Causality for Natural Language Processing

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Schölkopf, Bernhard (Prof. Dr.)
dc.contributor.author Jin, Zhijing
dc.date.accessioned 2024-12-18T15:34:41Z
dc.date.available 2024-12-18T15:34:41Z
dc.date.issued 2024-12-18
dc.identifier.uri http://hdl.handle.net/10900/159746
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1597469 de_DE
dc.description.abstract Causal reasoning is a cornerstone of human intelligence and a critical capability for artificial systems aiming to achieve advanced understanding and decision-making. This thesis delves into various dimensions of causal reasoning and understanding in large language models (LLMs). It encompasses a series of studies that explore the causal inference skills of LLMs, the mechanisms behind their performance, and the implications of causal and anticausal learning for natural language processing (NLP) tasks. Additionally, it investigates the application of causal reasoning in text-based computational social science, specifically focusing on political decision-making and the evaluation of scientific impact through citations. Through novel datasets, benchmark tasks, and methodological frameworks, this work identifies key challenges and opportunities to improve the causal capabilities of LLMs, providing a comprehensive foundation for future research in this evolving field. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.classification Computerlinguistik , Sprachdaten , Maschinelles Lernen , Künstliche Intelligenz de_DE
dc.subject.ddc 004 de_DE
dc.subject.other natürlichen Sprachverarbeitung de_DE
dc.subject.other Kausales Denken de_DE
dc.subject.other Maschinelles Lernen de_DE
dc.subject.other Künstliche Intelligenz de_DE
dc.subject.other großen Sprachmodellen de_DE
dc.subject.other large language models en
dc.subject.other artificial intelligence en
dc.subject.other machine learning en
dc.subject.other causal reasoning en
dc.subject.other Natural language processing en
dc.title Causality for Natural Language Processing en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2024-12-13
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige