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Modern High Energy Physics (HEP) requires large-scale processing of extensive
amounts of scientific data. The needed computing resources are currently provided
statically by HEP specific computing centers. To increase the number of avail-
able resources, for example to cover peak loads, the HEP computing development
team at KIT concentrates on the dynamic integration of additional computing
resources into the HEP infrastructure. Therefore, we developed ROCED, a tool
to dynamically request and integrate computing resources including resources at
HPC centers and commercial cloud providers. Since these resources usually do
not support HEP software natively, we rely on virtualization and container tech-
nologies, which allows us to run HEP workflows on these so called opportunistic
resources. Additionally, we study the efficient processing of huge amounts of data
on a distributed infrastructure, where the data is usually stored at HEP specific
data centers and is accessed remotely over WAN. To optimize the overall data
throughput and to increase the CPU efficiency, we are currently developing an
automated caching system for frequently used data that is transparently integ-

rated into the distributed HEP computing infrastructure.
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1 Introduction

Modern High Energy Physics (HEP) searches for the fundamental building blocks
of matter by looking for new particles and rare processes at energies mankind has
never reached before. This research requires both giant experimental setups and
large scaled processing of huge amounts of data. While simulations are required
to predict the behavior of characteristic quantities, data analyses scan for notice-
able differences between measured data and theory prediction. Both require a huge
amount of computing resources, which are currently deployed at HEP specific com-
puting centers.

Since the demand for computing resources is heavily increasing in HEP, im-
provements of workflows and new computing concepts and resources are required.
Whereas static computing resources that are dedicated to HEP serve the base load,
the HEP computing development team at KIT concentrates on the dynamic in-
tegration of additional computing resources. This allows for example the covering
peak loads caused by journal or conference deadlines. Furthermore, this allows the
sharing of computing resources with other scientific communities to be guaranteed.

This makes the bwForCluster NEMO (Wiebelt et al., 2017), whose resources are
shared among different scientific communities, ideally suited for our developments.
At the bwForCluster NEMO, requested resources are allocated following a fair share
policy and released again once there is no demand for additional HEP resources, so
that they can be used by other communities. In order to provide HEP users easy
access to these additional computing resources, they are integrated into one common
batch system, offering one single point of entry to all available resources for HEP.
For this, the Institute of Experimental Particle Physics (ETP) at the Karlsruhe
Institute of Technology (KIT) developed a tool taking care of the automatic and
dynamic integration of these so-called opportunistic computing resources.

In contrast to dedicated HEP computing resources, opportunistic resources such
as the NEMO HPC cluster neither provide the HEP specific software environment
nor the HEP infrastructure that is specialized for data-intensive processing. Hence,
we need to adapt these resources to fully support HEP workflows. The deployment
of a specialized software environment is enabled by the possibility to virtualize or
containerize workflows at the NEMO HPC center. In contrast to traditional vir-
tualization, the container technology as a more lightweight approach encapsulates

processes within an own environment. Deploying a fully configured software envir-
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onment using those technologies enables us to fulfill the HEP requirements. The
KIT group is currently exploring both technologies in order to increase the amount
of available non-HEP dedicated computing resources that can be utilized for HEP
workflows.

HPC clusters are designed for CPU-intensive workflows with multiprocess inter-
action, data transfers, as well as CPU utilization suffer, when thousands of inde-
pendent processes which run in parallel access data stored at remote HEP Grid
storages. Therefore, we investigate how data-intensive processing can be enabled on
opportunistic resources. In the caching concept developed at ETP, an intermediate
cache layer between the worker nodes and the remote storage systems deploys fast
access to repeatedly accessed data. Since most HEP workflows repeatedly process
the same data, this concept reduces the pressure on the network and increases the
data throughput and thus the CPU efficiency.

In the following, we present the concepts of dynamic integration of HPC com-
puting resources, provisioning of software environments and caching infrastructure
developed at KIT.

2 Resource Allocation and Integration

There are different kinds of providers of computing resources, such as HPC centers
and commercial cloud providers. Depending on the provider, the computing re-
sources have to be requested via common batch systems or via specialized APIs. At
the bwForCluster NEMO, we request resources in the form of virtual machines via
their MOAB! batch system in combination with an OpenStack installation (Meier
et al., 2016).

After resource allocation, those resources are integrated into our overlay batch
system, in our case HTCONDOR?, which manages all HEP user jobs. The usage of an
overlay batch system provides a single point of entry for the users and thus simplifies
the usage of multiple resources. Due to the pull mechanism of HTCONDOR, the
integration into the common HEP resource pool is done by simply starting an

HTCONDOR client process on the virtualized worker nodes.

IMoab Cluster Suite, Adaptive Computing, Inc. URL: https://www.adaptivecomputing.com/
2HTCondor, University of Wisconsin-Madison, https://research.cs.wisc.edu/htcondor/
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For the dynamic allocation and integration of resources, the HEP community at
KIT developed the resource manager RESPONSIVE ON-DEMAND CLOUD ENABLED
DEPLOYMENT (ROCED)3. ROCED periodically monitors the job queue and the
available resources in our overlay batch system. ROCED recognizes a demand for
additional resources and automatically requests those at a resource provider. The
design of ROCED using adapters allows for the utilization of a wide range of
resources provided by different resource providers. When the allocated resources
are not used anymore, the overlay batch system client stops after a certain period
and releases those resources. This allows for dynamically adjusting the amount of
allocated resources to the current demand for resources.

At the time of submission of this paper, ROCED has been used in production
for integrating resources like the bwForCluster NEMO into our HT CONDOR batch
system for over two years already. Figure 1 displays the automatic allocation of
resources adjusted to the current demand for a period of six days. The number of
dynamically allocated CPUs is compared to the number of jobs that are queued
or running within the overlay batch system. It gives an example of the stable be-

havior of ROCED and the high utilization of NEMO resources by the KIT HEP

community.
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Figure 1: The demand for additional computing resources and their utilization
at the NEMO HPC center is shown in units of CPU cores for an exemplary
period of 6 days. The orange line shows the number of requested CPU cores,
the black line shows the number of cores integrated into the overlay batch
system. The blue area shows the number of the used CPU cores, whereas the
stacked orange area shows the demand for more cores based on the overlay

batch system’s queue.

3ROCED, ROCED project, URL: https://github.com/roced-scheduler/ROCED
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Currently, we are able to allocate up to 6000 CPU cores limited by fair share, which
can be used for processing of HEP analyses. During testing phase, we were able to
allocate up to 8000 CPU cores as shown in Figure 1. One of the analyses that profits
heavily from the integration of NEMO resources is the Higgs analysis relying on the
production of u — 7 embedded events (Bechtel et al., 2019), presented within these
proceedings.

A more detailed view of the dynamic integration and provisioning of software

environments is given in (Heidecker et al., 2018).

3 Provisioning of Software Environments

Scientific communities such as HEP have specific requirements regarding the en-
vironment to provide a verified software stack. This verified software environment
ensures that the scientific results of the software can be relied on. Most analyses in
the HEP community currently require Scientific Linux 6. However, over time, more
and more analyses in HEP are switching to CERN CentOS 7. Both Scientific Linux 6
and CERN CentOS 7 are derivates of RedHat Enterprise Linux 6/7 with a specific
set of installed tools. However, those restrictions to specific software environments
usually limit the amount of resources that can be utilized. Since most opportunistic
resources do not provide the required software environment natively, virtualization
and container technologies can be utilized for the provisioning of the HEP software
environment. In this chapter, we give an overview of the utilized technologies as
well as the advantages and disadvantages of some implementations we tested.
Virtualization is probably the most common technology of provisioning dedicated
operating systems and environments. A complete operating system runs on a vir-
tualized hardware, which is called a virtual machine. The host system itself decides
what resources are shared with the virtual machine. Since the virtual machine is
completely isolated from the host system, the user inside the virtual machine can
be given all permissions. This enables the provision of a fully configured software
environment inside the virtual machine, isolated from the host system and other
users. In this case the HTCONDOR client process runs inside the virtual machine,
which provides the HEP software environment as well. However, the virtualiza-
tion of resources leads to administrative overhead and a few percent performance

degradation.
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A more lightweight solution to providing a software environment is to use container
technologies. In contrast to virtualization, a container is a process that runs on the
host system in an isolated namespace. This isolates the processes inside the container
from other process on the host. Also in this case, the host controls the resources
the container can access. Additionally to a certain memory and the number of CPU
cores, this can also include direct access to a file system of the host.

Container technologies lead to less overhead than virtual machines, resulting in a
smaller performance degradation. One implementation of the container technology
is DOCKER?. DOCKER provides many additional features such as network monitor-
ing of the isolated processes. Additionally, HTCONDOR offers built-in support for
DOCKER, so that the batch system client is able to directly start jobs inside of
DOCKER containers. On most of the HEP specific computing resources at KIT, we
use this method to provide the required software environment. This allows us to
use a modern operating system on bare metal and at the same time provide the
HEP software environment for batch jobs. Furthermore, it is possible to provide
different software environments for different jobs, which makes updates or changes
more flexible.

Due to security concerns, DOCKER is usually not installed on HPC clusters.
However, as the processes inside the virtual machine are completely isolated from
the host system, it is possible to use DOCKER inside a virtual machine. On the
bwForCluster NEMO, we use this setup in production, which allows us to use all
additional features of DOCKER. This enables for example the monitoring of network
usage as shown in Figure 2 for a typical data-intensive HEP job.

In the future, we would like to use this additional information for advanced job
scheduling, taking into account available and utilized network bandwidth.

An alternative container technology is SINGULARITY (Kurtzer et al., 2017), which
is explicitly developed for the usage on shared computing resources like HPC cen-
ters. It is designed to run completely in user space, which resolves security con-
cerns, but results in a limited feature set compared to DOCKER. For example, the
above-mentioned network monitoring is not possible using SINGULARITY containers.
However, it enables direct access to the hosts file system like the common parallel

filesystem provided at HPC centers, where jobs can profit from high bandwidth to

4Docker, Docker, Inc. version 17.05.0-ce. URL: https://www.docker.com
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Figure 2: CPU efficiency (blue) and accumulated incoming network traffic
(green) for a job of a typical HEP analysis workflow. The values were updated
every 15min. After the job’s initialization, the job reads data from remote
storage and starts processing. This specific job read 1742.2 MB, took 8.5h and
had an 95.7 % CPU efficiency on average.

data that is locally stored at the HPC center. This enables future optimizations of
the data throughput for data-intensive HEP workflows.

Since DOCKER provides both the full feature set and the lowest overhead, we
prefer setups using a pure DOCKER installation. Shared resources usually do not
allow this, so we can either use virtual machines with integrated DOCKER support
or SINGULARITY containers, depending on the resource provider. Here, one has to
weigh the higher overhead caused by virtualization compared to containerization
against the additional features provided by the combined setup. We prefer the com-
bined setup using DOCKER containers within virtual machines, since we want to
use the additional monitoring information provided by DOCKER to enhance our job

to resource scheduling.

4 Optimization of data throughput

Workflows of the HEP community usually can be divided into two different types.
Whereas simulations mainly require a lot of CPU hours, data analysis workflows
require large datasets to be transferred to the worker nodes. The former benefit dir-
ectly from the additional resources, but the latter require optimized infrastructures

and adjusted hardware configurations.
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Since opportunistic resources and especially HPC centers are not explicitly designed
to support such data-intensive workflows, the HEP community at KIT is studying
how to enable efficient processing of data. HPC centers as well as other opportunistic
resources, usually do not provide sufficient long-term storage capacity to hold the
huge amount of data produced by current HEP experiments. Hence, data analysis
workflows transfer data from dedicated Grid storage systems to the HPC worker
nodes for processing. The shared and limited network infrastructure between Grid
storage and an HPC center limits the data transfers and can cause inefficient CPU
utilization.

Here, we concentrate on a caching concept that stores parts of the accessed data
on HPC storage volumes. This directly speeds up HEP analyses that repeatedly
access the same data by exploiting the available high-performance parallel files
systems available at the HPC center. Furthermore, it reduces the load on the shared
external network connection and thus improves data throughput.

For the transparent integration of the caching approach into current HEP infra-
structure, we concentrate on HEP specific data transfer protocols and the work-
flow management infrastructure HTCONDOR. We decided to concentrate on the
XRooTD protocol (Dorigo et al., 2005), which was developed by the HEP com-
munity for world-wide access to a huge amount of data. It supports a hierarchical
infrastructure to manage distributed storage systems and already provides basic
caching functionalities. For the intermediate caching infrastructure, caching proxies
are installed, which allow transparent access to remote storage capacities while cach-
ing frequently used data on storage volumes at the data center. Repeated access to
already cached data is redirected to the copy at the data center instead of accessing
the Grid storage element. Therefore, we deployed XROOTD cache proxies at the
NEMO HPC center that utilize the distributed high-performance storage capacities
to optimize data throughput for the processing of HEP workflows. The maximum
bandwidth that the proxy can provide with this setup depends on both the per-
formance of the storage system and the available bandwidth of the host running
XRoOTD services. We can avoid this limitation, since the jobs can also directly read
cached files from the parallel file system. Unfortunately, it is not allowed to mount
the storage volumes inside a virtual machine, which we currently use to provide
our required software environment. However, using the container technology SIN-

GULARITY allows for the use of the storage volumes without any security concerns.
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In this case, the access request still goes through the XRooTD hierarchy to allow
access to remote data as well as on-the-fly caching of data while streaming it to the
worker. However, access to already cached files is redirected to the local mount of
the parallel file system profiting from the fast Omni-Path interconnects. When us-
ing SINGULARITY containers, it is no longer as easy to determine the network traffic
of the individual jobs as in the current setup. Hence, we currently prefer the first
setup, which allows us to use Docker container within virtual machines providing
monitoring data of the network utilization of jobs. However, on other HPC centers
such as the ForHLR2 (Barthel et al., 2017) at Karlsruhe, which has no virtualiza-
tion, the usage of SINGULARITY as well as the local redirection for cached data is a
useful alternative to the NEMO setup.

As part of a large-scale computing infrastructure for future HEP experiments,
we want to install caches at each computing resource connected to the HEP in-
frastructure. In this case, the challenge will be improving the data throughput of
the processed workflows and efficiently utilize the limited cache volumes. Therefore,
the HEP community at the KIT studies the advantages of coordinated caching.
Here, multiple caches are coordinated to reach efficient utilization of limited cache
volumes. Furthermore, data-intensive jobs are matched to the most suitable com-
puting resource that already has cached requested files. This enables an optimized
utilization of the computing resources and thus shorter processing times of the pro-
cessed workflows.

In order to introduce the concept of data locality into the HTCONDOR batch
system, an extension is currently being developed. As shown in Figure 3, it fetches
location information from the XRootD service and injects it into the job-to-resource
matching. In addition, this new HTCondor extension also coordinates the cache
location of newly arrived data for further processing.

First studies on a prototype infrastructure showed a big improvement of the
data throughput and thus a better utilized CPU. The highest CPU utilization was
achieved by a combined utilization of cache access and network transfers. The ad-
vantages of such an infrastructure optimization for opportunistic resources will be
studied in detail at NEMO. A successful utilization of the caching concept at the
NEMO HPC center will enable future HEP experiments to efficiently utilize differ-

ent kinds of opportunistic resources for data processing.
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Figure 3: An XRootD proxy caches data transfered from Grid storage element
on the fly. An extension of the HTCONDOR batch system injects the location
of cached data into the job matching. Hence, jobs are matched to the most
suitable computing resource that provides the best cache hit rate.

5 Summary

Opportunistic resources such as the shared HPC center NEMO provide a huge
amount of computing resources.

Using virtualization and container technology, we are able to provide our HEP
software environment on different resources such as HPC centers or commercial
cloud providers. The preferred setup is to start containers inside virtual machines,
which enables network monitoring for each of our batch jobs.

The HEP community at KIT developed ROCED, a tool to dynamically request
resources and integrate them into common HEP computing infrastructure. At the
bwForCluster NEMO, this setup has been in production for over two years, which
allows us to efficiently utilize shared resources and thus cover peak loads.

Over time, we recognized CPU inefficiencies of data intensive jobs due to shared
and limited network capacities. In order to avoid these inefficiencies, a concept
of coordinated data caches utilizing the locally available parallel file system has
been developed, which allows us to place frequently used data temporarily local
to the workers. The concept developed in this manner is also applicable to other
opportunistic resources as well as computing clusters with locally available storage
attached.

With the presented techniques we are able to process all kind of batch jobs of
HEP workflows on may different opportunistic resources in a dynamic and efficient

way.
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