Inhaltszusammenfassung:
Ziel der vorliegenden Arbeit war es, das Verständnis der Fluxondynamik intrinsischer Josephson-Kontakte aus BSCCO zu erweitern und diese Dynamik gezielt zu beeinflussen. Es wurden neue Ansätze zur Erzeugung von THz-Strahlung erforscht.
Hierzu wurden Stufenstapel aus BSCCO mit Abmessungen von 1-3 µm Breite und 3-10 µm Länge präpariert. Der benötigte Fabrikationsprozess, basierend auf der doppelseitigen Technik von Wang et al., wurde etabliert.
An den so hergestellten Proben wurden Transportmessungen ohne und mit Magnetfeld durchgeführt. Das Magnetfeld im Bereich einiger Tesla lag parallel zu den CuO_2-Doppelebenen an. Es konnten kollektive Plasmaresonanzen beobachtet werden.
Diese waren im Vergleich zu den Resonanzen in Mesastrukturen~\cite{Heim02} stabiler. Die Resonanzen lassen sich im unteren Strombereich einer außer-Phase-Konfiguration zuordnen, während es im oberen Strombereich aufgrund der Kombinationen mehrere mögliche Konfigurationen gibt.
Die Fluxonenanordnung in einer außer-Phase-Konfiguration im unteren Strombereich wird ebenfalls gestützt durch an diesen Stufenstapeln gemessenen Flux-Flow-Oszillationen.
Da die in-Phase-Konfiguration sich hier nicht eindeutig erkennen ließ, wurde die Fluxondynamik zur Erzeugung von
THz-Strahlung gezielt beeinflusst durch die beiden folgenden Ansätze:
* Steuerstrom
* geometrische Beeinflussung: breitenmodulierter Stapel
Zur elektronischen Beeinflussung wurde eine zusätzliche Stromleitung, die Steuerstromleitung, unten längs des Stapels mitpräpariert. Durch diese wurde während der Transportmessungen im Nullfeld ein Strom (0-30 µA) geschickt. Die so erzeugte Inhomogenität im Stapel sollte Fluxonen ohne Anlegen eines externen Magnetfelds erzeugen. Ein sichtbarer Effekt konnte nicht gemessen werden.
Die geometrische Beeinflussung der Fluxondynamik zum Erreichen der in-Phase-Mode beruht auf einer Modulation der Stapelbreite: diese erfährt periodische Einschnürungen (Kammstruktur).
Erste Messungen an in doppelseitiger Technik präparierten Kammstrukturen zeigen vielversprechende Ansätze, dass durch die Breitenmodulation die gezielte Beeinflussung der Fluxondynamik möglich ist.
Es wurden hierzu Simulationen durchgeführt für verschieden starke Modulationstiefen, niedrige und hohe Stapel bei schwachen und starken externen Magnetfeldern. Es zeigt sich, dass für kleine Magnetfelder und eine deutliche Modulationstiefe eine in-Phase-Bewegung der Fluxonen zum Stapelende hin forciert wird. Die Fluxonen erreichen dann gemeinsam das Stapelende.
Die gezielte Beeinflussung der Fluxondynamik ist durch breitenmodulierte Stapel intrinsischer Josphson-Kontakte möglich und vielversprechend. Der Parameterraum sollte zukünftig genauer erforscht werden.