Bench to Bedside: Development of a cGMP Process for ORFV Viral Vector Based Vaccines

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/172667
http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1726675
http://dx.doi.org/10.15496/publikation-113992
Dokumentart: Dissertation
Erscheinungsdatum: 2027-07-11
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Pharmazie
Gutachter: Rammensee, Hans-Georg (Prof. Dr.)
Tag der mündl. Prüfung: 2025-07-11
DDC-Klassifikation: 000 - Allgemeines, Wissenschaft
Freie Schlagwörter: cGMP-konformer Herstellungsprozess
HEK293-Suspensionskultur
Virusproduktion & Prozessoptimierung
Klärfiltration & Nukleasebehandlung
Steric Exclusion Chromatography (SXC)
CaptoCore 700
Aufreinigung
Formulierungsentwicklung & Stabilität
SARS-CoV-2
ORFV-Vektorkandidaten
Parapoxvirus
Rekombinanter Vektor
Multivalente Impfstoffe
ORFV D1701-VrV Plattform
Bioreaktor-Kultivierung
Infektionsparameter (MOI, CDAI)
Prozessintensivierung
Virusreinigung
Tiefenfiltration
Membranadsorber-Chromatographie
Ionenaustauschchromatographie
Host-Cell-DNA-Reduktion
Host-Cell-Protein-Reduktion
Exzipientenscreening
Virusstabilisierung
Klinische Herstellung
Präklinische Studien
SARS-CoV-2 Impfstoffentwicklung
ORFV-basierte Impfstoffe
Orf virus (ORFV) vector platform
cGMP-compliant manufacturing
HEK293 suspension production
Viral vector
upstream optimization
Clarification & DNase digestion
Clarification
DNase digestion
Chromatographic purification of ORFV
Steric Exclusion Chromatography (SXC)
CaptoCore 700
CaptoCore 700 purification
Formulation development & stability
ORFV-based
ORFV-based SARS-CoV-2
SARS-CoV-2 vaccine candidates
Parapoxvirus
Recombinant Orf virus
Immunomodulatory viral vectors
D1701-VrV attenuated vector
Bioreactor cultivation
Infection kinetics
MOI optimization
High-density cell culture
Process intensification
Viral purification
Depth filtration
Host cell DNA reduction
Orf virus (ORFV)
Host cell protein clearance
Nuclease treatment
Membrane adsorber chromatography
Ion exchange chromatography (IEX)
Multimodal chromatography
Excipients screening
Lyophilization feasibility
Thermostable vaccine formulations
Viral stability enhancement
Freeze-thaw resistance
GMP-compliant vaccine manufacturing
Process development & validation
Preclinical vaccine assessment
Clinical translation of viral vectors
Chromatographic purification of viral vectors
Viral formulation development
Viral vector vaccine development
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en
Zur Langanzeige

Inhaltszusammenfassung:

Die Dissertation ist gesperrt bis zum 11. Juli 2027 !

Abstract:

The Orf virus (ORFV) has emerged as a promising platform for developing viral vector vaccines and immunotherapeutic approaches, owing to its high transgene capacity, potent immunomodulatory properties, the option for repeated booster vaccinations due to the low anti-vector immunity, and an overall favorable safety profile. However, until now there has been no systematically established, scalable process for reliably producing ORFV-based vaccines under GMP conditions. The aim of this work was therefore to develop an end-to-end manufacturing process for ORFV-based vaccines that ensures high yields, reproducibility, and GMP compliance. Using HEK293 cells in suspension culture, the upstream process was initially implemented in controlled bioreactors. By employing a systematic Design of Experiments (DoE) approach, critical process parameters - such as cell density at infection, MOI, pH, temperature, and dissolved oxygen - were precisely identified and optimized and successfully scaled up to a 50 L bioreactor. This enabled a more than one-hundredfold increase in virus titers (>10⁸ IU/mL) compared to the original Vero cell-based method. For the downstream process, a scalable clarification strategy was established, comprising nuclease treatment for targeted DNA reduction and a two-stage filtration with polypropylene-based depth filters. Subsequent chromatographic steps (ion exchange, hydrophobic, multimodal, and size-exclusion chromatography) achieved effective removal of host cell DNA and proteins at high yields. The purified virus batches met defined quality criteria for particle integrity, infectivity, and purity, thereby demonstrating suitability for clinical applications. To ensure final product stability, an extensive formulation screening was carried out. More than 30 excipients - among them disaccharides, recombinant albumin, and amino acids - were evaluated under various stress conditions. A formulation consisting of 1 % recombinant human serum albumin and 5 % sucrose in Tris buffer proved especially stable at 4 °C and under multiple freeze-thaw cycles. In addition, arginine-containing formulations enhanced stability at temperatures up to 37 °C, expanding the platform’s potential application range. Based on this developed manufacturing process, preclinical and clinical studies were conducted using multivalent ORFV-based SARS-CoV-2 vaccine candidates. The results demonstrate not only that the process development led to a robust production method but also that it lays the groundwork for future clinical and industrial applications of ORFV as a viral vector. Consequently, this dissertation lays a robust foundation for a scalable manufacturing platform that can be further leveraged for diverse ORFV-based vaccines and therapeutic applications.

Das Dokument erscheint in: