Stock Return Autocorrelations Revisited: A Quantile Regression Approach

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-59769
http://hdl.handle.net/10900/47887
Dokumentart: Arbeitspapier
Erscheinungsdatum: 2012
Originalveröffentlichung: University of Tübingen Working Papers in Economics and Finance ; 24
Sprache: Englisch
Fakultät: 6 Wirtschafts- und Sozialwissenschaftliche Fakultät
Fachbereich: Wirtschaftswissenschaften
DDC-Klassifikation: 330 - Wirtschaft
Schlagworte: Aktie
Freie Schlagwörter: Aktien
Stock return distribution , Quantile autoregression , Overreaction and underreaction
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en
Zur Langanzeige

Abstract:

The aim of this study is to provide a comprehensive description of the dependence pattern of stock returns by studying a range of quantiles of the conditional return distribution using quantile autoregression. This enables us in particular to study the behavior of extreme quantiles associated with large positive and negative returns in contrast to the central quantile which is closely related to the conditional mean in the least-squares regression framework. Our empirical results are based on 30 years of daily, weekly and monthly returns of the stocks comprised in the Dow Jones Stoxx 600 index. We find that lower quantiles exhibit positive dependence on past returns while upper quantiles are marked by negative dependence. This pattern holds when accounting for stock specific characteristics such as market capitalization, industry, or exposure to market risk.

Das Dokument erscheint in: