Re-evaluating RCTs with nightlights - an example from biometric smartcards in India

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Stein, Merlin
dc.date.accessioned 2021-12-28T08:44:17Z
dc.date.available 2021-12-28T08:44:17Z
dc.date.issued 2021-12-20
dc.identifier.other 1783946598 de_DE
dc.identifier.uri http://hdl.handle.net/10900/122420
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1224207 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-63784
dc.description.abstract Satellite data and randomized controlled trials (RCTs) are a powerful combination for analyzing causal effects beyond traditional survey-based indicators. The usage of remotely collected data for evaluating RCTs is cost-effective, objective and possible for anyone with treatment assignment data. By re-evaluating one of the largest RCTs - the smartcard intervention of Muralidharan et al. (2016) covering 20 million people - with Indian nighttime luminosity, this paper finds that nightlights as a specific type of satellite data likely often are too noisy to evaluate RCTs. Building upon a post-treatment and a Difference-in-Differences approach, we do not find any statistically significant effects of the biometric smartcards on nightlights, contrasting Muralidharan et al. (2017)'s results of higher income level in treated areas. This can be mainly explained either with the noisiness-caused inability of nightlights to specifically capture economic effects or the absence of an increased economic activity due to a simple redistributive effect of the intervention. The former is more likely when looking at GDP implications of the noisiness in the luminosity data. Per head estimates, sensitivity checks for spillovers, subdistrict-level instead of village-level observations and different time-wise aggregations of nightlight data do not lead to changed results. Although limited with nightlights, nonetheless, the potential for re-evaluating RCTs with satellite data in general is enormous in three ways: (1) For confirming claimed treatment effects, (2) to understand additional impacts and (3) for cost-effectively understanding long-term impacts of interventions. Using daytime imagery for analyzing RCTs is a promising direction for future research. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.classification Economics de_DE
dc.subject.ddc 330 de_DE
dc.subject.other RCT en
dc.subject.other randomized en
dc.subject.other nightlight en
dc.subject.other daylight en
dc.subject.other satellite en
dc.subject.other remote-sensing en
dc.subject.other nighttime luminosity en
dc.subject.other India en
dc.subject.other Census en
dc.subject.other Muralidharan en
dc.subject.other state capacity en
dc.subject.other GDP and nightlights en
dc.title Re-evaluating RCTs with nightlights - an example from biometric smartcards in India en
dc.type Article de_DE
utue.publikation.fachbereich Wirtschaftswissenschaften de_DE
utue.publikation.fakultaet 6 Wirtschafts- und Sozialwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.opus.portal utwpbusinesseco de_DE
utue.publikation.source University of Tübingen Working Papers in Business and Economics ; No. 152 de_DE
utue.publikation.reihenname University of Tübingen Working Papers in Business and Economics de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige