Abstract:
The temporal region of the earliest Tetrapoda and their closest relatives was, in most cases, completely covered by an armor of dermal bones. This armor has been successively reduced over time, leading most famously to the evolution of temporal fenestrae and marginal excavations. Such temporal openings are widespread in extant Tetrapoda, but especially their great diversity within Amniota (mammals and reptiles, including birds) inspired many early studies on the potential phylogenetic and evolutionary implications of temporal openings. In the early 20th century, this led to various researchers naming new taxa that were mainly defined by their temporal morphology, with Anapsida, Synapsida, Diapsida, and Euryapsida being the most known. Most of these taxa are not considered to represent natural groupings anymore; instead, new fossil findings and analyses confirmed that similar types of temporal openings independently evolved several times within, as well as outside of Amniota. Thus, the main focus of temporal region research has been on their functional morphology. The forces generated by the external jaw adductors hereby play an essential role, but additionally the impact of neck mechanics, skull shape, developmental biology, and others are being discussed.
This thesis provides an insight to the anatomy and morphological patterns of the temporal region in Tetrapoda and their closest relatives (Stegocephali). The first part focuses on reviewing and analyzing the research history of the temporal region, starting in the early 19th century discussing the various phylogenetic and functional hypotheses, as well as comparisons of previous terminologies. Additionally, ten new morphotypes for the categorization of temporal morphology are introduced. In the subsequent chapter, sutures of the dermal bones in the skull of the Permian reptile Captorhinus aguti are described in detail and its jaw adductors are reconstructed. This is important to draw inferences on the intracranial mobility and stress distribution in an early amniote skull without temporal openings. Relating thereto, previous explanations on the formation of temporal openings alongside the presence of potential pre-stages for such in a fully roofed dermal temporal region are debated. Lastly, an Anatomical Network Analysis is performed on the skull of C. aguti to illustrate and consider the bone integration in an early amniote skull and whether the observed modules correspond to previous hypotheses on the origin of temporal openings. The matrix generated for this analysis is then modified to simulate the ten morphotypes mentioned above, but also to evaluate the influences of various temporal openings on the integration of the respective model skull and its correspondence to observations on actual taxa.