Diverging Roads: Theory-based vs. machine learning-implied stock risk premia

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Grammig, Joachim
dc.contributor.author Hanenberg, Constantin
dc.contributor.author Schlag, Christian
dc.contributor.author Sönksen, Jantje
dc.date.accessioned 2020-02-12T12:44:56Z
dc.date.available 2020-02-12T12:44:56Z
dc.date.issued 2020-02-12
dc.identifier.other 1689891602 de_DE
dc.identifier.uri http://hdl.handle.net/10900/97903
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-979033 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-39286
dc.description.abstract We assess financial theory-based and machine learning-implied measurements of stock risk premia by comparing the quality of their return forecasts. In the low signal-to-noise environment of a one month horizon, we find that it is preferable to rely on a theory-based approach instead of engaging in the computerintensive hyper-parameter tuning of statistical models. The theory-based approach also delivers a solid performance at the one year horizon, at which only one machine learning methodology (random forest) performs substantially better. We also consider ways to combine the opposing modeling philosophies, and identify the use of random forests to account for the approximation residuals of the theory-based approach as a promising hybrid strategy. It combines the advantages of the two diverging paths in the finance world. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.classification Rendite , Prognose , Maschinelles Lernen de_DE
dc.subject.ddc 330 de_DE
dc.subject.other stock risk premia en
dc.subject.other return forecasts en
dc.subject.other machine learning en
dc.subject.other theory-based return prediction en
dc.title Diverging Roads: Theory-based vs. machine learning-implied stock risk premia en
dc.type Article de_DE
utue.publikation.fachbereich Wirtschaftswissenschaften de_DE
utue.publikation.fakultaet 6 Wirtschafts- und Sozialwissenschaftliche Fakultät de_DE
utue.opus.portal utwpbusinesseco de_DE
utue.publikation.source University of Tübingen Working Papers in Business and Economics ; No. 130 de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige