.4 0 55.57% 0.5374

tratz-fine, lex-head addition 0 0 42.14% 0.4034
tratz-fine, lex-head addition 0.1 0 42.88% 0.4143
tratz-fine, lex-head addition 0.2 0 42.72% 0.4103
tratz-fine, lex-head addition 0.3 0 43.48% 0.4149
tratz-fine, lex-head addition 0.4 0 42.95% 0.4086

tratz-fine, lex-full addition 0 0 36.86% 0.3445
tratz-fine, lex-full addition 0.1 0 37.42% 0.3531
tratz-fine, lex-full addition 0.2 0 37.48% 0.3379
tratz-fine, lex-full addition 0.3 0 37.24% 0.3365
tratz-fine, lex-full addition 0.4 0 36.62% 0.3417

Table B.14 Semantic property classification on the English Tratz (2011) dataset.
Results for different dropout rates, using 300-dimensional representations obtained via
component-wise addition of the constituent representations and the SMLP classifier.
The hyperparameters marked in bold were used to produce results for Table 7.12.

dataset, split input dr1 dr2 Acc. wF1

tratz-fine, random compound_multimatrix 0 0 67.64% 0.6743
tratz-fine, random compound_multimatrix 0.1 0 70.35% 0.6960
tratz-fine, random compound_multimatrix 0.2 0 70.67% 0.7009
tratz-fine, random compound_multimatrix 0.3 0 68.16% 0.6727
tratz-fine, random compound_multimatrix 0.4 0 66.81% 0.6579

tratz-fine, lex-mod compound_multimatrix 0 0 58.50% 0.5711
tratz-fine, lex-mod compound_multimatrix 0.1 0 59.11% 0.5771
tratz-fine, lex-mod compound_multimatrix 0.2 0 59.20% 0.5785
tratz-fine, lex-mod compound_multimatrix 0.3 0 59.26% 0.5782
tratz-fine, lex-mod compound_multimatrix 0.4 0 58.74% 0.5732

tratz-fine, lex-head compound_multimatrix 0 0 51.80% 0.5076
tratz-fine, lex-head compound_multimatrix 0.1 0 50.56% 0.4976
tratz-fine, lex-head compound_multimatrix 0.2 0 50.13% 0.4944
tratz-fine, lex-head compound_multimatrix 0.3 0 49.11% 0.4815
tratz-fine, lex-head compound_multimatrix 0.4 0 49.60% 0.4886

tratz-fine, lex-full compound_multimatrix 0 0 40.21% 0.3865
tratz-fine, lex-full compound_multimatrix 0.1 0 39.53% 0.3776
tratz-fine, lex-full compound_multimatrix 0.2 0 40.89% 0.3953
tratz-fine, lex-full compound_multimatrix 0.3 0 40.52% 0.3942
tratz-fine, lex-full compound_multimatrix 0.4 0 40.33% 0.3901

Table B.15 Semantic property classification on the English Tratz (2011) dataset.
Results for different dropout rates, using a 300-dimensional, multimatrix-composed
representation and the smlp classifier. The hyperparameters marked in bold were used
to produce results for Table 7.12.
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dataset, split input dr1 dr2 nl_h nl_o Acc. wF1

tratz-fine, random modifier; head 0 0 ReLU tanh 76.07% 0.7541
tratz-fine, random modifier; head 0.1 0.1 ReLU tanh 78.48% 0.7793
tratz-fine, random modifier; head 0.2 0.2 ReLU tanh 78.16% 0.7738
tratz-fine, random modifier; head 0.3 0.3 ReLU tanh 76.70% 0.7561
tratz-fine, random modifier; head 0.4 0.4 ReLU tanh 76.49% 0.7534

tratz-fine, lex-mod modifier; head 0 0 ReLU tanh 66.37% 0.6491
tratz-fine, lex-mod modifier; head 0.1 0.1 ReLU tanh 68.37% 0.6697
tratz-fine, lex-mod modifier; head 0.2 0.2 ReLU tanh 67.96% 0.6631
tratz-fine, lex-mod modifier; head 0.3 0.3 ReLU tanh 68.44% 0.6677
tratz-fine, lex-mod modifier; head 0.4 0.4 ReLU tanh 66.94% 0.6498

tratz-fine, lex-head modifier; head 0 0 ReLU tanh 52.68% 0.5104
tratz-fine, lex-head modifier; head 0.1 0.1 ReLU tanh 53.80% 0.5187
tratz-fine, lex-head modifier; head 0.2 0.2 ReLU tanh 54.62% 0.5225
tratz-fine, lex-head modifier; head 0.3 0.3 ReLU tanh 55.30% 0.5296
tratz-fine, lex-head modifier; head 0.4 0.4 ReLU tanh 54.97% 0.5223

tratz-fine, lex-full modifier; head 0 0 ReLU tanh 44.76% 0.4288
tratz-fine, lex-full modifier; head 0.1 0.1 ReLU tanh 45.51% 0.4289
tratz-fine, lex-full modifier; head 0.2 0.2 ReLU tanh 46.75% 0.4390
tratz-fine, lex-full modifier; head 0.3 0.3 ReLU tanh 47.58% 0.4456
tratz-fine, lex-full modifier; head 0.4 0.4 ReLU tanh 47.30% 0.4398

Table B.16 Semantic property classification on the English Tratz (2011) dataset. Results
for different dropout rates, using 300-dimensional representations of the modifier and
head as input and the dmlp classifier. The hyperparameters marked in bold were used
to produce results for Table 7.12.

dataset, split input dr1 dr2 Acc. wF1

tratz-fine, random compound_multimatrix; head 0 0 72.65% 0.7218
tratz-fine, random compound_multimatrix; head 0.1 0.1 72.76% 0.7154
tratz-fine, random compound_multimatrix; head 0.2 0.2 72.34% 0.7145
tratz-fine, random compound_multimatrix; head 0.3 0.3 70.25% 0.6924
tratz-fine, random compound_multimatrix; head 0.4 0.4 69.21% 0.6762

tratz-fine, lex-mod compound_multimatrix; head 0 0 63.91% 0.6246
tratz-fine, lex-mod compound_multimatrix; head 0.1 0.1 64.67% 0.6331
tratz-fine, lex-mod compound_multimatrix; head 0.2 0.2 64.46% 0.6284
tratz-fine, lex-mod compound_multimatrix; head 0.3 0.3 64.74% 0.6316
tratz-fine, lex-mod compound_multimatrix; head 0.4 0.4 63.31% 0.6127

tratz-fine, lex-head compound_multimatrix; head 0 0 49.24% 0.4785
tratz-fine, lex-head compound_multimatrix; head 0.1 0.1 49.46% 0.4758
tratz-fine, lex-head compound_multimatrix; head 0.2 0.2 49.77% 0.4795
tratz-fine, lex-head compound_multimatrix; head 0.3 0.3 49.91% 0.4808
tratz-fine, lex-head compound_multimatrix; head 0.4 0.4 49.91% 0.4778

tratz-fine, lex-full compound_multimatrix; head 0 0 41.51% 0.3959
tratz-fine, lex-full compound_multimatrix; head 0.1 0.1 42.13% 0.4006
tratz-fine, lex-full compound_multimatrix; head 0.2 0.2 41.64% 0.3960
tratz-fine, lex-full compound_multimatrix; head 0.3 0.3 43.25% 0.4107
tratz-fine, lex-full compound_multimatrix; head 0.4 0.4 41.31% 0.4101

Table B.17 Semantic property classification on the English Tratz (2011) dataset. Results
for different dropout rates, using two 300-dimensional representations: a composed
representation, using the multimatrix model and the head representation. Using the
dmlp classifier. The hyperparameters marked in bold were used to produce results for
Table 7.12.
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B.4 Hyperparameter tuning for classification on the English Tratz (2011)
dataset

dataset, split input dr1 dr2 Acc. wF1

tratz-fine, random modifier; compound_multimatrix 0 0 69.62% 0.6914
tratz-fine, random modifier; compound_multimatrix 0.1 0.1 73.07% 0.7229
tratz-fine, random modifier; compound_multimatrix 0.2 0.2 71.71% 0.7080
tratz-fine, random modifier; compound_multimatrix 0.3 0.3 69.21% 0.6789
tratz-fine, random modifier; compound_multimatrix 0.4 0.4 67.85% 0.6606

tratz-fine, lex-mod modifier; compound_multimatrix 0 0 60.35% 0.5898
tratz-fine, lex-mod modifier; compound_multimatrix 0.1 0.1 62.56% 0.6116
tratz-fine, lex-mod modifier; compound_multimatrix 0.2 0.2 63.33% 0.6158
tratz-fine, lex-mod modifier; compound_multimatrix 0.3 0.3 62.30% 0.6046
tratz-fine, lex-mod modifier; compound_multimatrix 0.4 0.4 58.81% 0.5631

tratz-fine, lex-head modifier; compound_multimatrix 0 0 55.97% 0.5525
tratz-fine, lex-head modifier; compound_multimatrix 0.1 0.1 56.02% 0.5499
tratz-fine, lex-head modifier; compound_multimatrix 0.2 0.2 56.04% 0.5470
tratz-fine, lex-head modifier; compound_multimatrix 0.3 0.3 56.20% 0.5434
tratz-fine, lex-head modifier; compound_multimatrix 0.4 0.4 56.32% 0.5466

tratz-fine, lex-full modifier; compound_multimatrix 0 0 45.66% 0.4453
tratz-fine, lex-full modifier; compound_multimatrix 0.1 0.1 46.28% 0.4440
tratz-fine, lex-full modifier; compound_multimatrix 0.2 0.2 45.79% 0.4407
tratz-fine, lex-full modifier; compound_multimatrix 0.3 0.3 46.65% 0.4478
tratz-fine, lex-full modifier; compound_multimatrix 0.4 0.4 46.59% 0.4444

Table B.18 Semantic property classification on the English Tratz (2011) dataset. Results
for different dropout rates, using two 300-dimensional representations: the modifier
representation and a multimatrix-composed representation. Using the dmlp classifier.
The hyperparameters marked in bold were used to produce results for Table 7.12.
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Appendix C

Examples of Neighbours of the
Composed Representations

This appendix contains tables with example neighbours for the composed representa-
tions created by various composition models. For each composition model, a random
sample of 12 compounds was extracted from the test set: four of the best ranking
compounds, four middle-ranking and four of the worst ranked compounds.

The nearest neighbours are computed for each of the sample compounds, using the
composed vector as a representation. The representations are obtained in each case
using the best performing model, indicated in bold in Table 5.6. The neighbours are
searched for in the observed vector space. The cosine similarity is listed next to each
neighbour.

The examples are written as in the datasets: lowercase for the German compounds,
with an underscore for the English ones. The observed representation always has a
cosine similarity of 1, because the observed vector is compared to itself. The composed
representation has an ‘_c’ appended at the end and is marked in red in each case. E.g.
when the rank is 1 the composed representation is closest to the observed representation.
When the rank is higher than 5 the composed representation is on the last row. The
rank and the difference in cosine similarity give an impression of how far away the
composition is from the correct representation.

C.1 Composed Representations for German Com-
pounds, nn-only dataset
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Examples of Neighbours of the Composed Representations

wasserstrahl:1 teilprivatisierung:1 rechnungsbetrag:1 körpergewicht:1

wasserstrahl 1.00000 teilprivatisierung 1.00000 rechnungsbetrag 1.00000 körpergewicht 1.00000
wasserstrahl_c 0.55930 teilprivatisierung_c 0.61081 rechnungsbetrag_c 0.57306 körpergewicht_c 0.63996
strahl 0.55477 privatisierung 0.60631 betrag 0.56232 gewicht 0.63287
gartenschlauch 0.53208 börsengang 0.46165 kursgebühr 0.53677 körpergröße 0.62053
wasserschlauch 0.53077 bahnreform 0.45870 zahlungseingang 0.53130 körperfett 0.53772
laserstrahl 0.50183 rückkauf 0.44314 überweisung 0.53004 fettanteil 0.49844
luftstrom 0.49770 staatsunternehmen 0.42808 warenwert 0.52819 dosis 0.49696

malteserkreuz:83 zugzwang:83 befreiungsfront:83 stadtstaat:83

malteserkreuz 1.00000 zugzwang 1.00000 befreiungsfront 1.00000 stadtstaat 1.00000
andreaskreuz 0.41591 erfolgsdruck 0.50046 befreiungsarmee 0.57572 weltstadt 0.46776
kuppeldach 0.40613 erfolgszwang 0.45422 befreiungsbewegung 0.54077 inselstaat 0.45954
giebeldach 0.40562 zeitdruck 0.41054 befreiungsorganisation 0.44165 millionenstadt 0.41129
ahornblatt 0.40257 zeitnot 0.41017 einheitsliste 0.43790 handelsstadt 0.40916
ziegeldach 0.39877 schusslinie 0.38739 fortschrittspartei 0.43377 inselreich 0.40415
... ... ... ...
malteserkreuz_c 0.29086 zugzwang_c 0.24360 befreiungsfront_c 0.27199 stadtstaat_c 0.28780

schlagzahl:1000 schildbürger:1000 hilfswerk:1000 leistungsstand:1000

schlagzahl 1.00000 schildbürger 1.00000 hilfswerk 1.00000 leistungsstand 1.00000
fehlerquote 0.45229 täuschungsmanöver 0.36015 hilfsdienst 0.54199 entwicklungsstand 0.70655
pulsfrequenz 0.44008 verkehrsplaner 0.35997 caritas 0.49962 ausbildungsstand 0.66531
atemfrequenz 0.43836 streich 0.31941 hilfsorganisation 0.48616 leistungsvermögen 0.60301
seitenwechsel 0.42078 geschichtensammlung 0.31907 katastrophenhilfe 0.48607 leistungsniveau 0.59627
kampfstärke 0.41400 goldgräber 0.31138 ortsverband 0.47512 wissensstand 0.57662
... ... ... ...
schlagzahl_c 0.15467 schildbürger_c 0.09728 hilfswerk_c 0.11973 leistungsstand_c 0.13264

Table C.1 Neighbours of example compounds from the nn-only test set, using the
head representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (83) and the cut-off rank (1000). Rank specified
next to the compound on the header row, e.g. Wasserstrahl ‘jet of water’, has rank 1.

tariftreuegesetz:1 schubkraft:1 mittagszeit:1 höllenfeuer:1

tariftreuegesetz 1.00000 schubkraft 1.00000 mittagszeit 1.00000 höllenfeuer 1.00000
tariftreuegesetz_c 0.58098 schubkraft_c 0.61961 mittagszeit_c 0.65324 höllenfeuer_c 0.43100
tariftreue 0.58085 schub 0.60430 mittag 0.64868 totenreich 0.42253
einwanderungsgesetz 0.51666 zugkraft 0.60215 mittagspause 0.64601 hölle 0.41414
ladenschlussgesetz 0.45362 auftrieb 0.55064 mitternacht 0.60622 scheiterhaufen 0.37570
finanzausgleichsgesetz 0.45336 abtrieb 0.47455 nachmittag 0.58042 himmelreich 0.35617
haushaltsrecht 0.43740 antriebskraft 0.47065 mittagshitze 0.56101 paradies 0.34748

kostendeckung:375 heilsbringer:375 kirchspiel:375 rebellengruppe:375

kostendeckung 1.00000 heilsbringer 1.00000 kirchspiel 1.00000 rebellengruppe 1.00000
bedarfsdeckung 0.55000 hoffnungsträger 0.62704 rittergut 0.53496 splittergruppe 0.51143
kostenreduzierung 0.42775 retter 0.54264 pfarrsprengel 0.51299 untergrundbewegung 0.50939
kosteneinsparung 0.41999 lichtgestalt 0.53975 pfarrbezirk 0.50748 oppositionsgruppe 0.50215
kostenreduktion 0.41896 wunderheiler 0.46035 pfarre 0.48444 untergrundorganisation 0.49018
schuldentilgung 0.41752 sündenbock 0.45390 kirchengemeinde 0.46484 frauenorganisation 0.46723
... ... ... ...
kostendeckung_c 0.23425 heilsbringer_c 0.21548 kirchspiel_c 0.23243 rebellengruppe_c 0.21373

stadtvilla:1000 losverfahren:1000 gastvortrag:1000 rangabzeichen:1000

stadtvilla 1.00000 losverfahren 1.00000 gastvortrag 1.00000 rangabzeichen 1.00000
penthousewohnung 0.50038 zufallsprinzip 0.56979 fachvortrag 0.74564 dienstgradabzeichen 0.65698
industriehalle 0.49141 zufallsgenerator 0.52098 festvortrag 0.71923 kragenspiegel 0.53794
neubauwohnung 0.47510 losentscheid 0.51416 antrittsvorlesung 0.65226 uniform 0.48495
neubausiedlung 0.47306 auswahlverfahren 0.48468 vortragsabend 0.62737 parteiabzeichen 0.48035
maisonettewohnung 0.47268 studienplatz 0.44089 diavortrag 0.59991 abzeichen 0.45276
... ... ... ...
stadtvilla_c 0.08773 losverfahren_c 0.05999 gastvortrag_c 0.08392 rangabzeichen_c 0.13207

Table C.2 Neighbours of example compounds from the nn-only test set, using the
modifier representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (375) and the cut-off rank (1000).
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C.1 Composed Representations for German Compounds, nn-only dataset

temperaturmessung:105 eiswüste:106 hefeteig:306 geschäftsgebaren:307

temperaturmessung 1.00000 eiswüste 1.00000 hefeteig 1.00000 geschäftsgebaren 1.00000
temperatursensor 0.55149 sumpflandschaft 0.51753 teig 0.69971 gebaren 0.63749
messung 0.51300 sandwüste 0.50431 mehl 0.56247 firmenpolitik 0.52558
druckmessung 0.48740 steppenlandschaft 0.48304 blätterteig 0.55626 geschäftspolitik 0.50110
positionsbestimmung 0.47085 wüste 0.43948 brotteig 0.55242 preispolitik 0.45619
entfernungsmessung 0.46391 eisscholle 0.43368 pizzateig 0.51847 anspruchsdenken 0.40727
... ... ... ...
temperaturmessung_c 0.30230 eiswüste_c 0.29213 hefeteig_c 0.23067 geschäftsgebaren_c 0.20327

reformkurs:1000 schulzeit:1000 verbindungslinie:1000 erzählform:1000

reformkurs 1.00000 schulzeit 1.00000 verbindungslinie 1.00000 erzählform 1.00000
demokratisierungsprozess 0.50042 studienzeit 0.70350 grenzlinie 0.50943 romanform 0.54450
reformpolitik 0.45847 jugendzeit 0.68140 schnittpunkt 0.50175 dialogform 0.50634
reformprogramm 0.45296 kindheit 0.61092 symmetrieachse 0.45167 darstellungsweise 0.47987
reformwillen 0.41501 schule 0.58646 nahtstelle 0.41824 literaturgattung 0.47877
reformprozess 0.40998 abitur 0.57461 schnittlinie 0.41689 versform 0.47829
... ... ... ...
reformkurs_c -0.11848 schulzeit_c -0.23277 verbindungslinie_c 0.07165 erzählform_c 0.07803

kriegsgefangener:1000 familienausflug:1000 heimatkalender:1000 einsatzfeld:1000

kriegsgefangener 1.00000 familienausflug 1.00000 heimatkalender 1.00000 einsatzfeld 1.00000
zwangsarbeiter 0.56735 tagesausflug 0.67161 heimatbuch 0.46712 anwendungsgebiet 0.69981
kriegsgefangenschaft 0.56660 betriebsausflug 0.61388 musenalmanach 0.43831 einsatzgebiet 0.63412
gefangener 0.56521 ausflug 0.60310 kunstkalender 0.36653 betätigungsfeld 0.61496
kriegsgefangene 0.53552 fahrradtour 0.60296 nachrichtenblatt 0.36466 tätigkeitsfeld 0.58381
internierung 0.50939 einkaufsbummel 0.55363 jahrbuch 0.35119 anwendungsfeld 0.57015
... ... ... ...
kriegsgefangener_c -0.03176 familienausflug_c 0.01378 heimatkalender_c -0.02351 einsatzfeld_c 0.09593

Table C.3 Neighbours of example compounds from the nn-only test set, using the
mul representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (105, 106, 306, 307), the middle and the cut-off rank (1000).

flugticket:1 suppenteller:1 finanzkapital:1 kantonsspital:1

flugticket 1.00000 suppenteller 1.00000 finanzkapital 1.00000 kantonsspital 1.00000
flugticket_c 0.65155 suppenteller_c 0.52512 finanzkapital_c 0.52548 kantonsspital_c 0.53133
ticket 0.60378 teller 0.51351 kapital 0.49287 marienhospital 0.52146
zugticket 0.58610 plastikbecher 0.43856 finanzsystem 0.44540 spital 0.50101
bahnticket 0.56020 zuckerdose 0.43355 kapitalismus 0.43818 kreiskrankenhaus 0.50023
visum 0.53509 löffel 0.43283 bankensystem 0.41986 frauenklinik 0.49694
fahrkarte 0.52867 kaffeetasse 0.42468 geldkapital 0.40945 kantonsschule 0.44357

stellengesuch:49 endpunkt:49 routinearbeit:49 seestraße:49

stellengesuch 1.00000 endpunkt 1.00000 routinearbeit 1.00000 seestraße 1.00000
inserat 0.54958 anfangspunkt 0.74470 schreibtischarbeit 0.55576 schlossstraße 0.61548
stellenangebot 0.54293 zielpunkt 0.64873 verwaltungsarbeit 0.54241 poststraße 0.60313
stellenanzeige 0.49637 ausgangspunkt 0.50388 planungsarbeit 0.51491 klosterstraße 0.60291
kontaktanzeige 0.47328 zielort 0.48114 büroarbeit 0.49090 kirchstraße 0.59774
jobportal 0.46667 endziel 0.45363 redaktionsarbeit 0.44574 waldstraße 0.57648
... ... ... ...
stellengesuch_c 0.28169 endpunkt_c 0.31385 routinearbeit_c 0.30051 seestraße_c 0.39328

kultursommer:1000 transferliste:1000 kontrollzentrum:1000 wertmarke:1000

kultursommer 1.00000 transferliste 1.00000 kontrollzentrum 1.00000 wertmarke 1.00000
konzertreihe 0.48630 rednerliste 0.40224 menüpunkt 0.49868 schwerbehindertenausweis 0.48191
musikfestival 0.46145 beobachtungsliste 0.39132 benutzerprofil 0.49165 zeitkarte 0.46883
musikfest 0.41195 gewinnerseite 0.34903 systemsteuerung 0.46697 ausweis 0.41929
kindertag 0.40739 dopingliste 0.32852 menüleiste 0.45865 bibliotheksausweis 0.41067
eröffnungskonzert 0.40729 fahndungsliste 0.32293 menüeintrag 0.41040 rabattkarte 0.40621
... ... ... ...
kultursommer_c 0.10624 transferliste_c 0.12538 kontrollzentrum_c 0.04169 wertmarke_c 0.05797

Table C.4 Neighbours of example compounds from the nn-only test set, using the
dilation representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (49) and the cut-off rank (1000).
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Examples of Neighbours of the Composed Representations

betonstahl:1 risikofaktor:1 oberstleutnant:1 spammail:1

betonstahl 1.00000 risikofaktor 1.00000 oberstleutnant 1.00000 spammail 1.00000
betonstahl_c 0.40406 risikofaktor_c 0.56219 oberstleutnant_c 0.77960 spammail_c 0.50243
beton 0.39909 stressfaktor 0.55618 oberst 0.76499 postsendung 0.46579
stahlbeton 0.37356 bluthochdruck 0.53696 generalmajor 0.73439 briefsendung 0.46022
portlandzement 0.36614 arteriosklerose 0.52438 kommandeur 0.72549 spam 0.45644
schnittholz 0.36016 unsicherheitsfaktor 0.50833 brigadegeneral 0.70832 absender 0.44231
stahlerzeugung 0.35535 gesundheitsrisiko 0.49435 generalleutnant 0.68834 morddrohung 0.42403

familienserie:40 klammerzusatz:40 kantonsschule:40 diskussionsstand:40

familienserie 1.00000 klammerzusatz 1.00000 kantonsschule 1.00000 diskussionsstand 1.00000
kinderserie 0.61804 satzteil 0.48122 kantonsspital 0.44357 verhandlungsstand 0.63103
arztserie 0.52314 teilsatz 0.45767 werkrealschule 0.41158 forschungsstand 0.58662
jugendserie 0.50889 einleitungssatz 0.40032 volksschule 0.40813 fachdiskussion 0.49509
vorabendserie 0.49620 eingangssatz 0.36906 burggraben 0.40451 sachstand 0.49434
kindersendung 0.48800 regierungsbeschluss 0.34738 stadtbahnhof 0.39872 planungsstand 0.46088
... ... ... ...
familienserie_c 0.28299 klammerzusatz_c 0.26985 kantonsschule_c 0.31903 diskussionsstand_c 0.29451

zeitzeichen:1000 betonwerk:1000 artensterben:1000 bergrutsch:1000

zeitzeichen 1.00000 betonwerk 1.00000 artensterben 1.00000 bergrutsch 1.00000
zeitansage 0.40170 zementwerk 0.52908 klimaveränderung 0.67102 felssturz 0.65060
bürgerfunk 0.37417 kieswerk 0.50888 klimaerwärmung 0.64183 bergsturz 0.62149
börsenblatt 0.35123 ziegelwerk 0.50207 klimawandel 0.62865 meteoriteneinschlag 0.52390
deutschlandfunk 0.34056 chemiewerk 0.48084 umweltzerstörung 0.58204 erdrutsch 0.50994
deutschlandradio 0.33557 eisenwerk 0.45757 waldsterben 0.57910 chemieunfall 0.46229
... ... ... ...
zeitzeichen_c 0.10524 betonwerk_c 0.16580 artensterben_c 0.03732 bergrutsch_c 0.09169

Table C.5 Neighbours of example compounds from the nn-only test set, using the
addition representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (40) and the cut-off rank (1000).

kriegsgefahr:1 brückenpfeiler:1 spiegelbild:1 erscheinungsform:1

kriegsgefahr 1.00000 brückenpfeiler 1.00000 spiegelbild 1.00000 erscheinungsform 1.00000
kriegsgefahr_c 0.46155 brückenpfeiler_c 0.56540 spiegelbild_c 0.49959 erscheinungsform_c 0.51178
hochwassergefahr 0.45071 pfeiler 0.55069 spiegel 0.42648 erscheinung 0.49181
umweltzerstörung 0.43656 betonpfeiler 0.50483 spiegelung 0.41682 ausdrucksform 0.46719
unfallgefahr 0.41535 kaimauer 0.49538 wirklichkeit 0.41160 gestalt 0.44266
inflationsgefahr 0.40978 betonwand 0.49265 bild 0.40622 darstellungsform 0.40976
brandgefahr 0.40631 verkehrsinsel 0.45392 realität 0.39703 beschaffenheit 0.40637

westhafen:36 lautsprecherbox:36 kirchstraße:36 informationsmedium:36

westhafen 1.00000 lautsprecherbox 1.00000 kirchstraße 1.00000 informationsmedium 1.00000
osthafen 0.61135 deckenlampe 0.45522 schulstraße 0.76794 kommunikationsmedium 0.73968
westpark 0.51842 glasvitrine 0.44521 marktstraße 0.75821 informationsquelle 0.63858
nordbahnhof 0.51150 antennenanlage 0.44132 bahnhofstraße 0.72634 massenmedium 0.61141
gänsemarkt 0.45759 holzbaracke 0.43539 poststraße 0.72166 marketinginstrument 0.54893
opernplatz 0.44832 frequenzweiche 0.42759 dorfstraße 0.69395 kommunikationsmittel 0.54508
... ... ... ...
westhafen_c 0.35479 lautsprecherbox_c 0.37441 kirchstraße_c 0.46373 informationsmedium_c 0.35383

raumordnung:1000 körperöffnung:1000 lindenblatt:1000 rechtsetzung:1000

raumordnung 1.00000 körperöffnung 1.00000 lindenblatt 1.00000 rechtsetzung 1.00000
landesplanung 0.75758 muskelbewegung 0.42673 schulterblatt 0.30866 aufgabenerledigung 0.46158
raumplanung 0.63917 kriegshandlung 0.40181 autodach 0.30522 steuererhebung 0.42723
städtebau 0.60532 hautfalte 0.39828 mauerstück 0.30212 rechtsangleichung 0.41123
landschaftsplanung 0.56305 landschaftsform 0.39658 musikredakteur 0.29830 rechtsanwendung 0.40867
landesentwicklung 0.54507 zahnwurzel 0.39494 bandmitglied 0.29817 bürokratieabbau 0.40687
... ... ... ...
raumordnung_c 0.13748 körperöffnung_c 0.13487 lindenblatt_c 0.06087 rechtsetzung_c 0.08577

Table C.6 Neighbours of example compounds from the nn-only test set, using
the w_addition representation of the compound (300 dim). Four examples each of
compounds assigned the best rank (1), the middle (36) and the cut-off rank (1000).
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C.1 Composed Representations for German Compounds, nn-only dataset

literaturliste:1 millionenbetrag:1 kammerchor:1 kirchentür:1

literaturliste 1.00000 millionenbetrag 1.00000 kammerchor 1.00000 kirchentür 1.00000
literaturliste_c 0.64613 millionenbetrag_c 0.64081 kammerchor_c 0.66772 kirchentür_c 0.50159
linksammlung 0.63926 millionenhöhe 0.58265 kammerorchester 0.64804 schlosskirche 0.48988
literaturverzeichnis 0.63369 millionensumme 0.55848 jugendchor 0.59876 gartentür 0.48343
linkliste 0.61794 milliardenhöhe 0.53395 sinfonieorchester 0.59030 stahltür 0.46855
materialsammlung 0.56403 prozentbereich 0.52627 kinderchor 0.58360 gittertor 0.45725
stichwortverzeichnis 0.52657 millionenschaden 0.41002 knabenchor 0.56670 metalltür 0.44895

dienstunfähigkeit:8 sacharbeit:8 flachwasserbereich:8 nonnenkloster:8

dienstunfähigkeit 1.00000 sacharbeit 1.00000 flachwasserbereich 1.00000 nonnenkloster 1.00000
erwerbsunfähigkeit 0.59667 parlamentsarbeit 0.49931 flachwasserzone 0.54073 frauenkloster 0.75747
berufsunfähigkeit 0.58996 übersetzungsarbeit 0.47327 schilfgürtel 0.48476 damenstift 0.56505
ruhestand 0.50842 regierungsarbeit 0.45699 flachwasser 0.47880 chorherrenstift 0.55773
erwerbsminderung 0.50664 basisarbeit 0.45547 fischteich 0.45389 benediktinerkloster 0.54998
altersrente 0.48509 parteiarbeit 0.43764 uferstreifen 0.45278 dominikanerkloster 0.53757
... ... ... ...
dienstunfähigkeit_c 0.43460 sacharbeit_c 0.41684 flachwasserbereich_c 0.44431 nonnenkloster_c 0.51559

adelssitz:1000 lügengeschichte:1000 schildhaupt:1000 bankleitzahl:1000

adelssitz 1.00000 lügengeschichte 1.00000 schildhaupt 1.00000 bankleitzahl 1.00000
rittersitz 0.75560 räuberpistole 0.59323 wellenbalken 0.58326 kontonummer 0.87574
herrensitz 0.74777 horrorgeschichte 0.57983 wappenschild 0.49654 kontoinhaber 0.52949
herrschaftssitz 0.65484 kindergeschichte 0.47823 stammwappen 0.42626 spendenkonto 0.52281
renaissancebau 0.56082 tirade 0.45841 brustschild 0.38956 verwendungszweck 0.47371
familiensitz 0.55827 dreiecksgeschichte 0.44989 wappenbild 0.36243 sparkasse 0.45302
... ... ... ...
adelssitz_c 0.16478 lügengeschichte_c 0.19059 schildhaupt_c 0.07827 bankleitzahl_c 0.03088

Table C.7 Neighbours of example compounds from the nn-only test set, using the
lexfunc representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (8) and the cut-off rank (1000).

verlobungszeit:1 knochenhaut:1 schuhcreme:1 wasserspiel:1

verlobungszeit 1.00000 knochenhaut 1.00000 schuhcreme 1.00000 wasserspiel 1.00000
verlobungszeit_c 0.50116 knochenhaut_c 0.61244 schuhcreme_c 0.51476 wasserspiel_c 0.48561
wirkungszeit 0.48789 gelenkkapsel 0.60170 zahnpasta 0.49788 wasserbecken 0.47995
friedenszeit 0.46251 schleimbeutel 0.52687 acrylfarbe 0.47672 bachlauf 0.46841
trauerzeit 0.43890 hirnhaut 0.48695 melissengeist 0.47571 wasserbassin 0.46445
haftzeit 0.40281 nervengewebe 0.48656 haarspülung 0.47266 brunnenanlage 0.44638
entscheidungsphase 0.40213 knorpel 0.47114 terpentin 0.45167 fischteich 0.43950

bundestagsfraktion:3 windjacke:3 firmenwebsite:3 kochsalzlösung:3

bundestagsfraktion 1.00000 windjacke 1.00000 firmenwebsite 1.00000 kochsalzlösung 1.00000
landtagsfraktion 0.75129 regenjacke 0.63745 firmenhomepage 0.80601 salzlösung 0.70271
fraktion 0.65323 jeansjacke 0.62556 webpräsenz 0.57686 kochsalz 0.51558
bundestagsfraktion_c 0.64196 windjacke_c 0.59997 firmenwebsite_c 0.56662 kochsalzlösung_c 0.48947
bündnis 0.61563 jeanshose 0.57968 internetpräsenz 0.50130 nasenspray 0.48070
kreistagsfraktion 0.61310 motorradjacke 0.56738 firmenpräsentation 0.49971 elektrolytlösung 0.47519
bundespartei 0.60149 latzhose 0.56195 webauftritt 0.46307 natronlauge 0.46132

pechstein:1000 elfenbeinturm:1000 stoßfänger:1000 wegwarte:1000

pechstein 1.00000 elfenbeinturm 1.00000 stoßfänger 1.00000 wegwarte 1.00000
dopingfall 0.36403 wissenschaftsbetrieb 0.46285 kotflügel 0.74618 schafgarbe 0.55761
klee 0.32240 schneckenhaus 0.39820 kühlergrill 0.74419 nachtkerze 0.54511
parteivorsitzende 0.30054 kunstbetrieb 0.38185 wagenfarbe 0.67383 küchenschelle 0.53882
weltcup 0.29197 jargon 0.37867 frontpartie 0.66997 königskerze 0.52426
steiger 0.29133 orchestergraben 0.37317 motorhaube 0.65202 kornblume 0.50359
... ... ... ...
pechstein_c 0.05878 elfenbeinturm_c 0.13736 stoßfänger_c 0.16159 wegwarte_c 0.08229

Table C.8 Neighbours of example compounds from the nn-only test set, using the
fulladd representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (3) and the cut-off rank (1000).
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Examples of Neighbours of the Composed Representations

kandidatenliste:1 budgetdefizit:1 holzkohle:1 gürtelschnalle:1

kandidatenliste 1.00000 budgetdefizit 1.00000 holzkohle 1.00000 gürtelschnalle 1.00000
kandidatenliste_c 0.63785 budgetdefizit_c 0.65943 holzkohle_c 0.59483 gürtelschnalle_c 0.65171
wahlliste 0.62527 haushaltsdefizit 0.64377 schwefel 0.52316 schnalle 0.48734
vorschlagsliste 0.57987 handelsdefizit 0.61463 brennstoff 0.51826 motorradjacke 0.47604
stadtratswahl 0.53681 handelsbilanzdefizit 0.61146 torf 0.50332 goldkette 0.45954
landesliste 0.46998 haushaltsloch 0.51802 kohle 0.49648 ritterrüstung 0.45376
wahlprogramm 0.44950 finanzvolumen 0.49855 steinkohle 0.49128 pfeilspitze 0.45077

kopfnicken:3 mittlerfunktion:3 kostensteigerung:3 buchpreis:3

kopfnicken 1.00000 mittlerfunktion 1.00000 kostensteigerung 1.00000 buchpreis 1.00000
nicken 0.78996 vermittlerrolle 0.71572 preissteigerung 0.67603 friedenspreis 0.49533
kopfschütteln 0.63359 brückenfunktion 0.59088 kostenexplosion 0.66794 literaturpreis 0.48484
kopfnicken_c 0.61911 mittlerfunktion_c 0.47955 kostensteigerung_c 0.62525 buchpreis_c 0.47997
schulterzucken 0.59916 führungsfunktion 0.46672 kostenentwicklung 0.58990 jugendliteraturpreis 0.46408
achselzucken 0.59458 schlüsselfunktion 0.45244 kostenreduktion 0.54452 kulturpreis 0.43849
stirnrunzeln 0.56648 schlüsselstellung 0.44211 gebührenerhöhung 0.54289 filmpreis 0.43703

elfenbeinturm:1000 ohrhänger:1000 wiesenweihe:1000 jahrgang:1000

elfenbeinturm 1.00000 ohrhänger 1.00000 wiesenweihe 1.00000 jahrgang 1.00000
wissenschaftsbetrieb 0.46285 ohrstecker 0.64256 rohrweihe 0.65333 altersklasse 0.52201
schneckenhaus 0.39820 kettenanhänger 0.50323 uferschnepfe 0.47826 klasse 0.47660
kunstbetrieb 0.38185 halskette 0.45218 wachtelkönig 0.47073 jahrgangsstufe 0.43802
jargon 0.37867 armband 0.42427 feldlerche 0.44601 heft 0.43289
orchestergraben 0.37317 armreif 0.41709 zauneidechse 0.42596 schuljahr 0.41897
... ... ... ...
elfenbeinturm_c 0.13119 ohrhänger_c 0.12061 wiesenweihe_c 0.06221 jahrgang_c 0.04815

Table C.9 Neighbours of example compounds from the nn-only test set, using the
matrix representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (3) and the cut-off rank (1000).

notbetrieb:1 kulturtag:1 rattengift:1 blumenkind:1

notbetrieb 1.00000 kulturtag 1.00000 rattengift 1.00000 blumenkind 1.00000
notbetrieb_c 0.51975 kulturtag_c 0.51901 rattengift_c 0.44518 blumenkind_c 0.46442
notprogramm 0.51340 jugendtag 0.40774 vergiftung 0.43146 landei 0.44734
handbetrieb 0.50669 fortbildungskurs 0.40524 nervengift 0.39849 bürohengst 0.43652
museumsbetrieb 0.45225 ferienkurs 0.40035 gift 0.38821 mauerblümchen 0.41811
zugbetrieb 0.41359 umwelttag 0.39099 schlangengift 0.37262 schulaufsatz 0.40413
eisenbahnbetrieb 0.40772 eröffnungsabend 0.38778 rauschgift 0.37219 urlaubsfoto 0.40066

königsfamilie:3 nutzungskonzept:3 unterlassungsanspruch:3 deckungslücke:3

königsfamilie 1.00000 nutzungskonzept 1.00000 unterlassungsanspruch 1.00000 deckungslücke 1.00000
königshaus 0.65108 sanierungskonzept 0.68259 schadensersatzanspruch 0.70699 finanzlücke 0.78838
herrscherfamilie 0.55195 finanzierungskonzept 0.67772 schadenersatzanspruch 0.66762 finanzierungslücke 0.65170
königsfamilie_c 0.49213 nutzungskonzept_c 0.67664 unterlassungsanspruch_c 0.66600 deckungslücke_c 0.52685
sommerresidenz 0.48254 verkehrskonzept 0.55334 erstattungsanspruch 0.60777 haushaltsloch 0.52232
hofstaat 0.46093 marketingkonzept 0.52754 unterlassung 0.55488 wissenslücke 0.44906
königspaar 0.45777 betriebskonzept 0.52228 kläger 0.48540 zinslast 0.42906

jahrgang:1000 besenreiser:1000 goldjunge:1000 teufelskreis:1000

jahrgang 1.00000 besenreiser 1.00000 goldjunge 1.00000 teufelskreis 1.00000
altersklasse 0.52201 krampfader 0.43881 eidgenosse 0.41849 dilemma 0.47161
klasse 0.47660 sonnenallergie 0.43391 tischnachbar 0.38663 spirale 0.46089
jahrgangsstufe 0.43802 krähenfüße 0.43122 bundesgenosse 0.37257 isolation 0.45622
heft 0.43289 nagelpilz 0.41929 lausbub 0.36786 kreislauf 0.44356
schuljahr 0.41897 orangenhaut 0.38424 musterknabe 0.35993 armut 0.41119
... ... ... ...
jahrgang_c 0.15994 besenreiser_c 0.06124 goldjunge_c 0.14188 teufelskreis_c 0.16199

Table C.10 Neighbours of example compounds from the nn-only test set, using the
fulllex representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (3) and the cut-off rank (1000).
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C.1 Composed Representations for German Compounds, nn-only dataset

kaiserhof:1 filmklassiker:1 gedichtsammlung:1 genossenschaftsbank:1

kaiserhof 1.00000 filmklassiker 1.00000 gedichtsammlung 1.00000 genossenschaftsbank 1.00000
kaiserhof_c 0.53337 filmklassiker_c 0.65672 gedichtsammlung_c 0.58220 genossenschaftsbank_c 0.49299
königshof 0.50505 kultfilm 0.56101 gedichtband 0.57083 kreditgenossenschaft 0.44359
westbahnhof 0.47239 stummfilm 0.53810 kurzgeschichtensammlung 0.55403finanzinstitut 0.43849
südbahnhof 0.45833 klassiker 0.51386 lyrikband 0.54998 geschäftsbank 0.43381
kurhaus 0.41580 filmgeschichte 0.49563 gedichtzyklus 0.53842 autofirma 0.42633
hofburg 0.41576 filmreihe 0.46209 buchpublikation 0.51648 raiffeisenbank 0.41938

sportbecken:3 spielleitung:3 meeresgott:3 bergfestung:3

sportbecken 1.00000 spielleitung 1.00000 meeresgott 1.00000 bergfestung 1.00000
schwimmerbecken 0.79349 rennleitung 0.43770 kriegsgott 0.43602 schlossruine 0.51806
nichtschwimmerbecken 0.71534 schiedsrichter 0.42218 sonnengott 0.41660 eishöhle 0.45929
sportbecken_c 0.54605 spielleitung_c 0.42094 meeresgott_c 0.41562 bergfestung_c 0.45664
solebecken 0.53926 vereinsführung 0.38894 orakelspruch 0.36983 marinebasis 0.44476
sprungturm 0.53286 kampfrichter 0.38565 gottvater 0.36892 palastanlage 0.44079
wasserrutsche 0.50002 einsatzleitung 0.37552 ödipus 0.35179 felsenhöhle 0.43599

tierkreis:1000 buchholz:1000 schürzenjäger:1000 pechstein:1000

tierkreis 1.00000 buchholz 1.00000 schürzenjäger 1.00000 pechstein 1.00000
tierkreiszeichen 0.62106 nordheide 0.57025 frauenheld 0.57270 dopingfall 0.36403
frühlingspunkt 0.43581 vogt 0.44773 bürgerschreck 0.50525 klee 0.32240
steinbock 0.42101 horst 0.40577 trinker 0.44374 parteivorsitzende 0.30054
horoskop 0.41849 bergheim 0.38159 menschenfresser 0.42879 weltcup 0.29197
sternzeichen 0.41526 schäfer 0.37702 spaßvogel 0.41207 steiger 0.29133
... ... ... ...
tierkreis_c 0.12350 buchholz_c 0.00390 schürzenjäger_c 0.17954 pechstein_c 0.08661

Table C.11 Neighbours of example compounds from the nn-only test set, using the
addmask representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (3) and the cut-off rank (1000).

fenstersturz:1 puppenbühne:1 goldmünze:1 treuhandgesellschaft:1

fenstersturz 1.00000 puppenbühne 1.00000 goldmünze 1.00000 treuhandgesellschaft 1.00000
fenstersturz_c 0.47161 puppenbühne_c 0.50230 goldmünze_c 0.68389 treuhandgesellschaft_c 0.60968
balkankrieg 0.37277 puppentheater 0.48456 silbermünze 0.65940 immobiliengesellschaft 0.53690
umsturzversuch 0.35756 theatertruppe 0.40536 goldbarren 0.52926 wirtschaftsprüfungsgesellschaft

0.50366
mauerbau 0.34484 laienspielgruppe 0.40371 münze 0.52391 kapitalanlagegesellschaft 0.43972
bauernaufstand 0.34026 kinderzirkus 0.37598 euromünze 0.40528 holdinggesellschaft 0.43395
grabenkrieg 0.33789 gesangsgruppe 0.37250 briefmarke 0.40451 treuhand 0.42412

wissenschaftssprache:2 programmstart:2 felgenbremse:2 kristallgitter:2

wissenschaftssprache 1.00000 programmstart 1.00000 felgenbremse 1.00000 kristallgitter 1.00000
verkehrssprache 0.60098 systemstart 0.71687 scheibenbremse 0.65614 kristallstruktur 0.53256
wissenschaftssprache_c 0.57802 programmstart_c 0.55642 felgenbremse_c 0.53318 kristallgitter_c 0.50674
arbeitssprache 0.53413 verbindungsaufbau 0.53179 trommelbremse 0.50331 gitterstruktur 0.49505
umgangssprache 0.48379 fehlermeldung 0.45016 federgabel 0.46576 elektronenhülle 0.43213
weltsprache 0.47488 erststart 0.43107 rücktrittbremse 0.45414 metallgitter 0.42672
alltagssprache 0.44798 installationsprogramm 0.42529 gangschaltung 0.45402 wassermolekül 0.40722

kreuzband:1000 pechstein:1000 bruchteil:1000 glücksspirale:1000

kreuzband 1.00000 pechstein 1.00000 bruchteil 1.00000 glücksspirale 1.00000
sprunggelenk 0.61506 dopingfall 0.36403 zehntel 0.55662 lotterie 0.49057
kreuzbandriss 0.58321 klee 0.32240 prozentsatz 0.55219 lotto 0.41623
kniegelenk 0.57542 parteivorsitzende 0.30054 drittel 0.49671 kulturfonds 0.32268
achillessehne 0.57250 weltcup 0.29197 hälfte 0.48631 klassenlotterie 0.31018
schultergelenk 0.52865 steiger 0.29133 summe 0.47587 stiftungskapital 0.30479
... ... ... ...
kreuzband_c 0.12019 pechstein_c 0.09469 bruchteil_c 0.06994 glücksspirale_c 0.09046

Table C.12 Neighbours of example compounds from the nn-only test set, using the
wmask representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (2) and the cut-off rank (1000).
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Examples of Neighbours of the Composed Representations

kriegsgefangener:1 kongresshalle:1 eigenschaftswort:1 gefangenenaustausch:1

kriegsgefangener 1.00000 kongresshalle 1.00000 eigenschaftswort 1.00000 gefangenenaustausch 1.00000
kriegsgefangener_c 0.66733 kongresshalle_c 0.56026 eigenschaftswort_c 0.49944 gefangenenaustausch_c 0.47592
zwangsarbeiter 0.56735 kongresszentrum 0.50006 begriffspaar 0.41511 feuerpause 0.46399
kriegsgefangenschaft 0.56660 veranstaltungshalle 0.49029 zahlwort 0.41479 waffenstillstand 0.42153
gefangener 0.56521 stadthalle 0.47710 verb 0.37766 waffengang 0.40481
kriegsgefangene 0.53552 eissporthalle 0.47178 persönlichkeitsmerkmal 0.36437 handelsvertrag 0.40111
internierung 0.50939 konzerthalle 0.45966 fabeltier 0.36368 raketenangriff 0.39876

kirchbau:2 schadenfall:2 hindernislauf:2 gemeindesaal:2

kirchbau 1.00000 schadenfall 1.00000 hindernislauf 1.00000 gemeindesaal 1.00000
kirchenneubau 0.72069 schadensfall 0.88803 hürdenlauf 0.64442 gemeindehaus 0.82184
kirchbau_c 0.66617 schadenfall_c 0.80039 hindernislauf_c 0.62493 gemeindesaal_c 0.81033
schulneubau 0.60698 versicherungsfall 0.66332 geländelauf 0.55704 pfarrsaal 0.80820
dombau 0.59400 versicherungsnehmer 0.55142 vierkampf 0.55051 pfarrheim 0.76253
kirchenbau 0.58399 versicherer 0.51248 slalom 0.51264 gemeindezentrum 0.74898
museumsbau 0.50437 versicherungssumme 0.50689 staffellauf 0.50778 pfarrzentrum 0.67701

nachtschatten:1000 besenreiser:1000 wertschätzung:1000 tierkreis:1000

nachtschatten 1.00000 besenreiser 1.00000 wertschätzung 1.00000 tierkreis 1.00000
lotos 0.36870 krampfader 0.43881 anerkennung 0.64735 tierkreiszeichen 0.62106
herbstzeitlose 0.34442 sonnenallergie 0.43391 sympathie 0.58090 frühlingspunkt 0.43581
mondstein 0.31443 krähenfüße 0.43122 offenheit 0.54826 steinbock 0.42101
johannisbeere 0.31363 nagelpilz 0.41929 hilfsbereitschaft 0.53844 horoskop 0.41849
rabe 0.31309 orangenhaut 0.38424 solidarität 0.52666 sternzeichen 0.41526
... ... ... ...
nachtschatten_c 0.12018 besenreiser_c 0.08151 wertschätzung_c 0.09489 tierkreis_c 0.11723

Table C.13 Neighbours of example compounds from the nn-only test set, using
the multimatrix representation of the compound (300 dim). Four examples each of
compounds assigned the best rank (1), the middle (2) and the cut-off rank (1000).
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C.2 Composed Representations for English Compounds

C.2 Composed Representations for English Com-
pounds

bear_hug:1 wheat_gluten:1 self_contradiction:1 trust_fund:1

bear_hug 1.00000 wheat_gluten 1.00000 self_contradiction 1.00000 trust_fund 1.00000
bear_hug_c 0.52217 wheat_gluten_c 0.53082 self_contradiction_c 0.61882 trust_fund_c 0.53749
hug 0.51559 gluten 0.52487 contradiction 0.59714 fund 0.52810
thumbs-up 0.47484 soya 0.49889 imperfection 0.41212 funds 0.50985
thumbs-up_sign 0.43816 soya_milk 0.46335 self_abnegation 0.40703 reserve_fund 0.45344
gunny_sack 0.39569 dairy_product 0.45730 self_absorption 0.40170 endowment_fund 0.45103
goose_pimple 0.38553 soy_flour 0.45423 self_justification 0.38959 fund_program 0.44768

water_hole:449 catering_service:450 movie_role:451 mountain_summit:454

water_hole 1.00000 catering_service 1.00000 movie_role 1.00000 mountain_summit 1.00000
swimming_hole 0.46194 catering_company 0.64547 bit_part 0.56831 mountain_peak 0.61218
water_source 0.45894 catering 0.54893 television_appearance 0.54874 rock_outcrop 0.47954
creek_bed 0.45723 food_service 0.48734 screen_debut 0.50435 mountain_range 0.46001
camping_ground 0.42570 consultancy_service 0.45602 stage_work 0.45850 mountain_area 0.45847
watering_hole 0.42167 maintenance_service 0.43561 stage_appearance 0.44975 foot_mountain 0.43734
... ... ... ...
water_hole_c 0.20123 catering_service_c 0.21350 movie_role_c 0.23136 mountain_summit_c 0.23471

bath_product:1000 alleviation_program:1000 caucus_meeting:1000 spring_scale:1000

bath_product 1.00000 alleviation_program 1.00000 caucus_meeting 1.00000 spring_scale 1.00000
bath_soap 0.52700 poverty_alleviation 0.69215 party_caucus 0.61939 spring_balance 0.65253
bath_oil 0.51992 poverty_relief 0.63933 leadership_meeting 0.57863 vernier_caliper 0.59026
beauty_product 0.51054 stem_research 0.61667 party_meeting 0.56668 self_loader 0.54831
bubble_bath 0.47617 customer_conversation 0.58969 luncheon_meeting 0.56332 foot_lever 0.54624
body_lotion 0.46524 self_contemplation 0.58957 prayer_session 0.53306 vacuum_gauge 0.54413
... ... ... ...
bath_product_c 0.08969 alleviation_program_c -0.20364 caucus_meeting_c 0.17859 spring_scale_c 0.03085

Table C.14 Neighbours of example compounds from the en-comcom test set, using
the head representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (449, 450, 451, 454) and the cut-off rank (1000).
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Examples of Neighbours of the Composed Representations

training_program:1 tuition_cost:1 surveillance_system:1 chat_room:1

training_program 1.00000 tuition_cost 1.00000 surveillance_system 1.00000 chat_room 1.00000
training_program_c 0.72370 tuition_cost_c 0.57784 surveillance_system_c 0.60239 chat_room_c 0.65380
training 0.71293 tuition 0.56557 surveillance 0.58624 chat 0.65279
training_course 0.65797 living_expense 0.56488 security_system 0.50898 bulletin_board 0.62545
education_program 0.64155 tuition_fee 0.52773 surveillance_technology 0.43867 discussion_group 0.59571
job_training 0.58638 program_cost 0.52208 radar_system 0.43394 chat_group 0.59259
training_session 0.57561 tuition_increase 0.50444 surveillance_equipment 0.43105 chat_session 0.59116

evaluation_purpose:470 sun_deck:470 thigh_injury:472 phone_operator:472

evaluation_purpose 1.00000 sun_deck 1.00000 thigh_injury 1.00000 phone_operator 1.00000
publicity_purpose 0.53992 promenade_deck 0.61175 groin_injury 0.83244 phone_network 0.66830
research_purpose 0.53319 dining_area 0.58598 calf_injury 0.82590 phone_carrier 0.66003
emergency_use 0.52510 seating_area 0.58310 hamstring_injury 0.82071 phone_company 0.65695
propaganda_purpose 0.52397 lido_deck 0.57928 hamstring_problem 0.80122 phone_giant 0.63925
defense_purpose 0.51303 sun_lounge 0.57856 ankle_injury 0.77489 telecom_operator 0.60251
... ... ... ...
evaluation_purpose_c 0.25187 sun_deck_c 0.24463 thigh_injury_c 0.21614 phone_operator_c 0.21241

surface_fire:1000 sport_competition:1000 kidney_dialysis:1000 union_sympathizer:1000

surface_fire 1.00000 sport_competition 1.00000 kidney_dialysis 1.00000 union_sympathizer 1.00000
crown_fire 0.61235 sport_event 0.59090 dialysis_machine 0.81977 loyalist_troop 0.63439
ground_fire 0.42630 sports_meeting 0.53559 dialysis_treatment 0.77314 draft_evader 0.61964
flier_program 0.39366 gymnastics_competition 0.52647 dialysis_patient 0.67373 slave_dealer 0.61583
gas_jet 0.39173 sport_league 0.48917 dialysis 0.57501 prison_employee 0.61396
grass_fire 0.38710 swim_meet 0.48791 breathing_machine 0.48935 riot_officer 0.60783
... ... ... ...
surface_fire_c -0.07355 sport_competition_c 0.18990 kidney_dialysis_c 0.23924 union_sympathizer_c -0.04632

Table C.15 Neighbours of example compounds from the en-comcom test set, using
the modifier representation of the compound (300 dim). Four examples each of
compounds assigned the best rank (1), the middle (470, 472) and the cut-off rank
(1000).

police_constable:117 water_purification:242 listing_agent:246 electron_microscopy:290

police_constable 1.00000 water_purification 1.00000 listing_agent 1.00000 electron_microscopy 1.00000
police_sergeant 0.65905 purification_system 0.78499 home_seller 0.50637 electron_microscope 0.75592
constable 0.58711 reverse_osmosis 0.56329 selling_agent 0.47405 microscopy 0.71015
police_officer 0.55419 water_treatment 0.55478 seller 0.47063 spectroscopy 0.62403
police_inspector 0.54284 desalination 0.51687 buyer 0.44725 fluorescence_microscopy 0.58475
sergeant 0.49282 water_filter 0.48864 sale_price 0.43591 diffraction 0.56332
... ... ... ...
police_constable_c 0.29209 water_purification_c 0.24130 listing_agent_c 0.23349 electron_microscopy_c 0.20866

consumer_item:1000 bowler_hat:1000 magic_realism:1000 day_nursery:1000

consumer_item 1.00000 bowler_hat 1.00000 magic_realism 1.00000 day_nursery 1.00000
luxury_item 0.61573 frock_coat 0.59376 realism 0.45515 nursery_school 0.68084
consumer_durables 0.60859 dinner_jacket 0.58674 film_noir 0.41939 play_group 0.63668
consumer_goods 0.57867 trench_coat 0.58418 science_fiction 0.40187 nursery 0.57191
durables 0.54177 bow_tie 0.57410 fiction 0.39948 day_care 0.50996
household_appliance 0.54068 business_suit 0.57016 prose_poem 0.39913 infant_school 0.46909
... ... ... ...
consumer_item_c -0.10813 bowler_hat_c 0.01606 magic_realism_c 0.07804 day_nursery_c 0.00905

rowing_club:1000 construction_worker:1000 computer_address:1000 state_support:1000

rowing_club 1.00000 construction_worker 1.00000 computer_address 1.00000 state_support 1.00000
boat_club 0.60395 factory_worker 0.65234 tickler_file 0.64206 government_support 0.67951
rowing 0.50167 construction_site 0.62500 garden_experience 0.61454 state_subsidy 0.65265
yacht_club 0.49730 maintenance_worker 0.61880 import_system 0.57978 government_assistance 0.60804
hockey_club 0.49090 truck_driver 0.58486 cheek_muscle 0.55158 government_subsidy 0.60186
boat_race 0.43238 construction_crew 0.57325 telephone_listing 0.54964 government_funding 0.58542
... ... ... ...
rowing_club_c -0.04987 construction_worker_c -0.12450 computer_address_c -0.06272 state_support_c -0.04262

Table C.16 Neighbours of example compounds from the en-comcom test set, using
the multiplication representation of the compound (300 dim). Four examples each
of compounds assigned the best ranks (117,242,246,290), the middle (1000) and the
cut-off rank (1000).
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C.2 Composed Representations for English Compounds

customer_satisfaction:1 trust_fund:1 malaria_parasite:1 resource_management:1

customer_satisfaction 1.00000 trust_fund 1.00000 malaria_parasite 1.00000 resource_management 1.00000
customer_satisfaction_c 0.67144 trust_fund_c 0.54359 malaria_parasite_c 0.60471 resource_management_c 0.63429
service_quality 0.64684 fund 0.52810 parasite 0.55700 management_issue 0.60866
customer_loyalty 0.64278 funds 0.50985 malaria 0.43453 management 0.59507
product_quality 0.60494 reserve_fund 0.45344 nematode 0.43028 management_practice 0.58025
satisfaction 0.59875 endowment_fund 0.45103 blood_cell 0.41639 water_resource 0.57911
customer_service 0.57920 fund_program 0.44768 influenza_virus 0.40990 management_strategy 0.57805

shrimp_cocktail:187 production_order:187 volunteer_group:187 birth_control:187

shrimp_cocktail 1.00000 production_order 1.00000 volunteer_group 1.00000 birth_control 1.00000
crab_cake 0.63660 pilot_film 0.41666 volunteer_organization 0.64771 family_planning 0.64467
steak_tartare 0.55323 search_warrant 0.39754 community_group 0.53170 abortion 0.62805
lobster_thermidor 0.54750 closure_order 0.37481 neighborhood_group 0.53159 pill 0.52069
porterhouse_steak 0.52034 production_run 0.37274 conservation_group 0.51916 population_control 0.48797
tuna_salad 0.51132 government_order 0.36837 church_group 0.50220 hormone_replacement 0.46705
... ... ... ...
shrimp_cocktail_c 0.33032 production_order_c 0.24727 volunteer_group_c 0.27699 birth_control_c 0.25072

adjustment_problem:1000 rock_performance:1000 accession_negotiation:1000 test_room:1000

adjustment_problem 1.00000 rock_performance 1.00000 accession_negotiation 1.00000 test_room 1.00000
speech_defect 0.54151 rock_video 0.50055 accession_talk 0.81776 testing_room 0.66581
discipline_problem 0.52526 rock_album 0.47910 membership_talk 0.76279 china_closet 0.55543
morale_problem 0.52153 rock_singer 0.47319 membership_negotiation 0.71746 starting_stall 0.55484
billing_problem 0.51368 solo_performance 0.44505 candidate_country 0.53624 dice_box 0.54466
learning_disorder 0.51168 rap_album 0.41676 ratification_process 0.48585 chicken_yard 0.53640
... ... ... ...
adjustment_problem_c 0.05901 rock_performance_c 0.15311 accession_negotiation_c 0.17679 test_room_c 0.07315

Table C.17 Neighbours of example compounds from the en-comcom test set, using
the dilation representation of the compound (300 dim). Four examples each of
compounds assigned the best rank (1), the middle (187) and the cut-off rank (1000).

initiation_rite:1 sewing_machine:1 poverty_trap:1 dipole_antenna:1

initiation_rite 1.00000 sewing_machine 1.00000 poverty_trap 1.00000 dipole_antenna 1.00000
initiation_rite_c 0.48302 sewing_machine_c 0.59397 poverty_trap_c 0.48964 dipole_antenna_c 0.58292
initiation 0.41953 sewing 0.57117 benefit_system 0.46336 dipole 0.51744
kickback_scheme 0.39792 quilting 0.48184 welfare_system 0.41871 antenna 0.46497
prison_program 0.38725 machine_stitch 0.47350 marriage_penalty 0.40658 radiation_pattern 0.44861
rite 0.38340 machine_operator 0.46966 means_test 0.38529 dish_antenna 0.44799
ritual_killing 0.37734 embroidery 0.46061 rat_race 0.38416 throwing_knife 0.42321

rescue_vehicle:100 reaction_time:100 advance_copy:100 phase_space:100

rescue_vehicle 1.00000 reaction_time 1.00000 advance_copy 1.00000 phase_space 1.00000
rescue_equipment 0.49602 working_memory 0.51014 review_copy 0.59946 space_time 0.44398
rescue_squad 0.45921 response_time 0.47491 draft_copy 0.56645 phase_transition 0.42528
rescue_personnel 0.45826 learning_ability 0.46824 paperback_copy 0.51407 ground_state 0.41160
rescue_crew 0.45364 processing_time 0.44939 sneak_preview 0.47378 field_theory 0.41095
rescue_vessel 0.42381 cycle_time 0.44638 galley_proof 0.41045 quantum 0.40099
... ... ... ...
rescue_vehicle_c 0.30007 reaction_time_c 0.27750 advance_copy_c 0.27408 phase_space_c 0.26103

paper_market:1000 vacuum_aspiration:1000 showpiece_event:1000 cart_track:1000

paper_market 1.00000 vacuum_aspiration 1.00000 showpiece_event 1.00000 cart_track 1.00000
property_lending 0.63559 self_stimulation 0.46542 surprise_team 0.55356 dirt_path 0.58237
property_share 0.50744 crystal_gazing 0.45362 budget_session 0.54997 go_cart 0.56240
aircraft_market 0.50299 garden_cart 0.45026 weekend_election 0.53930 dirt_track 0.52775
property_sector 0.48177 exchange_transfusion 0.44189 rating_period 0.53279 logging_road 0.49539
air_lane 0.47996 motorized_wheelchair 0.43895 year_area 0.52381 gravel_road 0.47347
... ... ... ...
paper_market_c 0.16682 vacuum_aspiration_c 0.07520 showpiece_event_c 0.28813 cart_track_c 0.23656

Table C.18 Neighbours of example compounds from the en-comcom test set, using
the addition representation of the compound (300 dim). Four examples each of
compounds assigned the best rank (1), the middle (100) and the cut-off rank (1000).
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Examples of Neighbours of the Composed Representations

election_campaign:1 decree_nisi:1 dung_beetle:1 drinking_alcohol:1

election_campaign 1.00000 decree_nisi 1.00000 dung_beetle 1.00000 drinking_alcohol 1.00000
election_campaign_c 0.70908 decree_nisi_c 0.51042 dung_beetle_c 0.53302 drinking_alcohol_c 0.64101
election 0.65634 decree 0.45393 stag_beetle 0.45368 smoking 0.61267
fall_election 0.58337 annulment 0.45290 beetle 0.42449 drinking 0.60360
election_cycle 0.57361 summary_judgement 0.44723 pill_bug 0.41598 alcohol_consumption 0.57452
campaign_period 0.57320 committal_order 0.39749 dung 0.39514 binge_drinking 0.54170
campaign_team 0.55469 divorce 0.39232 water_strider 0.38161 alcohol_use 0.53805

rescue_vehicle:100 application_procedure:100 music_market:100 phase_space:100

rescue_vehicle 1.00000 application_procedure 1.00000 music_market 1.00000 phase_space 1.00000
rescue_equipment 0.49602 application_process 0.67551 music_world 0.58263 space_time 0.44398
rescue_squad 0.45921 application_form 0.59632 music_chart 0.54964 phase_transition 0.42528
rescue_personnel 0.45826 job_application 0.54862 pop_music 0.52977 ground_state 0.41160
rescue_crew 0.45364 grant_application 0.50493 music_industry 0.51918 field_theory 0.41095
rescue_vessel 0.42381 visa_application 0.46575 music_sale 0.51078 quantum 0.40099
... ... ... ...
rescue_vehicle_c 0.29996 application_procedure_c 0.30313 music_market_c 0.34352 phase_space_c 0.26121

shoo_fly:1000 tobacco_market:1000 paper_wasp:1000 sports_vehicle:1000

shoo_fly 1.00000 tobacco_market 1.00000 paper_wasp 1.00000 sports_vehicle 1.00000
pepper_steak 0.52205 wine_market 0.59988 garden_spider 0.58116 dangling_modifier 0.65794
potato_bug 0.50899 cigarette_market 0.59143 mud_dauber 0.56821 cutting_implement 0.63771
tub_thumper 0.49676 tea_market 0.58791 cicada_killer 0.56456 four-wheel-drive_vehicle 0.62591
rum_baba 0.49114 arms_market 0.57372 mining_bee 0.52083 toy_vehicle 0.62213
dice_box 0.48834 sugar_market 0.55928 house_centipede 0.49953 import_system 0.62018
... ... ... ...
shoo_fly_c -0.02019 tobacco_market_c 0.14430 paper_wasp_c 0.19814 sports_vehicle_c -0.13707

Table C.19 Neighbours of example compounds from the en-comcom test set, using
the w_addition representation of the compound (300 dim). Four examples each of
compounds assigned the best rank (1), the middle (100) and the cut-off rank (1000).

investment_proposal:1 cartoon_strip:1 space_radiation:1 state_organization:1

investment_proposal 1.00000 cartoon_strip 1.00000 space_radiation 1.00000 state_organization 1.00000
investment_proposal_c 0.58941 cartoon_strip_c 0.45421 space_radiation_c 0.49697 state_organization_c 0.63551
investment_project 0.55414 newspaper_column 0.44210 radio_noise 0.48180 state_entity 0.54423
acquisition_plan 0.52641 cartoon_character 0.42425 radiation_biology 0.43957 government_entity 0.53913
export_contract 0.49631 cartoon 0.40936 neutron_radiation 0.41427 state_body 0.50611
aircraft_purchase 0.49383 cartoon_show 0.37220 radiation_exposure 0.41260 volunteer_organization 0.50608
investment_target 0.48651 cartoon_series 0.36934 ionizing_radiation 0.39443 church_organization 0.50271

word_order:14 organ_donation:14 productivity_growth:14 safety_zone:14

word_order 1.00000 organ_donation 1.00000 productivity_growth 1.00000 safety_zone 1.00000
sentence_structure 0.57507 organ_donor 0.62903 labor_productivity 0.76833 school_safety 0.49528
verb 0.56939 transplant 0.48802 labour_productivity 0.76627 exclusion_zone 0.46739
noun_phrase 0.51117 organ_transplant 0.46082 output_growth 0.65773 security_zone 0.44723
syntax 0.50443 brain_death 0.45716 wage_growth 0.65529 perimeter_fence 0.39763
punctuation 0.47007 blood_donation 0.43004 growth_rate 0.64150 protection_zone 0.38599
... ... ... ...
word_order_c 0.38327 organ_donation_c 0.35721 productivity_growth_c 0.54700 safety_zone_c 0.32153

nose_drops:1000 clock_watcher:1000 competition_organiser:1000 crown_fire:1000

nose_drops 1.00000 clock_watcher 1.00000 competition_organiser 1.00000 crown_fire 1.00000
dusting_powder 0.57627 bug_hunter 0.62380 project_organiser 0.59008 surface_fire 0.61235
flea_powder 0.54977 factory_director 0.60452 rally_organizer 0.49819 grass_fire 0.44568
chemical_spray 0.53368 caffeine_addict 0.60010 environment_commissioner

0.49577
moorland_fire 0.44329

calcium_nitrate 0.53318 taxi_dancer 0.59381 coalition_official 0.47552 rollover_crash 0.41715
ammonium_carbonate 0.52881 guinea_gold 0.58602 delegation_head 0.47152 union_miner 0.39997
... ... ... ...
nose_drops_c 0.26893 clock_watcher_c 0.17868 competition_organiser_c 0.22115 crown_fire_c 0.19200

Table C.20 Neighbours of example compounds from the en-comcom test set, using the
lexfunc representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (14) and the cut-off rank (1000).
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C.2 Composed Representations for English Compounds

monitor_program:1 party_chief:1 rogue_elephant:1 service_division:1

monitor_program 1.00000 party_chief 1.00000 rogue_elephant 1.00000 service_division 1.00000
monitor_program_c 0.48685 party_chief_c 0.57671 rogue_elephant_c 0.66267 service_division_c 0.70384
import_system 0.44099 party_boss 0.45157 horse_doctor 0.66240 service_department 0.56786
program_quality 0.43015 party_official 0.43346 plow_horse 0.65587 service_facility 0.56749
traffic_mitigation 0.42661 party_leader 0.42197 chicken_yard 0.65222 service_operation 0.51915
personality_quiz 0.42372 politburo_member 0.41440 bank_guard 0.63444 service_program 0.51402
buffer_store 0.42320 party_branch 0.41280 government_man 0.62989 service_office 0.51309

mail_system:2 vegetable_garden:2 shooting_lodge:2 guide_rope:2

mail_system 1.00000 vegetable_garden 1.00000 shooting_lodge 1.00000 guide_rope 1.00000
email_system 0.64818 vegetable_patch 0.76619 hunting_lodge 0.61701 center_pole 0.68092
mail_system_c 0.60377 vegetable_garden_c 0.74822 shooting_lodge_c 0.51058 guide_rope_c 0.64363
voice_mail 0.55972 kitchen_garden 0.73704 shooting_box 0.50183 grappling_iron 0.64078
mail_service 0.54594 herb_garden 0.71074 cow_barn 0.47860 water_wagon 0.61621
mail_box 0.45023 flower_bed 0.67242 army_hut 0.46117 snatch_block 0.60451
snail_mail 0.42475 fruit_tree 0.64774 manor_house 0.45763 starting_stall 0.60083

custom_officer:1000 sounding_board:1000 service_break:1000 home_plate:1000

custom_officer 1.00000 sounding_board 1.00000 service_break 1.00000 home_plate 1.00000
custom_official 0.76468 rallying_point 0.42654 rating_period 0.60125 plate_umpire 0.68733
stretcher_party 0.71902 launching_pad 0.41923 chow_line 0.56250 center_field 0.49705
slip_coach 0.69349 testing_ground 0.41371 operation_officer 0.55321 umpire 0.49245
riot_officer 0.68981 reference_point 0.38087 pace_lap 0.55097 dugout 0.46930
poll_taker 0.68704 teaching_tool 0.37899 moving_staircase 0.54872 strike_zone 0.45223
... ... ... ...
custom_officer_c 0.43134 sounding_board_c 0.15510 service_break_c 0.35390 home_plate_c 0.09510

Table C.21 Neighbours of example compounds from the en-comcom test set, using the
fulllex representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (2) and the cut-off rank (1000).

health_budget:1 grain_company:1 media_representative:1 embroidery_stitch:1

health_budget 1.00000 grain_company 1.00000 media_representative 1.00000 embroidery_stitch 1.00000
health_budget_c 0.59752 grain_company_c 0.63130 media_representative_c 0.55949 embroidery_stitch_c 0.59637
health_spending 0.57206 grain_trader 0.51409 media_people 0.52056 chain_stitch 0.50486
school_budget 0.44190 seed_company 0.50425 news_media 0.46791 knitting_stitch 0.50301
research_budget 0.43714 grain_producer 0.49439 media_organization 0.46213 tent_stitch 0.49815
pension_account 0.43607 mining_house 0.46649 government_representative

0.44808
machine_stitch 0.49003

development_budget 0.42394 oil_refiner 0.45989 event_organizer 0.42218 running_stitch 0.48148

cement_block:3 fishing_area:3 week_program:3 source_materials:3

cement_block 1.00000 fishing_area 1.00000 week_program 1.00000 source_materials 1.00000
cinder_block 0.78761 trout_fishing 0.65462 month_program 0.67070 research_material 0.62474
concrete_block 0.67699 fishing_ground 0.62830 week_course 0.64740 source_material 0.60566
cement_block_c 0.62378 fishing_area_c 0.53453 week_program_c 0.64090 source_materials_c 0.51021
adobe_brick 0.60881 salmon_fishing 0.49095 hour_course 0.59869 reference_material 0.45619
breeze_block 0.59828 fishing_season 0.48074 week_session 0.59868 teaching_material 0.44815
mud_brick 0.55095 picnic_ground 0.45943 month_course 0.57624 government_document 0.42262

cluster_bomblet:1000 benefit_album:1000 gear_box:1000 shoulder_flash:1000

cluster_bomblet 1.00000 benefit_album 1.00000 gear_box 1.00000 shoulder_flash 1.00000
gasoline_inventory 0.59269 hurricane_relief 0.54283 clutch 0.68303 garrison_cap 0.64212
solidarity_member 0.57432 quake_victim 0.48921 engine 0.63005 sailor_cap 0.59788
weapon_sale 0.56407 flag_issue 0.48688 gear 0.55704 pea_jacket 0.59712
cashew_tree 0.56154 campaign_advertisement 0.48320 torque_converter 0.54977 ski_cap 0.59492
dollar_level 0.55709 tub_thumper 0.48038 axle 0.52728 watch_cap 0.58635
... ... ... ...
cluster_bomblet_c 0.33417 benefit_album_c 0.28759 gear_box_c 0.13559 shoulder_flash_c 0.30276

Table C.22 Neighbours of example compounds from the en-comcom test set, using the
fulladd representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (3) and the cut-off rank (1000).
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Examples of Neighbours of the Composed Representations

dog_collar:1 rap_artist:1 property_sale:1 hill_town:1

dog_collar 1.00000 rap_artist 1.00000 property_sale 1.00000 hill_town 1.00000
dog_collar_c 0.54199 rap_artist_c 0.66841 property_sale_c 0.58137 hill_town_c 0.49966
leash 0.48995 rap_star 0.64815 property_transaction 0.54844 mountain_village 0.44740
collar 0.44047 recording_artist 0.56339 property_management 0.52949 market_town 0.40680
dog_tag 0.41794 hip_hop 0.54667 home_sale 0.50604 beach_town 0.37561
shoulder_strap 0.38407 rap 0.54657 estate_agent 0.47905 university_town 0.37451
sports_jacket 0.38068 rap_music 0.52175 property_market 0.46321 market_square 0.37379

brand_manager:3 time_period:3 lake_poets:3 cheese_dip:3

brand_manager 1.00000 time_period 1.00000 lake_poets 1.00000 cheese_dip 1.00000
marketing_manager 0.70351 time_frame 0.75858 folk_poet 0.65036 cheese_sauce 0.55767
product_manager 0.65581 period 0.68544 sand_hopper 0.63909 taco_sauce 0.54454
brand_manager_c 0.64731 time_period_c 0.59635 lake_poets_c 0.59926 cheese_dip_c 0.51926
marketing_director 0.64690 time_interval 0.59194 forest_god 0.59435 bechamel_sauce 0.51546
product_marketing 0.62479 year_period 0.58240 sea_swallow 0.59369 bean_dip 0.50829
marketing_executive 0.59426 time_span 0.57384 horse_latitude 0.59048 wax_bean 0.50158

rose_hip:1000 developing_cost:1000 snow_job:1000 walkie_talkie:1000

rose_hip 1.00000 developing_cost 1.00000 snow_job 1.00000 walkie_talkie 1.00000
pomegranate 0.54706 morale_building 0.52340 squeeze_play 0.47097 police_radio 0.50134
dog_rose 0.51804 profit_projection 0.51079 snipe_hunt 0.46792 radio_set 0.46869
borage 0.50045 data_formatting 0.49961 tub_thumper 0.44253 cell_phone 0.46803
evening_primrose 0.48132 shareholder_litigation 0.49381 conversation_stopper 0.43753 crystal_set 0.45369
rose_oil 0.47833 inventory_adjustment 0.49292 ham_actor 0.42959 communication_device 0.45242
... ... ... ...
rose_hip_c 0.18460 developing_cost_c 0.31569 snow_job_c 0.27037 walkie_talkie_c 0.16783

Table C.23 Neighbours of example compounds from the en-comcom test set, using the
matrix representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (3) and the cut-off rank (1000).

larch_tree:1 loan_package:1 week_tour:1 maintenance_crew:1

larch_tree 1.00000 loan_package 1.00000 week_tour 1.00000 maintenance_crew 1.00000
larch_tree_c 0.57835 loan_package_c 0.63349 week_tour_c 0.76339 maintenance_crew_c 0.73689
umbrella_pine 0.57058 financing_package 0.60122 week_trip 0.69807 construction_crew 0.58136
hemlock_tree 0.55664 bailout_loan 0.56430 month_tour 0.66554 maintenance_worker 0.57666
cashew_tree 0.53540 dollar_loan 0.56111 week_visit 0.60117 ground_crew 0.56853
flowering_cherry 0.50876 aid_package 0.49299 week_vacation 0.55865 maintenance_personnel 0.53650
balloon_bomb 0.49897 rescue_package 0.48661 whirlwind_tour 0.52659 maintenance_staff 0.52905

hansom_cab:3 shirt_pocket:3 wage_gap:3 ganglion_cell:3

hansom_cab 1.00000 shirt_pocket 1.00000 wage_gap 1.00000 ganglion_cell 1.00000
hackney_coach 0.55839 jacket_pocket 0.73998 pay_gap 0.77808 nerve_fiber 0.55720
hansom 0.55333 coat_pocket 0.66339 gender_gap 0.61318 nerve_fibre 0.52902
hansom_cab_c 0.52081 shirt_pocket_c 0.65127 wage_gap_c 0.58148 ganglion_cell_c 0.50069
post_chaise 0.46151 back_pocket 0.60407 income_gap 0.55840 nerve_cell 0.47682
cab_driver 0.45983 breast_pocket 0.58599 achievement_gap 0.50864 cone_cell 0.46574
police_bus 0.44039 vest_pocket 0.49053 disparity 0.49488 neuron 0.43365

incumbency_advantage:1000 company_reporting:1000 powder_compact:1000 web_site:1000

incumbency_advantage 1.00000 company_reporting 1.00000 powder_compact 1.00000 web_site 1.00000
animal_leg 0.72256 reporting_requirement 0.50687 bathing_cap 0.66197 web_page 0.76294
voter_interest 0.71831 reporting_rule 0.50151 sewing_basket 0.65122 site 0.71682
inventory_problem 0.69622 spending_target 0.50093 traveling_bag 0.64386 page 0.68968
abortion_supporter 0.69511 trading_unit 0.48637 paper_knife 0.63481 web 0.66939
animal_worship 0.69415 banana_export 0.48386 brandy_snifter 0.63411 home_page 0.66098
... ... ... ...
incumbency_advantage_c
0.24467

company_reporting_c 0.31848 powder_compact_c 0.18807 web_site_c 0.25015

Table C.24 Neighbours of example compounds from the en-comcom test set, using the
addmask representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (3) and the cut-off rank (1000).
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C.2 Composed Representations for English Compounds

disk_error:1 currency_value:1 employee_manual:1 metal_armor:1

disk_error 1.00000 currency_value 1.00000 employee_manual 1.00000 metal_armor 1.00000
disk_error_c 0.63742 currency_value_c 0.68259 employee_manual_c 0.69876 metal_armor_c 0.68537
hardware_error 0.62881 currency_rate 0.61195 company_attorney 0.59591 chain_armour 0.67611
program_error 0.56904 exchange_rate 0.54930 apple_fritter 0.58195 face_guard 0.65524
system_error 0.54074 currency_depreciation 0.53445 redundancy_policy 0.57816 bicycle_clip 0.64259
head_crash 0.52071 equity_price 0.49077 intelligence_cell 0.57682 bathing_trunks 0.63836
computer_error 0.51923 currency_policy 0.49042 x-ray_scan 0.57464 bathing_cap 0.61547

church_leader:3 majority_party:3 picnic_table:3 sweetheart_deal:3

church_leader 1.00000 majority_party 1.00000 picnic_table 1.00000 sweetheart_deal 1.00000
christian_leader 0.74565 minority_party 0.73798 fire_pit 0.72293 backroom_deal 0.65540
church_member 0.69506 party_caucus 0.60063 picnic_area 0.69909 barter_deal 0.54495
church_leader_c 0.64688 majority_party_c 0.49051 picnic_table_c 0.60321 sweetheart_deal_c 0.54421
church_official 0.61824 opposition_party 0.47730 picnic 0.58632 oil_deal 0.51831
clergy 0.61303 party_leader 0.46938 barbecue_pit 0.55666 business_deal 0.51084
community_leader 0.56897 majority_coalition 0.46083 basketball_court 0.54764 marketing_deal 0.48358

screen_price:1000 police_lineup:1000 fossil_oil:1000 deed_poll:1000

screen_price 1.00000 police_lineup 1.00000 fossil_oil 1.00000 deed_poll 1.00000
coach_fare 0.56077 bank_guard 0.57622 import_system 0.68093 marriage_certificate 0.53045
one-off_charge 0.53977 mopping-up_operation 0.57314 banana_export 0.65954 family_name 0.46612
manufacturing_level 0.51958 police_sweep 0.57112 price_distribution 0.64716 company_name 0.44564
seat_price 0.51609 surprise_inspection 0.56619 self_loader 0.64239 birth_certificate 0.40850
carriage_charge 0.51505 trash_barrel 0.56103 trading_transaction 0.64030 given_name 0.39348
... ... ... ...
screen_price_c 0.31463 police_lineup_c 0.32903 fossil_oil_c 0.37813 deed_poll_c 0.10163

Table C.25 Neighbours of example compounds from the en-comcom test set, using the
wmask representation of the compound (300 dim). Four examples each of compounds
assigned the best rank (1), the middle (3) and the cut-off rank (1000).

police_academy:1 greyhound_stadium:1 futures_exchange:1 rugby_player:1

police_academy 1.00000 greyhound_stadium 1.00000 futures_exchange 1.00000 rugby_player 1.00000
police_academy_c 0.53538 greyhound_stadium_c 0.57663 futures_exchange_c 0.52665 rugby_player_c 0.76360
police_training 0.46586 stadium_site 0.50737 commodities_exchange 0.51712 soccer_player 0.62837
city_police 0.44562 exhibition_park 0.44719 exchange_floor 0.46548 football_player 0.61485
state_police 0.42296 police_substation 0.42528 futures_market 0.43570 hockey_player 0.56512
training_academy 0.40455 wildlife_hospital 0.42236 commodities_market 0.43415 rugby_league 0.56443
police_headquarters 0.38855 bus_depot 0.40868 stock_exchange 0.42780 tennis_player 0.56172

tax_adviser:2 transmission_line:2 inventory_management:2 embassy_bombing:2

tax_adviser 1.00000 transmission_line 1.00000 inventory_management 1.00000 embassy_bombing 1.00000
tax_specialist 0.65725 power_line 0.61887 inventory_control 0.71857 embassy_attack 0.63572
tax_adviser_c 0.63871 transmission_line_c 0.60699 inventory_management_c

0.66367
embassy_bombing_c 0.49294

tax_lawyer 0.57734 substation 0.60328 production_planning 0.53626 bombing 0.40472
tax_professional 0.57411 transmission_system 0.56338 supply_chain 0.52206 navy_destroyer 0.39885
accountant 0.57257 transmission_network 0.54151 management_software 0.50386 terror_attack 0.37650
tax_attorney 0.56635 gas_pipeline 0.53170 management_system 0.49499 truck_bombing 0.36914

cow_chip:1000 field_game:1000 whistle_blower:1000 hall_porter:1000

cow_chip 1.00000 field_game 1.00000 whistle_blower 1.00000 hall_porter 1.00000
gasoline_bomb 0.57686 marching_music 0.44044 disclosure 0.43698 computer_manager 0.67320
snap_roll 0.57404 go_cart 0.40094 prosecution 0.42416 bank_guard 0.66160
test_copy 0.57085 concert_piano 0.39885 lawsuit 0.42026 forest_god 0.65477
coin_bank 0.56334 sport_field 0.39742 harassment 0.40594 manufacturing_level 0.65423
dice_box 0.56003 table_dance 0.39360 espionage 0.39463 property_man 0.64983
... ... ... ...
cow_chip_c 0.32028 field_game_c 0.12954 whistle_blower_c -0.05645 hall_porter_c 0.41934

Table C.26 Neighbours of example compounds from the en-comcom test set, using
the multimatrix representation of the compound (300 dim). Four examples each of
compounds assigned the best rank (1), the middle (2) and the cut-off rank (1000).
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