Can Internet Search Queries Help to Predict Stock Market Volatility?

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-58552
http://hdl.handle.net/10900/47872
Dokumentart: Arbeitspapier
Erscheinungsdatum: 2011
Originalveröffentlichung: University of Tübingen Working Papers in Economics and Finance ; 18
Sprache: Englisch
Fakultät: 6 Wirtschafts- und Sozialwissenschaftliche Fakultät
Fachbereich: Wirtschaftswissenschaften
DDC-Klassifikation: 330 - Wirtschaft
Schlagworte: Volatilität , Prognose
Freie Schlagwörter:
Realized volatility , Forecasting , Investor behavior , Noise trader , Search engine data
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en
Zur Langanzeige

Abstract:

This paper studies the dynamics of stock market volatility and retail investor attention measured by internet search queries. We find a strong co-movement of stock market indices’ realized volatility and the search queries for their names. Furthermore, Granger causality is bi-directional: high searches follow high volatility, and high volatility follows high searches. Using the latter feedback effect to predict volatility we find that search queries contain additional information about market volatility. They help to improve volatility forecasts in-sample and out-of-sample as well as for different forecasting horizons. Search queries are particularly useful to predict volatility in high-volatility phases.

Das Dokument erscheint in: